| 1234567891011121314151617181920212223242526272829303132333435363738394041 |
- function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
- %GRADIENTDESCENT Performs gradient descent to learn theta
- % theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by
- % taking num_iters gradient steps with learning rate alpha
- % Initialize some useful values
- m = length(y); % number of training examples
- J_history = zeros(num_iters, 1);
- for iter = 1:num_iters
- % ====================== YOUR CODE HERE ======================
- % Instructions: Perform a single gradient step on the parameter vector
- % theta.
- %
- % Hint: While debugging, it can be useful to print out the values
- % of the cost function (computeCost) and gradient here.
- %
-
- h_theta = X * theta;
- hy = (h_theta - y);
-
- % https://octave.org/doc/v4.0.3/Arithmetic-Ops.html
- % use .* to do element by element multiplicaton
-
- temp0 = theta(1,1) - alpha / m * sum(hy .* X(:,1));
- temp1 = theta(2,1) - alpha / m * sum(hy .* X(:,2));
- %fprintf ("temp0/1: %f // %f / %f\n", temp0, temp1, temp1 + temp0);
- theta = [temp0;temp1];
-
- % ============================================================
- % Save the cost J in every iteration
- J_history(iter) = computeCost(X, y, theta);
- end
- end
|