function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters) %GRADIENTDESCENT Performs gradient descent to learn theta % theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by % taking num_iters gradient steps with learning rate alpha % Initialize some useful values m = length(y); % number of training examples J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ====================== % Instructions: Perform a single gradient step on the parameter vector % theta. % % Hint: While debugging, it can be useful to print out the values % of the cost function (computeCost) and gradient here. % h_theta = X * theta; hy = (h_theta - y); % https://octave.org/doc/v4.0.3/Arithmetic-Ops.html % use .* to do element by element multiplicaton temp0 = theta(1,1) - alpha / m * sum(hy .* X(:,1)); temp1 = theta(2,1) - alpha / m * sum(hy .* X(:,2)); %fprintf ("temp0/1: %f // %f / %f\n", temp0, temp1, temp1 + temp0); theta = [temp0;temp1]; % ============================================================ % Save the cost J in every iteration J_history(iter) = computeCost(X, y, theta); end end