| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- import sys
- from pyspark import SparkContext
- from pyspark.streaming import StreamingContext
- from pyspark.streaming.kafka import KafkaUtils
- #import optcal
- import json
- import numpy
- def process(time, rdd):
- #print (time, rdd)
- lt = (rdd.collect())
- #print '\n'.join ('%d %s'% (l[0], ''.join(('%f'% e) for e in l[1])) for l in list)
- if len(lt) == 2:
- a = list(lt[0][1])
- b = list(lt[1][1])
- #print a, b
- corr = 0.0
- if len(a) > 1 and len(b) > 1:
- if len(a) > len(b):
- corr= numpy.corrcoef(a[:len(b)], b)
- else:
- corr= numpy.corrcoef(b[:len(a)], a)
-
- print "%s corr---> %f" % (time.strftime('%Y%m%d %H:%M:%S'), corr.tolist()[0][1])
- #print numpy.corrcoef(list(lt[0][1]), list(lt[1][1]))
-
- # to run from command prompt
- # 0. start kafka broker
- # 1. edit subscription.txt and prepare 2 stocks
- # 2. run ib_mds.py
- # 3. spark-submit --jars spark-streaming-kafka-assembly_2.10-1.4.1.jar ./alerts/pairs_corr.py vsu-01:2181
- # http://stackoverflow.com/questions/3425439/why-does-corrcoef-return-a-matrix
- #
- if __name__ == "__main__":
- if len(sys.argv) != 2:
- print("Usage: ib_test02.py <broker_list ex: vsu-01:2181>")
- exit(-1)
- app_name = "IbMarketDataStream"
- sc = SparkContext(appName= app_name)
- ssc = StreamingContext(sc, 2)
- ssc.checkpoint('./checkpoint')
- brokers = sys.argv[1]
- #kvs = KafkaUtils.createDirectStream(ssc, ['ib_tick_price', 'ib_tick_size'], {"metadata.broker.list": brokers})
- kvs = KafkaUtils.createStream(ssc, brokers, app_name, {'ib_tick_price':1, 'ib_tick_size':1})
- lines = kvs.map(lambda x: x[1])
- uso = lines.map(lambda line: json.loads(line)).filter(lambda x: (x['tickerId'] == 1 and x['typeName']== 'tickPrice'))\
- .map(lambda x: (1, x['price'])).window(8, 6)
- dug = lines.map(lambda line: json.loads(line)).filter(lambda x: (x['tickerId'] == 2 and x['typeName']== 'tickPrice'))\
- .map(lambda x: (2, x['price'])).window(8, 6)
-
-
- pair = uso.union(dug).groupByKey()
- # sample values are empty, one element, and 2 elements
- #(1, <pyspark.resultiterable.ResultIterable object at 0x7fae53a187d0>)
- #(2, <pyspark.resultiterable.ResultIterable object at 0x7fae53a18c50>)
-
-
- #pair.pprint()
- pair.foreachRDD(process)
- ssc.start()
- ssc.awaitTermination()
|