| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 |
- import sys
- from pyspark import SparkContext
- from pyspark.streaming import StreamingContext
- from pyspark.streaming.kafka import KafkaUtils
- #import optcal
- import json
- def process(time, rdd):
- #print (time, rdd)
- list = (rdd.collect())
- #print ('process---> %s' %list)
- print '\n'.join ('%s %s'% (l['contract'], l['price']) for l in list)
- def psize(time, rdd):
- list = rdd.collect()
- print '\n'.join ('%s:%s'% (l[0],l[1]) for l in list)
-
- if __name__ == "__main__":
- if len(sys.argv) != 2:
- print("Usage: ib_test02.py <broker_list ex: vsu-01:2181>")
- exit(-1)
- app_name = "IbMarketDataStream"
- sc = SparkContext(appName= app_name)
- ssc = StreamingContext(sc, 2)
- ssc.checkpoint('./checkpoint')
- brokers = sys.argv[1]
- #kvs = KafkaUtils.createDirectStream(ssc, ['ib_tick_price', 'ib_tick_size'], {"metadata.broker.list": brokers})
- kvs = KafkaUtils.createStream(ssc, brokers, app_name, {'ib_tick_price':1, 'ib_tick_size':1})
- lines = kvs.map(lambda x: x[1])
- msg = lines.map(lambda line: json.loads(line)).filter(lambda x: (x['tickerId'] == 1 and x['typeName']== 'tickPrice')).window(4, 2)
- size = lines.map(lambda line: json.loads(line)).filter(lambda x: (x['tickerId'] == 1 and x['typeName']== 'tickSize'))\
- .map(lambda x: (x['tickerId'], x['size'])).window(4,2)
- avg = size.reduceByKey(lambda a,b: (a+b)/2).window(4, 2)
-
- # mix.pprint()
- msg.foreachRDD(process)
- avg.foreachRDD(psize)
- ssc.start()
- ssc.awaitTermination()
|