import sys from pyspark import SparkContext from pyspark.streaming import StreamingContext from pyspark.streaming.kafka import KafkaUtils #import optcal import json import numpy def process(time, rdd): #print (time, rdd) lt = (rdd.collect()) #print '\n'.join ('%d %s'% (l[0], ''.join(('%f'% e) for e in l[1])) for l in list) if len(lt) == 2: a = list(lt[0][1]) b = list(lt[1][1]) #print a, b corr = 0.0 if len(a) > 1 and len(b) > 1: if len(a) > len(b): corr= numpy.corrcoef(a[:len(b)], b) else: corr= numpy.corrcoef(b[:len(a)], a) print "%s corr---> %f" % (time.strftime('%Y%m%d %H:%M:%S'), corr.tolist()[0][1]) #print numpy.corrcoef(list(lt[0][1]), list(lt[1][1])) # to run from command prompt # 0. start kafka broker # 1. edit subscription.txt and prepare 2 stocks # 2. run ib_mds.py # 3. spark-submit --jars spark-streaming-kafka-assembly_2.10-1.4.1.jar ./alerts/pairs_corr.py vsu-01:2181 # http://stackoverflow.com/questions/3425439/why-does-corrcoef-return-a-matrix # if __name__ == "__main__": if len(sys.argv) != 2: print("Usage: ib_test02.py ") exit(-1) app_name = "IbMarketDataStream" sc = SparkContext(appName= app_name) ssc = StreamingContext(sc, 2) ssc.checkpoint('./checkpoint') brokers = sys.argv[1] #kvs = KafkaUtils.createDirectStream(ssc, ['ib_tick_price', 'ib_tick_size'], {"metadata.broker.list": brokers}) kvs = KafkaUtils.createStream(ssc, brokers, app_name, {'ib_tick_price':1, 'ib_tick_size':1}) lines = kvs.map(lambda x: x[1]) uso = lines.map(lambda line: json.loads(line)).filter(lambda x: (x['tickerId'] == 1 and x['typeName']== 'tickPrice'))\ .map(lambda x: (1, x['price'])).window(8, 6) dug = lines.map(lambda line: json.loads(line)).filter(lambda x: (x['tickerId'] == 2 and x['typeName']== 'tickPrice'))\ .map(lambda x: (2, x['price'])).window(8, 6) pair = uso.union(dug).groupByKey() # sample values are empty, one element, and 2 elements #(1, ) #(2, ) #pair.pprint() pair.foreachRDD(process) ssc.start() ssc.awaitTermination()