| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- function [J, grad] = cofiCostFunc(params, Y, R, num_users, num_movies, ...
- num_features, lambda)
- %COFICOSTFUNC Collaborative filtering cost function
- % [J, grad] = COFICOSTFUNC(params, Y, R, num_users, num_movies, ...
- % num_features, lambda) returns the cost and gradient for the
- % collaborative filtering problem.
- %
- % Unfold the U and W matrices from params
- X = reshape(params(1:num_movies*num_features), num_movies, num_features);
- Theta = reshape(params(num_movies*num_features+1:end), ...
- num_users, num_features);
-
- % You need to return the following values correctly
- J = 0;
- X_grad = zeros(size(X));
- Theta_grad = zeros(size(Theta));
- %fprintf('-----------size num movies %d\n', num_movies);
- % ====================== YOUR CODE HERE ======================
- % Instructions: Compute the cost function and gradient for collaborative
- % filtering. Concretely, you should first implement the cost
- % function (without regularization) and make sure it is
- % matches our costs. After that, you should implement the
- % gradient and use the checkCostFunction routine to check
- % that the gradient is correct. Finally, you should implement
- % regularization.
- %
- % Notes: X - num_movies x num_features matrix of movie features
- % Theta - num_users x num_features matrix of user features
- % Y - num_movies x num_users matrix of user ratings of movies
- % R - num_movies x num_users matrix, where R(i, j) = 1 if the
- % i-th movie was rated by the j-th user
- %
- % You should set the following variables correctly:
- %
- % X_grad - num_movies x num_features matrix, containing the
- % partial derivatives w.r.t. to each element of X
- % Theta_grad - num_users x num_features matrix, containing the
- % partial derivatives w.r.t. to each element of Theta
- %
- % Add intercept term to X
- %X = [ones(num_movies, 1) X];
- %X_grad = zeros(size(X));
- % Initialize fitting parameters
- %Theta = [zeros(num_users, 1) Theta];
- %Theta_grad = zeros(size(X));
- regT = lambda / 2 * sum(sum(Theta.^2));
- regX = lambda / 2 * sum(sum(X.^2));
- % step 1 -> select only Rij == 1 -> X (5x 3+1) * Theta'(3+1 x4) -> Y (5x4)
- % step 2 sum i of Y -> sum j of Y -> Y -> (1x1)
- % refer to lecture notes pg 18
- J = 1 / 2 * sum(sum( R .* (X * Theta' - Y).^2)) + regT + regX;
- for i = 1:num_movies
- idx = find(R(i,:) == 1);
- %num_users_rated = size(idx);
- %dumpsize('idx', idx);
- %fprintf('there are %d users that rated the movie at %dth row (tot movies %d)\n', columns(num_users_rated), i, num_movies);
-
- Theta_temp = Theta(idx,:);
- %dumpsize('Theta_temp', Theta_temp);
- Y_temp = Y(i,idx);
- %dumpsize('Y_temp', Y_temp);
- X_grad(i,:) = (X(i,:) * Theta_temp' - Y_temp) * Theta_temp + lambda * X(i,:);
-
- endfor
- % for each user j,
- % -- determine the theta_gradient of user j
- for j = 1:num_users
- % find all movies rated by user j
- % that means, select column j of R, go down through each row from 1 to num_movies, record the
- % array index where the cell(i,j) == 1
- idx = find(R(:,j) == 1);
- %fprintf('there are %d movies that were rated by user %d (tot users %d)\n', columns(idx), i, num_users);
- % example:
- % R = [0;1;0;1;0]
- % then idx = [2, 4, 5]
- % and Y at the jth column = [0;4;0;3;5]
- % thus Y_temp = [4;3;5]
- % X_temp row 1 = contents of row 2 and all columns from X
- % X_temp row 2 = contents of row 4 and all columns from X
- % X_temp row 3 = contents of row 5 and all columns from X
- Y_temp = Y(idx,j);
- X_temp = X(idx,:);
- Theta_grad(j,:) = (X_temp * Theta(j,:)' - Y_temp)' * X_temp + lambda * Theta(j,:);;
-
- endfor
- % get rid of the intercept term X0 and theta0
- %X_grad = X_grad(:,2:end);
- %Theta_grad = Theta_grad(:,2:end);
- % =============================================================
- grad = [X_grad(:); Theta_grad(:)];
- end
|