gradientDescentMulti.m 1.0 KB

1234567891011121314151617181920212223242526272829303132333435363738
  1. function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
  2. %GRADIENTDESCENTMULTI Performs gradient descent to learn theta
  3. % theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
  4. % taking num_iters gradient steps with learning rate alpha
  5. % Initialize some useful values
  6. m = length(y); % number of training examples
  7. J_history = zeros(num_iters, 1);
  8. for iter = 1:num_iters
  9. % ====================== YOUR CODE HERE ======================
  10. % Instructions: Perform a single gradient step on the parameter vector
  11. % theta.
  12. %
  13. % Hint: While debugging, it can be useful to print out the values
  14. % of the cost function (computeCostMulti) and gradient here.
  15. %
  16. h_theta = X * theta;
  17. hy = (h_theta - y);
  18. theta = (theta' - alpha / m * sum(hy .* X))';
  19. % ============================================================
  20. % Save the cost J in every iteration
  21. J_history(iter) = computeCostMulti(X, y, theta);
  22. end
  23. end