gradientDescent.m 1.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041
  1. function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
  2. %GRADIENTDESCENT Performs gradient descent to learn theta
  3. % theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by
  4. % taking num_iters gradient steps with learning rate alpha
  5. % Initialize some useful values
  6. m = length(y); % number of training examples
  7. J_history = zeros(num_iters, 1);
  8. for iter = 1:num_iters
  9. % ====================== YOUR CODE HERE ======================
  10. % Instructions: Perform a single gradient step on the parameter vector
  11. % theta.
  12. %
  13. % Hint: While debugging, it can be useful to print out the values
  14. % of the cost function (computeCost) and gradient here.
  15. %
  16. h_theta = X * theta;
  17. hy = (h_theta - y);
  18. % https://octave.org/doc/v4.0.3/Arithmetic-Ops.html
  19. % use .* to do element by element multiplicaton
  20. temp0 = theta(1,1) - alpha / m * sum(hy .* X(:,1));
  21. temp1 = theta(2,1) - alpha / m * sum(hy .* X(:,2));
  22. %fprintf ("temp0/1: %f // %f / %f\n", temp0, temp1, temp1 + temp0);
  23. theta = [temp0;temp1];
  24. % ============================================================
  25. % Save the cost J in every iteration
  26. J_history(iter) = computeCost(X, y, theta);
  27. end
  28. end