| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- function [J grad] = nnCostFunction(nn_params, ...
- input_layer_size, ...
- hidden_layer_size, ...
- num_labels, ...
- X, y, lambda)
- %NNCOSTFUNCTION Implements the neural network cost function for a two layer
- %neural network which performs classification
- % [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
- % X, y, lambda) computes the cost and gradient of the neural network. The
- % parameters for the neural network are "unrolled" into the vector
- % nn_params and need to be converted back into the weight matrices.
- %
- % The returned parameter grad should be a "unrolled" vector of the
- % partial derivatives of the neural network.
- %
- % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
- % for our 2 layer neural network
- Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
- hidden_layer_size, (input_layer_size + 1));
- Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
- num_labels, (hidden_layer_size + 1));
- % Setup some useful variables
- m = size(X, 1);
-
- % You need to return the following variables correctly
- J = 0;
- Theta1_grad = zeros(size(Theta1));
- Theta2_grad = zeros(size(Theta2));
- % ====================== YOUR CODE HERE ======================
- % Instructions: You should complete the code by working through the
- % following parts.
- %
- % Part 1: Feedforward the neural network and return the cost in the
- % variable J. After implementing Part 1, you can verify that your
- % cost function computation is correct by verifying the cost
- % computed in ex4.m
- %
- % Part 2: Implement the backpropagation algorithm to compute the gradients
- % Theta1_grad and Theta2_grad. You should return the partial derivatives of
- % the cost function with respect to Theta1 and Theta2 in Theta1_grad and
- % Theta2_grad, respectively. After implementing Part 2, you can check
- % that your implementation is correct by running checkNNGradients
- %
- % Note: The vector y passed into the function is a vector of labels
- % containing values from 1..K. You need to map this vector into a
- % binary vector of 1's and 0's to be used with the neural network
- % cost function.
- %
- % Hint: We recommend implementing backpropagation using a for-loop
- % over the training examples if you are implementing it for the
- % first time.
- %
- % Part 3: Implement regularization with the cost function and gradients.
- %
- % Hint: You can implement this around the code for
- % backpropagation. That is, you can compute the gradients for
- % the regularization separately and then add them to Theta1_grad
- % and Theta2_grad from Part 2.
- %
- % part 1
- X1_1 = [ones(m, 1) X];
- z2 = X1_1 * Theta1';
- a2 = sigmoid(z2);
- a2_1 = [ones(m, 1) a2];
- z3 = a2_1 * Theta2';
- a3 = sigmoid(z3);
- %sel = randperm(size(a3, 1));
- %sel = sel(1:20);
- %out = a3(sel,:)
- % This method uses an indexing trick to vectorize the creation of 'y_matrix',
- % where each element of 'y' is mapped to a single-value row vector copied from an eye matrix.
- % check the notes in machine learning / resources /programming exercise 4
- Theta1_no_bias = Theta1(:, 2:end);
- Theta2_no_bias = Theta2(:, 2:end);
- %sum(sum(Theta1_no_bias .^ 2))
- %sum(sum(Theta2_no_bias .^ 2))
- J_reg = lambda / (2 * m) * ...
- (sum(sum(Theta1_no_bias .^ 2)) + sum(sum(Theta2_no_bias .^ 2)));
- y_matrix = eye(num_labels)(y,:);
- J = 1/m * sum(sum(-y_matrix .* log(a3) .- (1 .- y_matrix) .* log(1 - a3))) ...
- + J_reg;
- % part 2
- delta2 = zeros(num_labels, hidden_layer_size + 1);
- delta1 = zeros(hidden_layer_size, input_layer_size + 1);
- Theta2T = Theta2(:, 2:end)';
- for t = 1: m
- X1_1t = X1_1(t,:);
- z2_t = X1_1t * Theta1';
- % the next line is commented out because a2_t has
- % already been computed above
- %a2_t = sigmoid(z2_t);
-
-
- a2_t = a2(t,:);
- a2_1t = [1 a2_t];
- % the next two lines are commented out because the values
- % are available from previous computations
- %z3_t = a2_1t * Theta2';
- %a3_t = sigmoid(z3_t);
-
- a3_t = a3(t,:);
- d3_t = a3_t' - y_matrix(t,:)';
- % remove bias in Theta2
- % refer to resources| programming ex.4 Step 7
-
- % the theta2 transpose is taken out of the loop
- % to prevent it from being computed over and over
- %d2_t = Theta2(:, 2:end)' * d3_t .* sigmoidGradient(z2_t)';
- d2_t = Theta2T * d3_t .* sigmoidGradient(z2_t)';
-
- delta2 = delta2 + d3_t * a2_1t;
- delta1 = delta1 + d2_t * X1_1t;
-
- endfor
- reg1 = lambda / m * [zeros(rows(Theta1_no_bias), 1) Theta1_no_bias];
- reg2 = lambda / m * [zeros(rows(Theta2_no_bias), 1) Theta2_no_bias];
- Theta1_grad = 1/m * delta1 + reg1;
- Theta2_grad = 1/m * delta2 + reg2;
- % -------------------------------------------------------------
- % =========================================================================
- % Unroll gradients
- grad = [Theta1_grad(:) ; Theta2_grad(:)];
- end
|