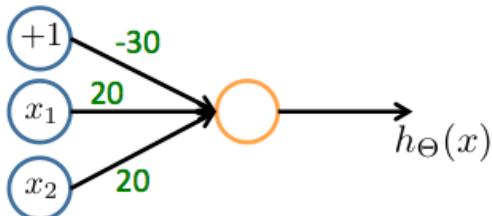


← Neural Networks: Representation

Quiz, 5 questions

1
point

1.

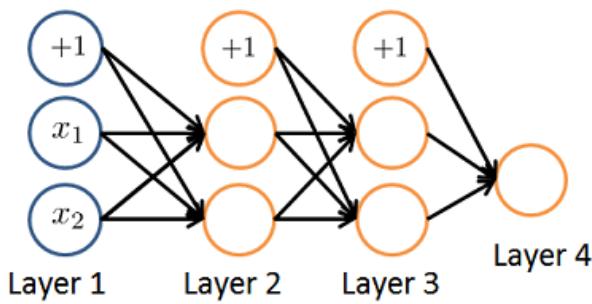

Which of the following statements are true? Check all that apply.

- The activation values of the hidden units in a neural network, with the sigmoid activation function applied at every layer, are always in the range (0, 1).
- Suppose you have a multi-class classification problem with three classes, trained with a 3 layer network. Let $a_1^{(3)} = (h_\Theta(x))_1$ be the activation of the first output unit, and similarly $a_2^{(3)} = (h_\Theta(x))_2$ and $a_3^{(3)} = (h_\Theta(x))_3$. Then for any input x , it must be the case that $a_1^{(3)} + a_2^{(3)} + a_3^{(3)} = 1$.
- A two layer (one input layer, one output layer; no hidden layer) neural network can represent the XOR function.
- Any logical function over binary-valued (0 or 1) inputs x_1 and x_2 can be (approximately) represented using some neural network.

1
point

2.

Consider the following neural network which takes two binary-valued inputs $x_1, x_2 \in \{0, 1\}$ and outputs $h_\Theta(x)$. Which of the following logical functions does it (approximately) compute?


- AND
- NAND (meaning "NOT AND")
- OR
- XOR (exclusive OR)

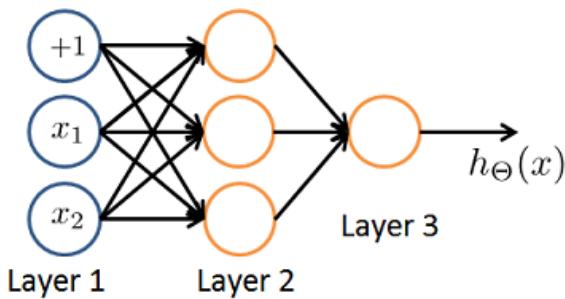
1
point

3.

← Consider the neural network given below. Which of the following equations correctly computes the activation $a_1^{(3)}$? Note: $g(z)$ is the sigmoid activation function.

Quiz, 5 questions

- $a_1^{(3)} = g(\Theta_{1,0}^{(2)}a_0^{(2)} + \Theta_{1,1}^{(2)}a_1^{(2)} + \Theta_{1,2}^{(2)}a_2^{(2)})$
- $a_1^{(3)} = g(\Theta_{1,0}^{(1)}a_0^{(1)} + \Theta_{1,1}^{(1)}a_1^{(1)} + \Theta_{1,2}^{(1)}a_2^{(1)})$
- $a_1^{(3)} = g(\Theta_{1,0}^{(1)}a_0^{(2)} + \Theta_{1,1}^{(1)}a_1^{(2)} + \Theta_{1,2}^{(1)}a_2^{(2)})$
- The activation $a_1^{(3)}$ is not present in this network.


1
point

4.

You have the following neural network:

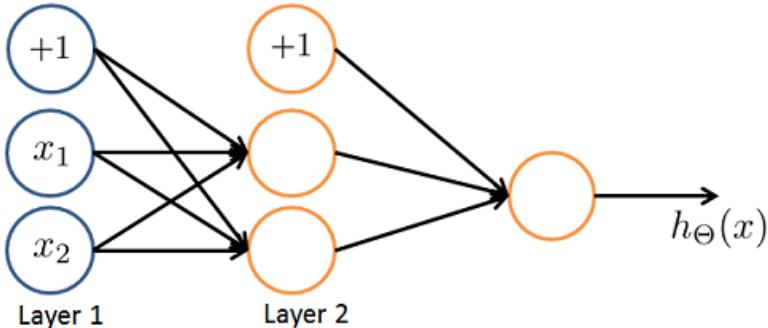
← Neural Networks: Representation

Quiz, 5 questions

You'd like to compute the activations of the hidden layer $a^{(2)} \in \mathbb{R}^3$. One way to do so is the following Octave code:

```
% Theta1 is Theta with superscript "(1)" from lecture
% ie, the matrix of parameters for the mapping from layer 1 (input) to layer 2
% Theta1 has size 3x3
% Assume 'sigmoid' is a built-in function to compute 1 / (1 + exp(-z))

a2 = zeros (3, 1);
for i = 1:3
    for j = 1:3
        a2(i) = a2(i) + x(j) * Theta1(i, j);
    end
    a2(i) = sigmoid (a2(i));
end
```


You want to have a vectorized implementation of this (i.e., one that does not use for loops). Which of the following implementations correctly compute $a^{(2)}$? Check all that apply.

- $z = \Theta_1 * x; a2 = \text{sigmoid}(z);$
- $a2 = \text{sigmoid}(x * \Theta_1);$
- $a2 = \text{sigmoid}(\Theta_2 * x);$
- $z = \text{sigmoid}(x); a2 = \text{sigmoid}(\Theta_1 * z);$

1
point

5.

← You are using the neural network pictured below and have learned the parameters $\Theta^{(1)} = \begin{bmatrix} 1 & 1 & 2.4 \\ 1 & 1.7 & 3.2 \end{bmatrix}$ (used to compute $a^{(2)}$) and $\Theta^{(2)} = \begin{bmatrix} 1 & 0.3 & -1.2 \end{bmatrix}$ (used to compute $a^{(3)}$) as a function of $a^{(2)}$). Suppose you swap the parameters for the first hidden layer between its two units so $\Theta^{(1)} = \begin{bmatrix} 1 & 1.7 & 3.2 \\ 1 & 1 & 2.4 \end{bmatrix}$ and also swap the output layer so $\Theta^{(2)} = \begin{bmatrix} 1 & -1.2 & 0.3 \end{bmatrix}$. How will this change the value of the output $h_\Theta(x)$?

- It will stay the same.
- It will increase.
- It will decrease
- Insufficient information to tell: it may increase or decrease.

I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

[Learn more about Coursera's Honor Code](#)

chan chi hoi

[Submit Quiz](#)

