%% Machine Learning Online Class % Exercise 7 | Principle Component Analysis and K-Means Clustering % % Instructions % ------------ % % This file contains code that helps you get started on the % exercise. You will need to complete the following functions: % % pca.m % projectData.m % recoverData.m % computeCentroids.m % findClosestCentroids.m % kMeansInitCentroids.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % %% Initialization clear ; close all; clc %% ================== Part 1: Load Example Dataset =================== % We start this exercise by using a small dataset that is easily to % visualize % fprintf('Visualizing example dataset for PCA.\n\n'); % The following command loads the dataset. You should now have the % variable X in your environment load ('ex7data1.mat'); % Visualize the example dataset plot(X(:, 1), X(:, 2), 'bo'); axis([0.5 6.5 2 8]); axis square; fprintf('Program paused. Press enter to continue.\n'); %% =============== Part 2: Principal Component Analysis =============== % You should now implement PCA, a dimension reduction technique. You % should complete the code in pca.m % fprintf('\nRunning PCA on example dataset.\n\n'); % Before running PCA, it is important to first normalize X [X_norm, mu, sigma] = featureNormalize(X); % Run PCA [U, S] = pca(X_norm); % Compute mu, the mean of the each feature % Draw the eigenvectors centered at mean of data. These lines show the % directions of maximum variations in the dataset. hold on; drawLine(mu, mu + 1.5 * S(1,1) * U(:,1)', '-k', 'LineWidth', 2); drawLine(mu, mu + 1.5 * S(2,2) * U(:,2)', '-k', 'LineWidth', 2); hold off; fprintf('Top eigenvector: \n'); fprintf(' U(:,1) = %f %f \n', U(1,1), U(2,1)); fprintf('\n(you should expect to see -0.707107 -0.707107)\n'); fprintf('Program paused. Press enter to continue.\n'); %% =================== Part 3: Dimension Reduction =================== % You should now implement the projection step to map the data onto the % first k eigenvectors. The code will then plot the data in this reduced % dimensional space. This will show you what the data looks like when % using only the corresponding eigenvectors to reconstruct it. % % You should complete the code in projectData.m % fprintf('\nDimension reduction on example dataset.\n\n'); % Plot the normalized dataset (returned from pca) plot(X_norm(:, 1), X_norm(:, 2), 'bo'); axis([-4 3 -4 3]); axis square % Project the data onto K = 1 dimension K = 1; Z = projectData(X_norm, U, K); fprintf('Projection of the first example: %f\n', Z(1)); fprintf('\n(this value should be about 1.481274)\n\n'); X_rec = recoverData(Z, U, K); fprintf('Approximation of the first example: %f %f\n', X_rec(1, 1), X_rec(1, 2)); fprintf('\n(this value should be about -1.047419 -1.047419)\n\n'); % Draw lines connecting the projected points to the original points hold on; plot(X_rec(:, 1), X_rec(:, 2), 'ro'); for i = 1:size(X_norm, 1) drawLine(X_norm(i,:), X_rec(i,:), '--k', 'LineWidth', 1); end hold off fprintf('Program paused. Press enter to continue.\n'); pause;