function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %regression with multiple variables % [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the % cost of using theta as the parameter for linear regression to fit the % data points in X and y. Returns the cost in J and the gradient in grad % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost and gradient of regularized linear % regression for a particular choice of theta. % % You should set J to the cost and grad to the gradient. % h_theta = X * theta - y; J = 1 / (2 * m) * sum (h_theta .^2) + lambda / (2 * m) * sum(theta(2:end) .^2); reg = lambda / m * theta .* [0; ones(rows(theta)-1, 1)]; reg grad = 1 / m * sum(X' * h_theta ) + reg; % ========================================================================= grad = grad(:); end