{
"cells": [
{
"cell_type": "code",
"execution_count": 11,
"id": "0158ae9b",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import yfinance as yf\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.decomposition import PCA\n",
"from sklearn.cluster import KMeans\n",
"from sklearn.ensemble import IsolationForest\n",
"from sklearn.svm import OneClassSVM\n",
"from sklearn.metrics import silhouette_score\n",
"from datetime import datetime, timedelta\n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"class CryptoAnalyzer:\n",
" def __init__(self):\n",
" # Top traded cryptocurrencies (using their Yahoo Finance tickers)\n",
" self.crypto_tickers = [\n",
" 'BTC-USD', 'ETH-USD', 'BNB-USD', 'XRP-USD', 'ADA-USD',\n",
" 'DOGE-USD', 'SOL-USD', 'DOT-USD', 'MATIC-USD', 'LTC-USD',\n",
" 'SHIB-USD', 'TRX-USD', 'AVAX-USD', 'UNI-USD', 'LINK-USD'\n",
" ]\n",
" self.data = {}\n",
" self.scaler = StandardScaler()\n",
" self.pca = PCA(n_components=2)\n",
" self.kmeans = None\n",
" self.isolation_forest = None\n",
" self.one_class_svm = None\n",
" \n",
" def download_data(self, period='1y', interval='1d'):\n",
" \"\"\"\n",
" Download historical price data for cryptocurrencies\n",
" \"\"\"\n",
" print(\"Downloading cryptocurrency data...\")\n",
" \n",
" for ticker in self.crypto_tickers:\n",
" try:\n",
" crypto_data = yf.download(ticker, period=period, interval=interval)\n",
" if not crypto_data.empty:\n",
" self.data[ticker] = crypto_data\n",
" print(f\"✓ Downloaded data for {ticker}\")\n",
" else:\n",
" print(f\"✗ No data for {ticker}\")\n",
" except Exception as e:\n",
" print(f\"✗ Error downloading {ticker}: {str(e)}\")\n",
" \n",
" print(f\"Successfully downloaded data for {len(self.data)} cryptocurrencies\\n\")\n",
" return self.data\n",
" \n",
" def preprocess_data(self):\n",
" \"\"\"\n",
" Preprocess the downloaded data for analysis\n",
" \"\"\"\n",
" print(\"Preprocessing data...\")\n",
" \n",
" # Create features for each cryptocurrency\n",
" features_list = []\n",
" returns_list = []\n",
" \n",
" for ticker, df in self.data.items():\n",
" try:\n",
" # Ensure we're working with single columns by selecting specific column names\n",
" if 'Close' in df.columns:\n",
" if isinstance(df['Close'], pd.DataFrame):\n",
" close_prices = df['Close'].iloc[:, 0] # Take first column if multiple\n",
" else:\n",
" close_prices = df['Close']\n",
" else:\n",
" # If Close column doesn't exist, skip this ticker\n",
" print(f\"Skipping {ticker} - no Close data\")\n",
" continue\n",
" \n",
" if 'High' in df.columns:\n",
" if isinstance(df['High'], pd.DataFrame):\n",
" high_prices = df['High'].iloc[:, 0] # Take first column if multiple\n",
" else:\n",
" high_prices = df['High']\n",
" else:\n",
" high_prices = close_prices # Fallback to close prices\n",
" \n",
" if 'Low' in df.columns:\n",
" if isinstance(df['Low'], pd.DataFrame):\n",
" low_prices = df['Low'].iloc[:, 0] # Take first column if multiple\n",
" else:\n",
" low_prices = df['Low']\n",
" else:\n",
" low_prices = close_prices # Fallback to close prices\n",
" \n",
" if 'Volume' in df.columns:\n",
" if isinstance(df['Volume'], pd.DataFrame):\n",
" volume_data = df['Volume'].iloc[:, 0] # Take first column if multiple\n",
" else:\n",
" volume_data = df['Volume']\n",
" else:\n",
" volume_data = pd.Series([1] * len(df), index=df.index) # Default volume\n",
" \n",
" # Calculate returns and technical indicators\n",
" returns = close_prices.pct_change()\n",
" volatility = returns.rolling(window=30).std()\n",
" ma_7 = close_prices.rolling(window=7).mean()\n",
" ma_30 = close_prices.rolling(window=30).mean()\n",
" \n",
" # Avoid division by zero\n",
" price_ma_ratio = np.where(ma_30 != 0, close_prices / ma_30, 1)\n",
" volume_ma = volume_data.rolling(window=30).mean()\n",
" volume_ratio = np.where(volume_ma != 0, volume_data / volume_ma, 1)\n",
" \n",
" # Get the latest data point for each cryptocurrency (avoid NaN values)\n",
" valid_indices = ~(returns.isna() | volatility.isna() | pd.Series(price_ma_ratio).isna() | pd.Series(volume_ratio).isna())\n",
" if valid_indices.sum() == 0:\n",
" continue\n",
" \n",
" latest_valid_idx = valid_indices[::-1].idxmax() # Last valid index\n",
" \n",
" features = {\n",
" 'Ticker': ticker,\n",
" 'Close_Price': float(close_prices.iloc[latest_valid_idx]),\n",
" 'Returns': float(returns.iloc[latest_valid_idx]),\n",
" 'Volatility': float(volatility.iloc[latest_valid_idx]),\n",
" 'Price_MA_Ratio': float(price_ma_ratio[latest_valid_idx]),\n",
" 'Volume_Ratio': float(volume_ratio[latest_valid_idx]),\n",
" 'High_Low_Ratio': float(high_prices.iloc[latest_valid_idx] / low_prices.iloc[latest_valid_idx]) if low_prices.iloc[latest_valid_idx] != 0 else 1.0\n",
" }\n",
" \n",
" features_list.append(features)\n",
" \n",
" # Store returns for similarity analysis (drop NaN values)\n",
" returns_clean = returns.dropna()\n",
" if len(returns_clean) > 0:\n",
" returns_list.append({\n",
" 'ticker': ticker,\n",
" 'returns': returns_clean,\n",
" 'mean_return': returns_clean.mean(),\n",
" 'std_return': returns_clean.std()\n",
" })\n",
" \n",
" except Exception as e:\n",
" print(f\"Error processing {ticker}: {str(e)}\")\n",
" continue\n",
" \n",
" self.features_df = pd.DataFrame(features_list)\n",
" self.returns_data = returns_list\n",
" \n",
" # Prepare numerical features for clustering and anomaly detection\n",
" self.numerical_features = ['Close_Price', 'Returns', 'Volatility', \n",
" 'Price_MA_Ratio', 'Volume_Ratio', 'High_Low_Ratio']\n",
" \n",
" # Remove rows with NaN values\n",
" self.features_df = self.features_df.dropna()\n",
" \n",
" print(f\"Data preprocessing completed. Processed {len(self.features_df)} cryptocurrencies\")\n",
" print(f\"Columns: {list(self.features_df.columns)}\")\n",
" return self.features_df \n",
"\n",
" def similarity_analysis(self):\n",
" \"\"\"\n",
" Perform similarity analysis between cryptocurrencies\n",
" \"\"\"\n",
" print(\"Performing similarity analysis...\")\n",
" \n",
" # Calculate correlation matrix based on returns\n",
" returns_df = pd.DataFrame()\n",
" for item in self.returns_data:\n",
" returns_df[item['ticker']] = item['returns'].tail(252) # Last year of data\n",
" \n",
" # Handle missing values by forward filling\n",
" returns_df = returns_df.fillna(method='ffill').fillna(method='bfill')\n",
" \n",
" # Calculate correlation matrix\n",
" self.correlation_matrix = returns_df.corr()\n",
" \n",
" # Display top similar pairs\n",
" print(\"Top similar cryptocurrency pairs (based on correlation):\")\n",
" similar_pairs = []\n",
" for i in range(len(self.correlation_matrix.columns)):\n",
" for j in range(i+1, len(self.correlation_matrix.columns)):\n",
" ticker1 = self.correlation_matrix.columns[i]\n",
" ticker2 = self.correlation_matrix.columns[j]\n",
" correlation = self.correlation_matrix.iloc[i, j]\n",
" similar_pairs.append((ticker1, ticker2, correlation))\n",
" \n",
" # Sort by correlation\n",
" similar_pairs.sort(key=lambda x: x[2], reverse=True)\n",
" \n",
" print(\"Top 10 most similar pairs:\")\n",
" for i, (t1, t2, corr) in enumerate(similar_pairs[:10]):\n",
" print(f\"{i+1}. {t1} - {t2}: {corr:.3f}\")\n",
" \n",
" # Visualize correlation matrix\n",
" plt.figure(figsize=(12, 10))\n",
" sns.heatmap(self.correlation_matrix, annot=True, cmap='coolwarm', center=0,\n",
" fmt='.2f', square=True)\n",
" plt.title('Cryptocurrency Returns Correlation Matrix')\n",
" plt.tight_layout()\n",
" plt.show()\n",
" \n",
" print(\"\\nSimilarity analysis completed\\n\")\n",
" return self.correlation_matrix\n",
" \n",
" def build_anomaly_detection_models(self):\n",
" \"\"\"\n",
" Build and train anomaly detection models\n",
" \"\"\"\n",
" print(\"Building anomaly detection models...\")\n",
" \n",
" # Prepare data for anomaly detection\n",
" X = self.features_df[self.numerical_features].values\n",
" X_scaled = self.scaler.fit_transform(X)\n",
" \n",
" # 1. K-Means Clustering for outlier detection\n",
" self.kmeans = KMeans(n_clusters=3, random_state=42)\n",
" cluster_labels = self.kmeans.fit_predict(X_scaled)\n",
" self.features_df['Cluster'] = cluster_labels\n",
" \n",
" # 2. Isolation Forest\n",
" self.isolation_forest = IsolationForest(contamination=0.1, random_state=42)\n",
" isolation_predictions = self.isolation_forest.fit_predict(X_scaled)\n",
" self.features_df['Isolation_Anomaly'] = isolation_predictions\n",
" \n",
" # 3. One-Class SVM\n",
" self.one_class_svm = OneClassSVM(nu=0.1)\n",
" svm_predictions = self.one_class_svm.fit_predict(X_scaled)\n",
" self.features_df['SVM_Anomaly'] = svm_predictions\n",
" \n",
" # Combine anomaly detection results\n",
" self.features_df['Anomaly_Score'] = (\n",
" (self.features_df['Isolation_Anomaly'] == -1).astype(int) +\n",
" (self.features_df['SVM_Anomaly'] == -1).astype(int)\n",
" )\n",
" \n",
" # Anomalies are detected if 2 or more models flag them\n",
" self.features_df['Is_Anomaly'] = self.features_df['Anomaly_Score'] >= 1\n",
" \n",
" print(\"Anomaly detection models built successfully\")\n",
" \n",
" # Display anomalies found\n",
" anomalies = self.features_df[self.features_df['Is_Anomaly']]\n",
" if len(anomalies) > 0:\n",
" print(f\"\\nDetected {len(anomalies)} potential anomalies:\")\n",
" for _, row in anomalies.iterrows():\n",
" print(f\" • {row['Ticker']}: Anomaly Score = {row['Anomaly_Score']}\")\n",
" else:\n",
" print(\"No anomalies detected in current data\")\n",
" \n",
" print(\"\\nModel building completed\\n\")\n",
" return self.features_df\n",
" \n",
" def detect_new_anomalies(self, new_data_point):\n",
" \"\"\"\n",
" Detect anomalies in new incoming data\n",
" \"\"\"\n",
" print(\"Detecting anomalies in new data...\")\n",
" \n",
" # Preprocess new data point (assuming it's in the same format)\n",
" new_scaled = self.scaler.transform([new_data_point])\n",
" \n",
" # Apply all models\n",
" kmeans_pred = self.kmeans.predict(new_scaled)[0]\n",
" isolation_pred = self.isolation_forest.predict(new_scaled)[0]\n",
" svm_pred = self.one_class_svm.predict(new_scaled)[0]\n",
" \n",
" # Calculate anomaly score\n",
" anomaly_score = (isolation_pred == -1) + (svm_pred == -1)\n",
" is_anomaly = anomaly_score >= 1\n",
" \n",
" result = {\n",
" 'Cluster': kmeans_pred,\n",
" 'Isolation_Prediction': 'Anomaly' if isolation_pred == -1 else 'Normal',\n",
" 'SVM_Prediction': 'Anomaly' if svm_pred == -1 else 'Normal',\n",
" 'Anomaly_Score': anomaly_score,\n",
" 'Is_Anomaly': is_anomaly\n",
" }\n",
" \n",
" print(f\"New data point analysis:\")\n",
" print(f\" Cluster: {result['Cluster']}\")\n",
" print(f\" Isolation Forest: {result['Isolation_Prediction']}\")\n",
" print(f\" One-Class SVM: {result['SVM_Prediction']}\")\n",
" print(f\" Overall: {'ANOMALY' if is_anomaly else 'NORMAL'}\")\n",
" \n",
" return result\n",
" \n",
" def visualize_results(self):\n",
" \"\"\"\n",
" Visualize the results of the analysis\n",
" \"\"\"\n",
" print(\"Generating visualizations...\")\n",
" \n",
" # Check what columns are actually available\n",
" print(f\"Available columns: {list(self.features_df.columns)}\")\n",
" \n",
" # 1. PCA visualization of clusters\n",
" X_scaled = self.scaler.transform(self.features_df[self.numerical_features])\n",
" X_pca = self.pca.fit_transform(X_scaled)\n",
" \n",
" plt.figure(figsize=(15, 5))\n",
" \n",
" # Plot 1: Clustering results\n",
" plt.subplot(1, 3, 1)\n",
" scatter = plt.scatter(X_pca[:, 0], X_pca[:, 1], c=self.features_df['Cluster'], \n",
" cmap='viridis', alpha=0.7)\n",
" plt.colorbar(scatter)\n",
" plt.title('Cryptocurrency Clustering (PCA)')\n",
" plt.xlabel('First Principal Component')\n",
" plt.ylabel('Second Principal Component')\n",
" \n",
" # Plot 2: Anomalies vs Normal points\n",
" plt.subplot(1, 3, 2)\n",
" colors = ['red' if x else 'blue' for x in self.features_df['Is_Anomaly']]\n",
" plt.scatter(X_pca[:, 0], X_pca[:, 1], c=colors, alpha=0.7)\n",
" plt.title('Anomaly Detection Results')\n",
" plt.xlabel('First Principal Component')\n",
" plt.ylabel('Second Principal Component')\n",
" \n",
" # Plot 3: Feature distributions - use actual available columns\n",
" plt.subplot(1, 3, 3)\n",
" # Check which numerical features are actually in the DataFrame\n",
" available_features = [col for col in ['Returns', 'Volatility'] if col in self.features_df.columns]\n",
" if not available_features:\n",
" # Try alternative column names that might be present\n",
" available_features = [col for col in self.numerical_features if col in self.features_df.columns][:2]\n",
" \n",
" if available_features:\n",
" self.features_df.boxplot(column=available_features, ax=plt.gca())\n",
" plt.title('Feature Distribution')\n",
" plt.xticks(rotation=45)\n",
" else:\n",
" plt.title('No suitable features found for boxplot')\n",
" plt.text(0.5, 0.5, 'No data available', ha='center', va='center')\n",
" \n",
" plt.tight_layout()\n",
" plt.show()\n",
" \n",
" print(\"Visualizations completed\\n\") \n",
" def generate_report(self):\n",
" \"\"\"\n",
" Generate a comprehensive report of the analysis\n",
" \"\"\"\n",
" print(\"=\"*60)\n",
" print(\"CRYPTOCURRENCY ANALYSIS REPORT\")\n",
" print(\"=\"*60)\n",
" \n",
" print(f\"\\n1. DATA SUMMARY:\")\n",
" print(f\" • Total cryptocurrencies analyzed: {len(self.features_df)}\")\n",
" print(f\" • Time period: 1 year\")\n",
" print(f\" • Features analyzed: {', '.join(self.numerical_features)}\")\n",
" \n",
" print(f\"\\n2. SIMILARITY ANALYSIS:\")\n",
" print(f\" • Correlation matrix generated for all pairs\")\n",
" print(f\" • Top similar pairs identified\")\n",
" \n",
" print(f\"\\n3. ANOMALY DETECTION:\")\n",
" anomalies = self.features_df[self.features_df['Is_Anomaly']]\n",
" print(f\" • Anomalies detected: {len(anomalies)}\")\n",
" if len(anomalies) > 0:\n",
" for _, row in anomalies.iterrows():\n",
" print(f\" - {row['Ticker']}\")\n",
" \n",
" print(f\"\\n4. CLUSTERING:\")\n",
" cluster_counts = self.features_df['Cluster'].value_counts()\n",
" for cluster, count in cluster_counts.items():\n",
" print(f\" • Cluster {cluster}: {count} cryptocurrencies\")\n",
" \n",
" print(\"=\"*60)\n",
"\n",
" def generate_report(self):\n",
" \"\"\"\n",
" Generate a comprehensive report of the analysis\n",
" \"\"\"\n",
" print(\"=\"*60)\n",
" print(\"CRYPTOCURRENCY ANALYSIS REPORT\")\n",
" print(\"=\"*60)\n",
" \n",
" print(f\"\\n1. DATA SUMMARY:\")\n",
" print(f\" • Total cryptocurrencies analyzed: {len(self.features_df)}\")\n",
" print(f\" • Time period: 1 year\")\n",
" print(f\" • Features analyzed: {', '.join(self.numerical_features)}\")\n",
" \n",
" print(f\"\\n2. SIMILARITY ANALYSIS:\")\n",
" print(f\" • Correlation matrix generated for all pairs\")\n",
" print(f\" • Top similar pairs identified\")\n",
" \n",
" print(f\"\\n3. ANOMALY DETECTION:\")\n",
" anomalies = self.features_df[self.features_df['Is_Anomaly']]\n",
" print(f\" • Anomalies detected: {len(anomalies)}\")\n",
" if len(anomalies) > 0:\n",
" for _, row in anomalies.iterrows():\n",
" print(f\" - {row['Ticker']}\")\n",
" \n",
" print(f\"\\n4. CLUSTERING:\")\n",
" cluster_counts = self.features_df['Cluster'].value_counts()\n",
" for cluster, count in cluster_counts.items():\n",
" print(f\" • Cluster {cluster}: {count} cryptocurrencies\")\n",
" \n",
" print(\"=\"*60)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "2c4bdc02",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[*********************100%***********************] 1 of 1 completed"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading cryptocurrency data...\n",
"✓ Downloaded data for BTC-USD\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"[*********************100%***********************] 1 of 1 completed\n",
"[*********************100%***********************] 1 of 1 completed\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"✓ Downloaded data for ETH-USD\n",
"✓ Downloaded data for BNB-USD\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[*********************100%***********************] 1 of 1 completed\n",
"[*********************100%***********************] 1 of 1 completed\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"✓ Downloaded data for XRP-USD\n",
"✓ Downloaded data for ADA-USD\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[*********************100%***********************] 1 of 1 completed\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"✓ Downloaded data for DOGE-USD\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[*********************100%***********************] 1 of 1 completed\n",
"[*********************100%***********************] 1 of 1 completed\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"✓ Downloaded data for SOL-USD\n",
"✓ Downloaded data for DOT-USD\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[*********************100%***********************] 1 of 1 completed\n",
"[*********************100%***********************] 1 of 1 completed\n",
"[*********************100%***********************] 1 of 1 completed\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"✓ Downloaded data for MATIC-USD\n",
"✓ Downloaded data for LTC-USD\n",
"✓ Downloaded data for SHIB-USD\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[*********************100%***********************] 1 of 1 completed\n",
"[*********************100%***********************] 1 of 1 completed\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"✓ Downloaded data for TRX-USD\n",
"✓ Downloaded data for AVAX-USD\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[*********************100%***********************] 1 of 1 completed\n",
"[*********************100%***********************] 1 of 1 completed\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"✓ Downloaded data for UNI-USD\n",
"✓ Downloaded data for LINK-USD\n",
"Successfully downloaded data for 15 cryptocurrencies\n",
"\n",
"Preprocessing data...\n",
"Data preprocessing completed. Processed 15 cryptocurrencies\n",
"Columns: ['Ticker', 'Close_Price', 'Returns', 'Volatility', 'Price_MA_Ratio', 'Volume_Ratio', 'High_Low_Ratio']\n"
]
},
{
"data": {
"application/vnd.microsoft.datawrangler.viewer.v0+json": {
"columns": [
{
"name": "index",
"rawType": "int64",
"type": "integer"
},
{
"name": "Ticker",
"rawType": "object",
"type": "string"
},
{
"name": "Close_Price",
"rawType": "float64",
"type": "float"
},
{
"name": "Returns",
"rawType": "float64",
"type": "float"
},
{
"name": "Volatility",
"rawType": "float64",
"type": "float"
},
{
"name": "Price_MA_Ratio",
"rawType": "float64",
"type": "float"
},
{
"name": "Volume_Ratio",
"rawType": "float64",
"type": "float"
},
{
"name": "High_Low_Ratio",
"rawType": "float64",
"type": "float"
}
],
"ref": "14566d31-ca6e-4da1-9122-4b7c7d1a6675",
"rows": [
[
"0",
"BTC-USD",
"117824.9296875",
"-0.04474583292162926",
"0.014816652681393472",
"1.0028592148405697",
"1.5821444699675502",
"1.0555415139433872"
],
[
"1",
"ETH-USD",
"4554.04150390625",
"-0.04251947955687252",
"0.03589733980318593",
"1.1880576114143897",
"1.900801548927478",
"1.0652001173964085"
],
[
"2",
"BNB-USD",
"844.2289428710938",
"-0.005626053460699776",
"0.021508748314019423",
"1.0806753686355166",
"1.5330639661575336",
"1.0461425370704636"
],
[
"3",
"XRP-USD",
"3.0665361881256104",
"-0.0652488597941423",
"0.04908735345401255",
"0.9615329697196453",
"1.392011587352721",
"1.0905490870965873"
],
[
"4",
"ADA-USD",
"0.9057555198669434",
"-0.00018600051069539436",
"0.04048090524972863",
"1.1309264128631853",
"3.7152840360972452",
"1.121537325211226"
],
[
"5",
"DOGE-USD",
"0.22310678660869598",
"-0.09011026769121644",
"0.055321487882966515",
"0.9773637281703155",
"1.5722847495345496",
"1.1390006293562114"
],
[
"6",
"SOL-USD",
"192.34945678710938",
"-0.04584030646190462",
"0.04128588106875424",
"1.0696208095855866",
"2.0022315688410655",
"1.0928768889485414"
],
[
"7",
"DOT-USD",
"3.979785680770874",
"-0.0705317966581882",
"0.039267691800707064",
"0.9906510874880544",
"1.6146763262546098",
"1.0967155418256935"
],
[
"8",
"MATIC-USD",
"0.21641500294208527",
"0.017332035858389272",
"0.048650857498484294",
"0.9070045458086071",
"0.10956768455503935",
"1.0316135935753004"
],
[
"9",
"LTC-USD",
"121.77552032470703",
"-0.07025288945538821",
"0.04182372909893931",
"1.0601149629853501",
"1.2187182737724183",
"1.0978056204706301"
],
[
"10",
"SHIB-USD",
"1.2865454664279241e-05",
"-0.08103896515615405",
"0.04987858265438886",
"0.9486272014789492",
"1.3320674198014906",
"1.1014073729878804"
],
[
"11",
"TRX-USD",
"0.3597746193408966",
"-0.007077269361385086",
"0.017728202921838947",
"1.0953633004447287",
"1.8675173093200668",
"1.032972820087163"
],
[
"12",
"AVAX-USD",
"23.685495376586914",
"-0.07229345359880124",
"0.04174425989332199",
"0.9982935570627587",
"1.6171175077833786",
"1.1009876347118317"
],
[
"13",
"UNI-USD",
"0.0001630000042496249",
"0.0",
"0.02785314422168725",
"0.9780000188942066",
"0.0",
"1.0"
],
[
"14",
"LINK-USD",
"22.58526039123535",
"-0.05897844496757054",
"0.05153772040459448",
"1.2016823376755383",
"2.0551558907596466",
"1.0949510707579013"
]
],
"shape": {
"columns": 7,
"rows": 15
}
},
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Ticker | \n",
" Close_Price | \n",
" Returns | \n",
" Volatility | \n",
" Price_MA_Ratio | \n",
" Volume_Ratio | \n",
" High_Low_Ratio | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" BTC-USD | \n",
" 117824.929688 | \n",
" -0.044746 | \n",
" 0.014817 | \n",
" 1.002859 | \n",
" 1.582144 | \n",
" 1.055542 | \n",
"
\n",
" \n",
" | 1 | \n",
" ETH-USD | \n",
" 4554.041504 | \n",
" -0.042519 | \n",
" 0.035897 | \n",
" 1.188058 | \n",
" 1.900802 | \n",
" 1.065200 | \n",
"
\n",
" \n",
" | 2 | \n",
" BNB-USD | \n",
" 844.228943 | \n",
" -0.005626 | \n",
" 0.021509 | \n",
" 1.080675 | \n",
" 1.533064 | \n",
" 1.046143 | \n",
"
\n",
" \n",
" | 3 | \n",
" XRP-USD | \n",
" 3.066536 | \n",
" -0.065249 | \n",
" 0.049087 | \n",
" 0.961533 | \n",
" 1.392012 | \n",
" 1.090549 | \n",
"
\n",
" \n",
" | 4 | \n",
" ADA-USD | \n",
" 0.905756 | \n",
" -0.000186 | \n",
" 0.040481 | \n",
" 1.130926 | \n",
" 3.715284 | \n",
" 1.121537 | \n",
"
\n",
" \n",
" | 5 | \n",
" DOGE-USD | \n",
" 0.223107 | \n",
" -0.090110 | \n",
" 0.055321 | \n",
" 0.977364 | \n",
" 1.572285 | \n",
" 1.139001 | \n",
"
\n",
" \n",
" | 6 | \n",
" SOL-USD | \n",
" 192.349457 | \n",
" -0.045840 | \n",
" 0.041286 | \n",
" 1.069621 | \n",
" 2.002232 | \n",
" 1.092877 | \n",
"
\n",
" \n",
" | 7 | \n",
" DOT-USD | \n",
" 3.979786 | \n",
" -0.070532 | \n",
" 0.039268 | \n",
" 0.990651 | \n",
" 1.614676 | \n",
" 1.096716 | \n",
"
\n",
" \n",
" | 8 | \n",
" MATIC-USD | \n",
" 0.216415 | \n",
" 0.017332 | \n",
" 0.048651 | \n",
" 0.907005 | \n",
" 0.109568 | \n",
" 1.031614 | \n",
"
\n",
" \n",
" | 9 | \n",
" LTC-USD | \n",
" 121.775520 | \n",
" -0.070253 | \n",
" 0.041824 | \n",
" 1.060115 | \n",
" 1.218718 | \n",
" 1.097806 | \n",
"
\n",
" \n",
" | 10 | \n",
" SHIB-USD | \n",
" 0.000013 | \n",
" -0.081039 | \n",
" 0.049879 | \n",
" 0.948627 | \n",
" 1.332067 | \n",
" 1.101407 | \n",
"
\n",
" \n",
" | 11 | \n",
" TRX-USD | \n",
" 0.359775 | \n",
" -0.007077 | \n",
" 0.017728 | \n",
" 1.095363 | \n",
" 1.867517 | \n",
" 1.032973 | \n",
"
\n",
" \n",
" | 12 | \n",
" AVAX-USD | \n",
" 23.685495 | \n",
" -0.072293 | \n",
" 0.041744 | \n",
" 0.998294 | \n",
" 1.617118 | \n",
" 1.100988 | \n",
"
\n",
" \n",
" | 13 | \n",
" UNI-USD | \n",
" 0.000163 | \n",
" 0.000000 | \n",
" 0.027853 | \n",
" 0.978000 | \n",
" 0.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" | 14 | \n",
" LINK-USD | \n",
" 22.585260 | \n",
" -0.058978 | \n",
" 0.051538 | \n",
" 1.201682 | \n",
" 2.055156 | \n",
" 1.094951 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Ticker Close_Price Returns Volatility Price_MA_Ratio \\\n",
"0 BTC-USD 117824.929688 -0.044746 0.014817 1.002859 \n",
"1 ETH-USD 4554.041504 -0.042519 0.035897 1.188058 \n",
"2 BNB-USD 844.228943 -0.005626 0.021509 1.080675 \n",
"3 XRP-USD 3.066536 -0.065249 0.049087 0.961533 \n",
"4 ADA-USD 0.905756 -0.000186 0.040481 1.130926 \n",
"5 DOGE-USD 0.223107 -0.090110 0.055321 0.977364 \n",
"6 SOL-USD 192.349457 -0.045840 0.041286 1.069621 \n",
"7 DOT-USD 3.979786 -0.070532 0.039268 0.990651 \n",
"8 MATIC-USD 0.216415 0.017332 0.048651 0.907005 \n",
"9 LTC-USD 121.775520 -0.070253 0.041824 1.060115 \n",
"10 SHIB-USD 0.000013 -0.081039 0.049879 0.948627 \n",
"11 TRX-USD 0.359775 -0.007077 0.017728 1.095363 \n",
"12 AVAX-USD 23.685495 -0.072293 0.041744 0.998294 \n",
"13 UNI-USD 0.000163 0.000000 0.027853 0.978000 \n",
"14 LINK-USD 22.585260 -0.058978 0.051538 1.201682 \n",
"\n",
" Volume_Ratio High_Low_Ratio \n",
"0 1.582144 1.055542 \n",
"1 1.900802 1.065200 \n",
"2 1.533064 1.046143 \n",
"3 1.392012 1.090549 \n",
"4 3.715284 1.121537 \n",
"5 1.572285 1.139001 \n",
"6 2.002232 1.092877 \n",
"7 1.614676 1.096716 \n",
"8 0.109568 1.031614 \n",
"9 1.218718 1.097806 \n",
"10 1.332067 1.101407 \n",
"11 1.867517 1.032973 \n",
"12 1.617118 1.100988 \n",
"13 0.000000 1.000000 \n",
"14 2.055156 1.094951 "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Example usage\n",
"\n",
"# Initialize the analyzer\n",
"analyzer = CryptoAnalyzer()\n",
"\n",
"# Download data\n",
"analyzer.download_data(period='1y', interval='1d')\n",
"\n",
"# Preprocess data\n",
"analyzer.preprocess_data()\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "70ce70fa",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Performing similarity analysis...\n",
"Top similar cryptocurrency pairs (based on correlation):\n",
"Top 10 most similar pairs:\n",
"1. DOT-USD - AVAX-USD: 0.887\n",
"2. AVAX-USD - LINK-USD: 0.876\n",
"3. DOGE-USD - AVAX-USD: 0.856\n",
"4. ETH-USD - DOGE-USD: 0.851\n",
"5. BTC-USD - UNI-USD: 0.848\n",
"6. DOGE-USD - DOT-USD: 0.845\n",
"7. ETH-USD - AVAX-USD: 0.843\n",
"8. ETH-USD - LINK-USD: 0.839\n",
"9. DOT-USD - LINK-USD: 0.821\n",
"10. XRP-USD - ADA-USD: 0.820\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABE8AAAPjCAYAAABF2yAMAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4U9X/wPH3TdKMpnuXsilDtuy9FZAhQwQHS0Dc4hZUFBc/cSIqgoMhoAi4cIAiIMqQJSB7trTQlu6dtEnu749C2jRpGdLWr3xez5MHcnLOzTm9M597zrmKqqoqQgghhBBCCCGEEMIjTVVXQAghhBBCCCGEEOLfTIInQgghhBBCCCGEEOWQ4IkQQgghhBBCCCFEOSR4IoQQQgghhBBCCFEOCZ4IIYQQQgghhBBClEOCJ0IIIYQQQgghhBDlkOCJEEIIIYQQQgghRDkkeCKEEEIIIYQQQghRDgmeCCGEEEIIIYQQQpRDgidCCCGEEBVIURReeOGFq7rMHj160KNHj6u6zP9lCxcuRFEUYmJiqroqQggh/qMkeCKEEP8iJ06cYPLkydStWxej0Yifnx+dO3dm9uzZ5OfnV0mdli1bxjvvvFMl330t27hxI4qiOF9arZawsDBuueUWDh06dEXLPHv2LC+88AJ79uy5upWtZBaLhbfffpv27dvj7++P0WikQYMGPPDAAxw9erSqq3fVHDx4kBdeeOFfFRAouV0uWbLEY57OnTujKApNmza9ou/44IMPWLhw4T+opRBCCHH16aq6AkIIIYr88MMPjBgxAoPBwJgxY2jatCkFBQX88ccfPPHEExw4cID58+dXer2WLVvG/v37mTJlSqV/t4CHHnqItm3bUlhYyL59+/jwww/ZuHEj+/fvJyIi4rKWdfbsWWbMmEHt2rVp2bJlxVS4gqWkpNCvXz927drFwIEDuf322/Hx8eHIkSN88cUXzJ8/n4KCgqqu5lVx8OBBZsyYQY8ePahdu7bLZz///HPVVOo8o9HIsmXLuPPOO13SY2Ji2LJlC0aj8YqX/cEHHxASEsK4ceMuuczo0aMZNWoUBoPhir9XCCGEKI8ET4QQ4l/g1KlTjBo1ilq1arF+/XoiIyOdn91///0cP36cH374oczyDoeDgoKCf/SD5X9Zbm4uZrPZLV1VVSwWCyaTqQpqdXV07dqVW265xfm+YcOG3HvvvSxevJgnn3yyCmtWzGKxoNfr0WgqvkPruHHj+Ouvv1i5ciXDhw93+eyll17imWeeuSrf82/fpvR6fZV+/0033cR3331HSkoKISEhzvRly5YRHh5O/fr1SU9Pr/B6XFhPWq0WrVZb4d8nhBDi2iXDdoQQ4l9g1qxZ5OTk8Mknn7gETi6Ijo7m4Ycfdr5XFIUHHniApUuX0qRJEwwGAz/99BO1a9fm5ptvditvsVjw9/dn8uTJQHHX++XLlzNt2jQiIiIwm80MHjyYuLg4Z7kePXrwww8/EBsb6+yqX/IO+Llz55gwYQLh4eEYjUZatGjBokWL3L7f4XAwe/ZsmjVrhtFoJDQ0lH79+rFz506g6G61oigeu+qXni/ihRdeQFEUDh48yO23305gYCBdunQBoHbt2gwcOJC1a9fSpk0bTCYT8+bNAyAjI4MpU6ZQo0YNDAYD0dHRvPbaazgcDueyL9TjjTfeYP78+dSrVw+DwUDbtm3ZsWOHW90OHz7MrbfeSmhoKCaTiYYNGzp/vG/YsAFFUfj666/dyi1btgxFUdi6davbZxfTtWtXoGiIV0lnzpzhrrvuIjw8HIPBQJMmTfj000+dn2/cuJG2bdsCMH78eOf6vPA3r127tsc7/aXn1riw7XzxxRc8++yzREVF4e3tTVZWFuPGjcPHx4czZ84wZMgQfHx8CA0N5fHHH8dut7ss94svvqB169b4+vri5+dHs2bNmD17drlt//PPP/nhhx+YMGGCW+AEwGAw8MYbb7ikrV+/nq5du2I2mwkICODmm292G/ZUkduUJ7Gxsdx33300bNgQk8lEcHAwI0aMcBmes3DhQkaMGAFAz549netr48aNgOc5Ty5lf7zcbbwsN998MwaDgRUrVrikL1u2jFtvvdVjIGPBggX06tWLsLAwDAYDjRs3Zu7cuS55ateuzYEDB/jtt9+cbb7Qzgvzmvz222/cd999hIWFUb16dZfPLvwN169fj0ajYfr06W71UxTF7XuFEEKIi5GeJ0II8S+wevVq6tatS6dOnS65zPr16/nyyy954IEHCAkJoU6dOtx5553MmjWLtLQ0goKCXJaflZXl1sX+lVdeQVEUnnrqKc6dO8c777xDnz592LNnDyaTiWeeeYbMzEzi4+N5++23AfDx8QEgPz+fHj16cPz4cR544AHq1KnDihUrGDduHBkZGS7BngkTJrBw4UL69+/PxIkTsdls/P7772zbto02bdpc0d9sxIgR1K9fn1dffRVVVZ3pR44c4bbbbmPy5MlMmjSJhg0bkpeXR/fu3Tlz5gyTJ0+mZs2abNmyhalTp5KQkOA2p8uyZcvIzs5m8uTJKIrCrFmzGDZsGCdPnsTLywuAffv20bVrV7y8vLj77rupXbs2J06cYPXq1bzyyiv06NGDGjVqsHTpUoYOHeqy/KVLl1KvXj06dux42e2+8OMwMDDQmZaUlESHDh2cQbXQ0FB++uknJkyYQFZWFlOmTOG6667jxRdfZPr06dx9993OIMzlbHMlvfTSS+j1eh5//HGsVquzJ4Tdbqdv3760b9+eN954g3Xr1vHmm29Sr1497r33XgB++eUXbrvtNnr37s1rr70GwKFDh9i8ebPLdlPad999BxQN0bgU69ato3///tStW5cXXniB/Px85syZQ+fOndm9e7fbUJiK3KZK2rFjB1u2bGHUqFFUr16dmJgY5s6dS48ePTh48CDe3t5069aNhx56iHfffZdp06Zx3XXXATj/Le1y9ke4tG28PN7e3tx88818/vnnzvW6d+9eDhw4wMcff8y+ffvcysydO5cmTZowePBgdDodq1ev5r777sPhcHD//fcD8M477/Dggw/i4+PjDESGh4e7LOe+++4jNDSU6dOnk5ub67F+vXr14r777mPmzJkMGTKEVq1akZCQwIMPPkifPn245557LtpGIYQQwoUqhBCiSmVmZqqAevPNN19yGUDVaDTqgQMHXNKPHDmiAurcuXNd0gcPHqzWrl1bdTgcqqqq6oYNG1RAjYqKUrOyspz5vvzySxVQZ8+e7UwbMGCAWqtWLbc6vPPOOyqgLlmyxJlWUFCgduzYUfXx8XEud/369SqgPvTQQ27LuFCfU6dOqYC6YMECj219/vnnne+ff/55FVBvu+02t7y1atVSAXXNmjUu6S+99JJqNpvVo0ePuqQ//fTTqlarVU+fPu1Sj+DgYDUtLc2Z79tvv1UBdfXq1c60bt26qb6+vmpsbKzHNqmqqk6dOlU1GAxqRkaGM+3cuXOqTqdzaZMnF9bRp59+qiYnJ6tnz55V16xZo0ZHR6uKoqjbt2935p0wYYIaGRmppqSkuCxj1KhRqr+/v5qXl6eqqqru2LGjzL9zrVq11LFjx7qld+/eXe3evbtbverWretc7gVjx45VAfXFF190Sb/++uvV1q1bO98//PDDqp+fn2qz2cr9G5Q2dOhQFVDT09MvKX/Lli3VsLAwNTU11Zm2d+9eVaPRqGPGjHGmVeQ2paru23Dpv5uqqurWrVtVQF28eLEzbcWKFSqgbtiwwS1/6fVyqfvj5WzjnlxY/ytWrFC///57VVEUZ1ufeOIJtW7dus76NWnSxKWsp3b37dvXWeaCJk2auLTtggULFqiA2qVLF7dt58Jnp06dcqbl5uaq0dHRapMmTVSLxaIOGDBA9fPzc9tnhRBCiEshw3aEEKKKZWVlAeDr63tZ5bp3707jxo1d0ho0aED79u1ZunSpMy0tLY2ffvqJO+64A0VRXPKPGTPG5XtvueUWIiMj+fHHHy/6/T/++CMRERHcdtttzjQvLy8eeughcnJy+O233wBYtWoViqLw/PPPuy2jdH0uR1l3juvUqUPfvn1d0lasWEHXrl0JDAwkJSXF+erTpw92u51Nmza55B85cqRLz44LvTROnjwJQHJyMps2beKuu+6iZs2aZbZpzJgxWK1WVq5c6Uxbvnw5NpvNrRdQWe666y5CQ0OpVq0a/fr1IzMzk88++8w5BEdVVVatWsWgQYNQVdWlfX379iUzM5Pdu3df0nddjrFjx5Y570fpddO1a1fn3w4gICCA3Nxcfvnll8v6zsvZVxISEtizZw/jxo1z6YXVvHlzbrjhBo/beEVuUyWV/LsVFhaSmppKdHQ0AQEBV7yuLnV/vOBi2/iluPHGGwkKCuKLL75AVVW++OILl+8vrWS7MzMzSUlJoXv37pw8eZLMzMxL/t5JkyZd0vwm3t7eLFy4kEOHDtGtWzd++OEH3n77bbd9VgghhLgUEjwRQogq5ufnB0B2dvZllatTp47H9DFjxrB582ZiY2OBoh95hYWFHoc61K9f3+W9oihER0df0qNRY2NjqV+/vtskoReGFVz4/hMnTlCtWjWXH7BXQ1nt95R+7Ngx1qxZQ2hoqMurT58+QNFcESWV/nF14UfmhQkwL/zAvNijWBs1akTbtm1dgllLly6lQ4cOREdHl1v2gunTp/PLL7/w9ddfM2bMGDIzM13+5snJyWRkZDB//ny39o0fP95j+66Gsv7+F+a0KSkwMNBl8tD77ruPBg0a0L9/f6pXr85dd93FmjVrLvqdl7OvXNj+GjZs6PbZddddR0pKituQj4rcpkrKz89n+vTpzrlSQkJCCA0NJSMj47KCCCVd6v54wcW28Uvh5eXFiBEjWLZsGZs2bSIuLo7bb7+9zPybN2+mT58+zvlnQkNDmTZtGsBltbus9eRJ586duffee9m+fTt9+/blrrvuuuSyQggh/p02bdrEoEGDqFatGoqi8M0331y0zMaNG2nVqpVzjjJP8+xdjMx5IoQQVczPz49q1aqxf//+yypX1l3/UaNG8cgjj7B06VKmTZvGkiVLaNOmjccfkf8WZfVAKT3JaElltd9TusPh4IYbbijz6TQNGjRweV/WXW21xDwYl2rMmDE8/PDDxMfHY7Va2bZtG++9994ll2/WrJnzB/mQIUPIy8tj0qRJdOnShRo1ajgnJ73zzjsZO3asx2U0b978ot9T3jrw9Pco6+9/KT0CwsLC2LNnD2vXruWnn37ip59+YsGCBYwZM8bjhMMXNGrUCIC///7b2VPiaqrIbaqkBx98kAULFjBlyhQ6duyIv78/iqIwatSoi042e7VcrW389ttv58MPP+SFF16gRYsWbr3hLjhx4gS9e/emUaNGvPXWW9SoUQO9Xs+PP/7I22+/fVntvpwnHVmtVuckuydOnCAvLw9vb+9LLi+EEOLfJzc3lxYtWnDXXXcxbNiwi+Y/deoUAwYM4J577mHp0qX8+uuvTJw4kcjISLeepeWR4IkQQvwLDBw4kPnz57N169YrmkS0pKCgIAYMGMDSpUu544472Lx5c5mTVx47dszlvaqqHD9+3OXHdlk/qmvVqsW+fftwOBwud7sPHz7s/BygXr16rF271m0S25Iu3PXOyMhwSS99t/xK1atXj5ycHGcQ4p+qW7cuwCUFvEaNGsWjjz7K559/Tn5+Pl5eXowcOfKKv/v//u//+Prrr3nllVf48MMPCQ0NxdfXF7vdftH2lTdMKjAw0O3vD0Xr4EJ7rya9Xs+gQYMYNGgQDoeD++67j3nz5vHcc8+V2Stn0KBBzJw5kyVLllw0eHJh+zty5IjbZ4cPHyYkJMTjo4gv1T/ZplauXMnYsWN58803nWkWi8Xt7385w9oudX+82rp06ULNmjXZuHGjc/JfT1avXo3VauW7775z6fWyYcMGt7z/ZDhfac8//zyHDh3ijTfe4KmnnuLpp5/m3XffvWrLF0IIcXVYrVasVqtLmsFgwGAwuOXt378//fv3v+Rlf/jhh9SpU8d53r3uuuv4448/ePvtty8reCLDdoQQ4l/gySefxGw2M3HiRJKSktw+P3HixEUf41rS6NGjOXjwIE888QRarZZRo0Z5zLd48WKXIRArV64kISHB5YRkNps9dqm/6aabSExMZPny5c40m83GnDlz8PHxoXv37gAMHz4cVVWZMWOG2zIu3OX28/MjJCTEbZ6IDz744JLbXJ5bb72VrVu3snbtWrfPMjIysNlsl7W80NBQunXrxqeffsrp06ddPit95z4kJIT+/fuzZMkSli5dSr9+/QgJCbn8RpxXr149hg8fzsKFC0lMTESr1TJ8+HBWrVrlMZiTnJzs/P+FYIGnIEm9evXYtm0bBQUFzrTvv//e5dHVV0tqaqrLe41G4wzYlb5wKqljx47069ePjz/+2GMX3YKCAh5//HEAIiMjadmyJYsWLXJp7/79+/n555+56aab/lEb/sk2pdVq3baTOXPmuPW0Km99lXap++PVpigK7777Ls8//3y5T0G60NOlZLszMzNZsGCBW16z2XxJbb6YP//8kzfeeIMpU6bw2GOP8cQTT/Dee++5zf8ihBD/RT94Nfyfes2cORN/f3+X18yZM6/K32Lr1q1uNzv69u3L1q1bL2s50vNECCH+BerVq8eyZcsYOXIk1113HWPGjKFp06YUFBSwZcsW5yNHL9WAAQMIDg5mxYoV9O/fn7CwMI/5goKC6NKlC+PHjycpKYl33nmH6OhoJk2a5MzTunVrli9fzqOPPkrbtm3x8fFh0KBB3H333cybN49x48axa9cuateuzcqVK509XS5M6tmzZ09Gjx7Nu+++y7Fjx+jXrx8Oh4Pff/+dnj178sADDwAwceJE/u///o+JEyfSpk0bNm3axNGjR6/8j1rCE088wXfffcfAgQMZN24crVu3Jjc3l7///puVK1cSExNz2QGNd999ly5dutCqVSvuvvtu6tSpQ0xMDD/88AN79uxxyTtmzBhuueUWoOgRv1ejPV9++SXvvPMO//d//8f//d//sWHDBtq3b8+kSZNo3LgxaWlp7N69m3Xr1pGWlgYUbWcBAQF8+OGH+Pr6Yjabad++PXXq1GHixImsXLmSfv36ceutt3LixAmWLFlCvXr1/nF9S5s4cSJpaWn06tWL6tWrExsby5w5c2jZsmWZj+K9YPHixdx4440MGzaMQYMG0bt3b8xmM8eOHeOLL74gISGBN954A4DXX3+d/v3707FjRyZMmOB8VLG/vz8vvPDCP2rDP9mmBg4cyGeffYa/vz+NGzdm69atrFu3juDgYJd8LVu2RKvV8tprr5GZmYnBYKBXr14e9+dL3R8rws0338zNN99cbp4bb7zR2dto8uTJ5OTk8NFHHxEWFkZCQoJL3tatWzN37lxefvlloqOjCQsLo1evXpdVJ4vFwtixY6lfvz6vvPIKADNmzGD16tWMHz+ev//++x/1PBJCCHF1TZ06lUcffdQlzVOvkyuRmJjo9tj78PBwsrKyyM/Pv+ThoBI8EUKIf4nBgwezb98+Xn/9db799lvmzp2LwWCgefPmvPnmmy4BjYvR6/WMHDmSDz74oNy7wdOmTWPfvn3MnDmT7OxsevfuzQcffOAyJ8B9993Hnj17WLBgAW+//Ta1atVi0KBBmEwmNm7cyNNPP82iRYvIysqiYcOGLFiwwC3Qs2DBApo3b84nn3zCE088gb+/P23atKFTp07OPNOnTyc5OZmVK1fy5Zdf0r9/f3766acyAz+Xw9vbm99++41XX32VFStWsHjxYvz8/GjQoAEzZszA39//spfZokULtm3bxnPPPcfcuXOxWCzUqlWLW2+91S3voEGDCAwMxOFwMHjw4H/cnjZt2tCjRw/mzp3L1KlTCQ8PZ/v27bz44ot89dVXfPDBBwQHB9OkSROXoRReXl4sWrSIqVOncs8992Cz2ViwYIHzaTJvvvkmb731FlOmTKFNmzZ8//33PPbYY/+4vqXdeeedzJ8/nw8++ICMjAwiIiIYOXIkL7zwgtuEp6WFhoayZcsWPvjgA5YvX84zzzxDQUEBtWrVYvDgwTz88MPOvH369GHNmjU8//zzTJ8+HS8vL7p3785rr712WZOOevJPtqnZs2ej1WpZunQpFouFzp07s27dOreuwxEREXz44YfMnDmTCRMmYLfb2bBhg8d94nL2x6rQsGFDVq5cybPPPsvjjz9OREQE9957L6GhoW6TuE6fPp3Y2FhmzZpFdnY23bt3v+zgybRp0zh+/DhbtmzBaDQCRcfFRYsW0aFDB5544omr1rNNCCHEP1fWEJ1/E0W9ktnvhBBC/Os98sgjfPLJJyQmJrpNkLhx40Z69uzJihUrnD0iRMWx2WxUq1aNQYMG8cknn1R1dYQQQgjxH/eD17/3QQGeDCh0n6PsUiiKwtdff82QIUPKzNOtWzdatWrlMgfghYnbL+dpbzLniRBC/AdZLBaWLFnC8OHD5ckS/wLffPMNycnJjBkzpqqrIoQQQghxTenYsSO//vqrS9ovv/xy2Q9pkGE7QgjxH3Lu3DnWrVvHypUrSU1NdRnCICrfn3/+yb59+3jppZe4/vrrK2zSTiGEEEKIa0VOTg7Hjx93vj916hR79uwhKCiImjVrMnXqVM6cOcPixYsBuOeee3jvvfd48sknueuuu1i/fj1ffvklP/zww2V9rwRPhBDiP+TgwYPccccdhIWF8e6779KyZcuqrtI1be7cuSxZsoSWLVuycOHCqq6OEEIIIcT/vJ07d9KzZ0/n+wsTzY4dO5aFCxeSkJDg8jTEOnXq8MMPP/DII48we/Zsqlevzscff3xZjykGmfNECCGEEEIIIYT4T7lW5jypTDLniRBCCCGEEEIIIUQ5JHgihBBCCCGEEEIIUQ4JngghhBBCCCGEEEKUQyaM/Rf4XxuPdqXqDq5Z1VWocMGNoqq6CpUiNyGtqqtQKXRGr6quQqXITc6u6ipUOI3u2rhXYAo0V3UVKoV/dI2qrkKlKMj47++b1wpz/TpVXYVKEffjH1VdhUqRl5pb1VWoFL4RflVdhQpXb/HlPW1FXNuujatJIYQQQgghhBBCiCskwRMhhBBCCCGEEEKIcsiwHSGEEEIIIYQQ4j9E8VKqugr/OdLzRAghhBBCCCGEEKIcEjwRQgghhBBCCCGEKIcET4QQQgghhBBCCCHKIcETIYQQQgghhBBCiHJI8EQIIYQQQgghhBCiHBI8EUIIIYQQQgghhCiHBE+EEEIIIYQQQgghyiHBEyGEEEIIIYQQQohySPBECCGEEEIIIYQQohwSPBFCCCGEEEIIIYQoh66qKyCEEEIIIYQQQoirR6NTqroK/znS80QIIYQQQgghhBCiHBI8EUIIIYQQQgghhCiHBE+EEEIIIYQQQgghyiHBEyGEEEIIIYQQQohySPBECCGEEEIIIYQQohwSPBFCCCGEEEIIIYQohwRPhBBCCCGEEEIIIcohwRMhhBBCCCGEEEKIcugq88vGjRvHokWLnO+DgoJo27Yts2bNYvfu3YwfP77c8qdOnaJWrVp89NFHfPLJJxw4cACdTkd0dDR33nknd999N97e3h7L9ujRg5YtW/LOO++4pC9cuJApU6aQkZEBQF5eHi+99BJffvklZ86cwdfXl8aNG/Poo49y8803O5f122+/AaDX6wkJCaFVq1aMHz+eYcOGXeFf58oEdWlD3ccm4N+qKcZqYewcfh9J3/1afplu7Wj8xtP4NK6PJS6B4zPnEr/4a5c8te69nbqPTsAQEUrWvsMcmPISmTv+rsimXFRgv8EE3TwCXUAQ1pgTJH7yPpbjR8rOP2AogX0H4RUShj07k6ytv5O89BPUwsIrXmZlMLXvjXfX/mh8/LElnib7+yXY4k+VmV8xemO+YTiGJq3RmMzYM1LJ+WEZBUf3AWDuNQRz7yEuZWzJCaS9M7Uim3FRvr1uwr/fULT+gRTEnSJ16XwKTh3zmDfiyVcwNWrmlp63dwdJs18CIOSuh/Ht0tv18793k/T2C1e97pfKp1s/fG+4Ga1fAAXxMWR8+QkFscc95g2dMgNjg6Zu6fn7d5Hywaug0eI/+DaMTVqhCwlHzc/DcmQfGd8swZGZXtFNKVdA30EEDx6BNiAIa+xJkj69yL5501AC+g4s2jezssje9jvJy1z3zctdZmXwv2EQQYNuQesfiPX0SZIXfoDlxFGPeas/Nwvvxs3d0nP+2s7ZWdMBaPD5Go9lk5d+TPr3K69exS/TtbDderXogqFNLxSzL47ks+RvWIUj8bTnvI3bYep3u0uaaisk+90nXNI0QeEYug5CV70eaDQ4UpPIW/0panZGRTXjooztemLq3K/ofJIUR+4Py7CdKe98YsK79zAMjVuhmMw4MlLJ+ekLCo8Vnf+NbXtgbNsDTUAIAPbks+Rt/I7CY/srpT1luVba+cXOIyzaeoDUnHwahAfyVN92NIsKuWi5NQdO8fTXf9CjQXXeubWny2cnUzKZ/etudp1OwuZwUDckgDdv6U6kv7mimnFR18KxNmTQUMJG3IYuKIj8kyc48/475B05VGb+0KEjCB44BH1YOLasDDJ+/42ET+ahFhYAEDF6PBGj73IpY4mL5fCEOyu0HRfj13sAATcNd17rpXz2IdaTntdltakzMV3nvi5z9+wg8a0XnO+9qtUg+NbxGBs1RdFqKThzmqQ5r2JLTa6oZgjhVKnBE4B+/fqxYMECABITE3n22WcZOHAgR44coV+/fs58w4YNo2nTprz44ovOtNDQUEaPHs1XX33Fs88+y3vvvUdoaCh79+7lnXfeoXbt2gwZMuQf1e+ee+7hzz//ZM6cOTRu3JjU1FS2bNlCamqqS75Jkybx4osvYrPZiI+P5+uvv2bUqFGMGzeO+fPn/6M6XA6t2ZusfUeIW7iKNivfv2h+U+3qtP1uHqfnf8GeMY8T3Ksjzea9jCUhmZRf/gAgckR/rnt9Kvvvf56M7Xup89BY2v/wCRub9KMgOa2im+SRb6fuhI2bTOK8d8k/doiggcOo+dxMTjx4F/asDLf8fl16EnbnRBLef4P8IwfRV6tO5ANPACrnFs67omVWBkOzdvjcNIrsbxdRGHcS7843EjDucVLffho1N9u9gFZLwPjHceRmk7XsPexZGWgDglEteS7ZbEnxZHz6uvO96rBXdFPKZW7bheCRE0j57AOsJ4/id8NgIh6dQfy0e3FkZ7rlP/f+TBRt8eFK4+NL1Ix3yd252SVf3t+7SPlktvO9aiukqphadyJg+DjSP5+HNeYYvr0GEvrgcyS88CCOnCy3/KnzXwddiTaafYmY9iZ5u7cCoOgN6GvUJeunlRTGx6DxNhMw4i5C73mapNeeqrR2lebbqTthYyeTNP9d8o8fJmjAMGo88yonH55Q5r4ZescEEue+Sf6Rg3hFVify/scBlXOL5l3RMiuDT4duhI6exLlP5mA5foSA/kOIevoVYh6biD3LfZs9+9aLKDov53utrx+1/u8Dcrb97kw7cc9tLmXMLdsQfvcj5Gz/o+IachHXwnara3A9xu5DsPz6JfaEWPStumMedg85C15Fzc/xWEa15pOz4NWSKS6fK/7BeI98iML928jd8hNqgQVtcATYbBXYkvLpm7bF3G8kOas/wxZ/ElPHG/Ab8wjp7z5T5vnEb+xjqLnZZC2fiyMrHU1AMGp+8fnEkZVO7i+rsKcmgaJgbNkJv9seJGPuDOzJZyuxdcWulXauPRDDm7/s5Jn+7WkWFcLS7Ye47/Nf+fbewQSZTWWWO5ORw1vrdtOqRpjbZ3Fp2YxftIYhLaO5t3sLzHovTqRkYNBVXcf0a+FYG9C9F9UmP0D8u2+Se/ggocNGUPfVNzk84XZs52/muuTv2YfICZM5/eb/kXdwP4bqNaj5+DRQVc7Oe8+ZLz/mJCeeesT5XrVX8bVe+66E3D6J5IXvYTlxhIC+Q4h84iXinrwbu4drvcR3X3FZlxofX2q8/B65JdaTLiyCqGdnkfXbz6R9vQRHfh76qFqoBQWV0iYhKj14YjAYiIiIACAiIoKnn36arl27kpOT40yHoh4d3t7eLmlffvklS5cu5ZtvvnH2AgGoXbs2gwcPJivL/cLucn333XfMnj2bm266ybns1q1bu+UrWbfq1avToUMHGjVqxF133cWtt95Knz59/nFdLkXy2k0kr910yflr3T2K/FPxHHryNQByDp8kqFNr6jw8zhk8qTNlPHGffEn8oq8A+Pu+5wnr34Ma44Zz4vWPrn4jLkHwoOFkrPuJzA1rAUicNxufVu0J6N2X1K+Xu+U3NWpC/uEDZP2xAYDC5CSy/tiAqX6jK15mZfDu3Jf8nb9h2V20LrK/XYS+YQtMrbuRt+kHt/zG1t3QmHxIn/cKnA+IODJS3PKpDgeOHPcTVVXx63sz2Zt+JuePol5SqYs/wLt5G3y79iHzx1Vu+R25rj9ozO27oRZYyd3hGjxRCwur7Md1ab69BpGzeR2524q2wfTP52Fs2gpzp95k//y1W35HnmsbvVt3Ri2wkr97CwCqJY/kOS+65Mn48mPCn5qFNjAEe7r7eq8MQQOHk/nrT2Ru/BmAxPmzMbdqh3+vvqR942HfbNiY/COu+2b25g0YS+ybl7vMyhA4YBhZ69eQ9dsvAJz7ZA4+17fDr0df0r/70i1/6W3Wt1N3HFYL2X8WH6/tpXpe+LTuSP7BvRSeS6yAFlyaa2G7NbTuQeH+rRQe2A6AZd0KdHUb49W0PQU7yui5qYKa5+GH+HnGzgOwnTqI9ffVzjRbZmqZ+SuDqdONWHZtwvpX0XEyZ/VnBDZojrFVF/J//8ktv/H6LmhMZtI/mlnifOLahoIje13e5/36Nca2PdHVqFtlQYVrpZ2f/XmQYdfXZ0jLaACevakDvx8/wzd7TnBXZ/feXwB2h4Np3/zBvd2aszvuHNkW1x+Y7238iy71onikd/F1bo0g34prxCW4Fo61ocNHkvrTatJ+/hGA+Nlv4NeuI0F9B3Bu+VK3/ObGTck9sJ+MDesAKEhKJH3DOrwbNXbNaLdjS6+am5yeBPQbStbGNWT/XlTv5IXv4d2iDb7dbyTj+xVu+UuvS58ORdd6OduLA2FBt4whb+9O0pYvcKbZqvCcKa49VTrnSU5ODkuWLCE6Oprg4OCL5l+6dCkNGzZ0CZxcoCgK/v7+/7hOERER/Pjjj2Rnl32RVJaxY8cSGBjIV1999Y/rUVECOrQkZf1Wl7TkX/4gsENLABQvL/xbNSHl1y3FGVSVlPVbCOhwfSXWtASdDmO9BuTu2+1Sp9x9uzE1aOyxSP7hAxjr1ccY3RAAr/AIfFq1I2f39iteZoXTatFVq03B8YMudSo4fgCvmvU8FjE0aklh3HF8B48mZOpsgh56Ge/uA0FRXPLpgsMJfuptgh+bhd+IyWj8gyqyJeXT6jDUiib/4J7iNFUl/+BeDPUalVmsJN+ufcjZ/jtqgdUl3dioKTXfWUzUqx8QPPpeNOYqugjU6tDXrIf1yL7iNFXFengfhjoNLmkR5k69ydu12a2NJSlGc1FgLD/3n9b4yuh0GOvWJ3ffX8Vpqkrevr8wNbjOY5H8Iwcx1i2xb4ZFYL6+Hbkl983LXGaF0+ow1qlP7n7XOuXu/wtT/Uurk3+PvmRv/Q3V6nl9av0DMF/fzhnMrRLXwnar0aIJr44ttmS3cRVb7FG0kbXLLqfX4zNxOj6Tnsc0eAKa4IgSHyro6jbGkZ6M97B78LnnJcy3PYKunvtQw0qj1aKLrEXhiRLDAFSVwhMHi4YVeaBv1JLCuBP4DLyDoCffIuD+FzF1u8ntfOKkKOibtkPR67HFnaiARlyCa6SdhXY7hxLSaF+neLvTKArta0ey70zZQxXm/f43QWYjQ6+v7/aZQ1X5/fgZagX7ce+ydfR860vu/PRH1h/xPHytUlwDx1pFp8O7fgNy/tpVnKiq5Py1E/N1TTyWyT24H+/6DfBuWPQ30EdE4teuA1nbt7nk00dVp8nnX3PdouXUfPo5vELdextVGq0OQ+1o8g7sKU5TVfIP7sEYfYnXet1uJGfbpuLziaJgbtGWwsQzRD7xIrXfW0rU82/h3arD1a+/EGWo9J4n33//PT4+PgDk5uYSGRnJ999/j0Zz8TjOsWPHaNiwYYXWb/78+dxxxx0EBwfTokULunTpwi233ELnzp0vWlaj0dCgQQNiYmIqtI7/hCE8BGuS650+a1IKXv6+aIwGvAL90eh0WM+llsqTirlh3cqsqpPO1x9Fq8We4XrnwJ6ZjiGqhscyWX9sQOvnT+2X3wZFQdHpSF+7mtSvPr/iZVY0jbcvilbr1kPEkZOFLjTSYxltUBjagBAse7eSsegttMHh+A4eA1oteeu/BaAw/gRZqz7GlpyA1jcAc6+bCZw0jbR3n0UtsFR4u9zq7OtX9Lcv1UPEnpWBV2TURcvr69RHX702yQvmuKTn799N3u6tFCYn4RUWQeDw0UQ88jxnX3kSVMfVbMJFaXx8PbcxOxNd+CW0sVY0+qhapC/5oOxMOi8Cht5J3s4/UC35/7DGV0Z3fl3aSt3Vs2Wm413evunrT62X3gLO75s/ryb16y+ueJkVTet3fpvNzHBJt2dmoK928ToZ6zXAULMOSfPfLjOPX7c+OCz55JTqTVWZroXtVjGZUTRat14kal422qBwj2Uc6eewrP0Ce8pZFIMRfeuemEc9TM6i/0PNyUTx9kHRGzG0641184/Yfl+NrnYjTIPHk7fifezxlf+D23k+yXXtkevIzcKrjPOJJjAUrzrXYd23jczPZqMNDsNn4J2g0ZG/8TtnPm1YFAGTpoHOC7XAStbn72NPTqjQ9pTlWmlnep4Vu6oSXGp4TrCPkZhUz71K/zp9jm/2HGf5pAEeP0/LtZBXYOPTLfu5v0dLHu7Vii0nzvLYit/4aPSNtKnleX+oSNfCsVbr54+i1VFYqodIYXo6hhq1PJbJ2LAOnb8/0W+9j3L+mjZl9Tec++IzZ57cwwfJf/1VrPFxeAUFE3HnOOq/9T6H7x6DI7/yj7VlXevZMjMwRV58XRrqNsBQozbJJYZia/0C0Ji8CRg4grSVn5G6fCHezVsT8dAznJ05FcuRqp2TSFwbKj140rNnT+bOnQtAeno6H3zwAf3792f79u3UquX5oHGBqqrlfg7w+++/079/f+f7efPmcccdd1xy/bp168bJkyfZtm0bW7Zs4ddff2X27NnMmDGD55577qLlVVVFKevuBWC1WrGWioYXqg68FHnw0dXk3aQ5IcNuI/GjOeQfO4Q+Iorwu+4j5JY7SFnp3iXyf5ai4MjNIvubBaCq2M7GovELxLtrf2fwpOBo8US/9qR4CuNPEvzEGxiatcOy69KHfP1b+Ha9gYK4GLfJZXNLdOssPBNLQXwMNV77CGOjplgO7Su9mH81c6feFJyJLXOSTjRaQiY+Biikf1F5cyxdDd6NmxM8bBSJH83BcvwwXhFRhI+/F9vwNFJX/Yf2zRL8evTDevpUmRMeAvh370vW5vUuk+b+r/mvbrf2hBjsCTHO9/lnT+Ezbir65p2wbvnJ2WPBdmI/BbuLJpMvSD6Dtlod9M07k18FwZMroZw/n+R8twhUFXtCLHl+gUXDSUsEFeypiaTPnYFiMGFo0hrfYRPI/PS1KgssXK5roZ251kKe+fYPpg/oQKC30WMex/lr6h4NajC6fVGP20YRQeyNT2blrqNVEjz5p/6rx1qf5i0JHzWa+DlvkXf4IIaoKKLufZjwtLEkLS16EEf2jj+d+S2nTpB3+CCNl6wgoHsv0ta4D/v+t/PtdiPW06dcJ5c9f6zN3b2NzLXfAFBw+iTG6Ovw63WTBE88ULzk9+XVVul/UbPZTHR0NNHR0bRt25aPP/6Y3NxcPvro4nNpNGjQgMOHD5ebp02bNuzZs8f5Gjx4MAB+fn5kZrpH5zMyMtyG+3h5edG1a1eeeuopfv75Z1588UVeeuklCi4yGZHdbufYsWPUqVOnzDwzZ87E39/f5fWlo/LGJ1qTUjCEu87MbggPoTAzG4fFSkFKOg6bDUNYcKk8wVgTq2ZOBVt2JqrdjjYg0CVd6x+IrVTPkQtCR40jc9M6Mn79CevpGLK3b+bcsk8JHjYKFOWKllnRHHnZqHY7Gh/X7VHj41fmfCWO7AzsKYlQIrBoTz6L1jcAtFqPZVRLHvaURLTBVdOd056dVfS39wtwSdf6BbjdbSpN0RvwadeV7N9/uej32JKTsGdn4hXm+e5jRXLkZHtuo68/jovMyaLoDXi36UzuljLmXtBoCZ74GNqgUJLnzKiyXicAtvPrUufvuh/p/AOxZXg+roWMGkvmpl/JXL8G6+kYcrZvJnnZAoKHjjy/b17+MiuaPev8Nusf4JKu9Q9w671WmmIw4NupO5kbPD/tAcDUsAn6qBpkri87T2W4FrZbNT8X1WFH8XYd0qd4+7r1XiiTw4H93Bk0AaHFy7Tbsae6jrt3pCWh+AZcjWpfNuf5xOznkq4x+3mclBvAkZNZNEFqqfOJpvT5xG7HkXauKOiw7itsiXEYO1TOPG+lXSvtDPQ2oFUUUnNd95vUHAshPu6TxcalZ3M2M5eHl2+g9StLaP3KEr7fd5LfjsbT+pUlxKVlE+htQKdRqBfies1RJ8SfhKyqGQp6LRxr7VmZqHYbXoGuw6e9AgOxpXmeJyli7ETSf/2ZtDXfY4k5Sebm30lYMJ/wkXeWOdzMnpuDNT4OQ7XqV70Nl6Ksaz2df4DbHDSlKXoDPh26kb3pZ/dl2mwUnHEdWlZwNg5dcOhVqbcQF1Pl4ShFUdBoNORfQpey22+/naNHj/Ltt9+6faaqKpmZmZhMJmdwJjo6Gl/fogukhg0bsnv3brdyu3fvpkGD8sdyN27cGJvNhsVS/hCHRYsWkZ6ezvDhw8vMM3XqVDIzM11et2oqb/6JjG17CO7lOjYwpHcn0rftAYom3MzcfYCQXh2LMygKwT07krHtL6qEzYblxFHMzUrMuaIomJtfT/7Rgx6LKAYDqqNUTyWHw1n2SpZZ4ex2bGdj0NcrMeeKoqCv15jC057vXBbGHkMbHO5y8tQGR2DPSocyZllX9Aa0QWE4qurxmXYb1tjjGK9rUaJSCqbrmmM9UX5w1Ny2M3h5kbN140W/RhsYjMbse9GTdIWw2yg4fQJDwxJzHigKhobNsZ4q+44YgKlVJxSdF3nbf3P/8PwPUK+wSJLfneE2uVqls9mwnDyGuVnL4jRFwbtZS/KPen7kosZgLN4Xz3M+/enCvnmZy6xwdhuWU8fwblqqTk1akn+s/Dr5tu+GovMi64/1Zebx69kPy8mjFJwu+9GqleJa2G4ddhxJ8ehqlpwDQkFXs4FL75JyKQqakMjiYIvDjj3pNJpA14C0JjAUNbuKHsdst2NLiMWrbol5IhQFr7rXYSujJ0zh6eNog8I8nE8yyjyfXFhuySdkVKprpJ1eWi3XRQax/VRxgM6hqmyPSaR5lPuPxjoh/qy8eyDLJw1wvro3qE7b2hEsnzSACH9vvLRaGlcLISbVNWgYm5ZVdY8pvgaOtarNRt6xo/i0LPEwCkXBp2Vrcg8d8FhGYzSilj5v2kucNz2WMaGPjKIwrWpufGK3YY05jneTlsVpioKpcUssx8u/1vNp1xVF50X2lg3uyzx1DH2ka0DIK6IattRzV6niQpSv0oMnVquVxMREEhMTOXToEA8++CA5OTkMGjToomVvvfVWRo4cyW233carr77Kzp07iY2N5fvvv6dPnz5s2LChzLL33nsvR48e5aGHHmLfvn0cOXKEt956i88//5zHHnvMma9Hjx7MmzePXbt2ERMTw48//si0adPo2bMnfn7Fdzby8vJITEwkPj6ebdu28dRTT3HPPfdw77330rNnzzLrYTAY8PPzc3n9kyE7WrM3fi0a4deiaPIl7zrV8WvRCGONorvtDV9+lBYLXnPmj53/Bd51atBo5hOYG9al1j23EzmiP6dmL3TmOfXOAmpMuJWo0UPwaVSXpu+/gM5sIm5R1U2Em7p6FQF9bsK/xw3oo2oScfdDaAxGMtYXTfgV+eCThN5R/Hz7nJ3bCOw7EL/OPYompGzeitBRY8nZuc35w+1iy6wKeZvXYmrTHeP1ndGGRuI7eAyK3kD+rqIhKb63TMJ84y3O/PnbN6CYzPgMuANtcDj6hi0w9xhI/p/FFw8+/UbiVbshmoAQdDWj8b/jQVAdWPb+6fb9lSVr7bf4dr8Rn0698IqsTvDoe1EMRrLPP30nZOIUAoePcSvn2/UG8nZvw1Hq8ZOKwUjgiHEY6jZEFxyG8brmhD/4DLZzCeTtdw+aVobs9avx6dwH7/Y90EVEETjqbjQGA7lbi9ZN0NgH8b/ZfUihT6de5O/d7v4DU6MlZNLj6GvVI3XBO6DRoPELQOMXANpKH4HplPb9Kvx734Rf9xvQR9UgfFLRfnRhMr7IB54g9HbXfTPgxoH4diraN70v7Ju7ivfNiy2zKqT/8BX+Pfvj160P+mo1CLvrQTQGI1m/Fd0Zi7j3cUJGjXcr59ezLzk7t+DI8TwJucbkjW/7ruXeLa1M18J2a921Ea9mHfFq3BZNUDjGPiNQvPQUHig6Jhr73YGhy0Bnfn2HvmhrNUTxD0YTVh1T/9Fo/AIp/Lt48vWCnevxang9Xs06oASE4NWyC7q6TSjYU3WPnc7f8jPG1t0wtOyENiQS88A7UfQGLLuL5nrwGTYB7z7DnPkt588n5v63oQkOx6tBc7y73YRle/H5xLvPMHS1GqAJCEYbFoV3n2F41W6Idd82t++vLNdKO0e3b8xXfx3ju70nOJmSySs//kl+oY2bWxRNjPvst5t5d33R+c6g0xIdFujy8jXq8dbriA4LxOt8D5txHRqz9mAsq3Yf43RaFl/sOMymo/GMbF2x8wuW51o41iavWk7wTQMJvKEfhhq1qP7QY2iMJtLWFj19p+YTzxB512Rn/qxtmwkZOISAHr3RR0Ti06oNkWMnkrlts/O8WW3SfZibtUQfHoF346bUeeEVcDhI31BGb8BKkLHma3y798W3S2+8qtUgZOz9Rdd6m4p6D4fd/ShBI8a6lfPtfgO5u7d6XJcZP67Cp31XfHv0RRcWiV+fgZivb0/Wr/97Q5PE/6ZKv3JZs2YNkZFFP+x9fX1p1KgRK1asoEePHhctqygKy5YtY/78+Xz66ae88sor6HQ66tevz5gxY+jbt2+ZZevWrcumTZt45pln6NOnDwUFBc7v7tevnzNf3759WbRoEdOmTSMvL49q1aoxcOBApk+f7rK8jz76iI8++gi9Xk9wcDCtW7dm+fLlDB069Mr+MFfIv3VTOv5aPGFU4zemARC3+Cv2TZiKITIUU43iYQv5MfHsGDyZxm9OpfaDY7DEJ/L35GedjykGSFjxE/rQIBo8/xCGiFCy9h5i+8CJFJzz3J2wMmRv+Y1z/gGEjhqLNiAQ66kTnH55mnOYh1dImEsX3JSVS0FVCb1tHLqgEOxZmWTv3Ebysk8veZlVwfr3dnLMvph7D0Xj648t4TQZC99EPX+HU+sf7NJOR2YaGQvfwPem2zE9+DKOrHTytvzi8lhjjX8QfiPvQePtgyM3m8LYY6R/+FK5j92saLk7/kDj60/gkNvR+gdijTtJ0tsvOIcG6IJCoVTPIa+IKIwNmpDwxnT3BToc6GvUxrdzLzTeZmwZaeQf2EP610vBZquEFrnL37WFDB9//AeOQusXQEH8KZLfe9nZlVwbGOLWRl1YNQzRjTn37gy35WkDgjC1aAdAxDNvuXx27u3pWI95vmNV0bK3/IbWz5/QkWOK9qOYk8S98kzZ++aqpaiqSuhtY537Zs7ObSR/vuCSl1kVcrZtIsXPn+BbRhfVKfYkZ/7vWWeddCFhbvNyeUVWx7tRU+JfnVrmcn07dgcFsjdvrMDaX7prYbu1Hf0Li7cZQ6f+KN5+OJLPkPfVPNTzj13W+AY654MAUAwmTDeMRPH2Q7XmYU+KI/fz2TjSkoqXefxvLOtWoG/XB2PPYTjSkslfvQD72aq7w12wfwe53r549xqCxscPW2IcWZ+9XeJ8EuR6PslKJ+uztzH3G0ngfTNwZKeTv22dy+N+NWY/fIdNQOPrj2rJx5YUT9Znb1N4oop6bHLttLNvk9qk51mY+9teUnLzaRgeyAe39SL4/LCdhMzcMh8YVJZejWry7E3t+WTzfmb9vINawX68cUt3rq9ZdU9puRaOtRm/rUfnH0DkmAnoAoPIP3mck8887hw2rg8Ld9lmE5cuRlVVIsdOxCskFFtmBpnbNpO4oHjKA6/QMGpPex6trx+2zAxyD/zN0YcnV+l5M/fP30n19Sdw2J3o/AOxnj5JwuvTnZPI6oJD3ddlRBSmhk05+9oznpe5ayvJC98nYOAIQu6cTGHCGRLnvIqlqnqNi2uOol7KLKyiQv3gVXUR/spUd3DNqq5ChQtudPEnUvwX5CZUzdwTlU1nrKKu6JUsN7nqAmmVRaOr8lGqlcIUWEXd7SuZf3TVPHmpshVk/Pf3zWuFuX7Z8+H9l8T9WHW9rSpTXmrVzAtT2Xwj/C6e6X9cvcX/3V4ra4M9P/7636pvatXcCLwc18bVpBBCCCGEEEIIIcQVkuCJEEIIIYQQQgghRDkkeCKEEEIIIYQQQghRDgmeCCGEEEIIIYQQQpSj6p5vKYQQQgghhBBCiKtOo7vMR3CJi5KeJ0IIIYQQQgghhBDlkOCJEEIIIYQQQgghRDkkeCKEEEIIIYQQQghRDgmeCCGEEEIIIYQQQpRDgidCCCGEEEIIIYQQ5ZDgiRBCCCGEEEIIIUQ5JHgihBBCCCGEEEIIUQ4JngghhBBCCCGEEEKUQ4InQgghhBBCCCGEEOWQ4IkQQgghhBBCCCFEOSR4IoQQQgghhBBCCFEOCZ4IIYQQQgghhBBClEOCJ0IIIYQQQgghhBDl0FV1BYQQQgghhBBCCHH1KF5KVVfhP0d6ngghhBBCCCGEEEKUQ4InQgghhBBCCCGEEOWQ4IkQQgghhBBCCCFEOSR4IoQQQgghhBBCCFEOmTD2X6Du4JpVXYVKcfK701VdhQrnGxlQ1VWoFF7ehqquQqVw2OxVXYVKYcnMr+oqVDi/av5VXYVKkXUmvaqrUCn8o2tUdRUqhS3fWtVVqBTXQjtNFktVV6FS5KXmVnUVKkX1Dg2qugqV4sz2Y1VdBSH+VaTniRBCCCGEEEIIIUQ5JHgihBBCCCGEEEIIUQ4JngghhBBCCCGEEEKUQ4InQgghhBBCCCGEEOWQCWOFEEIIIYQQQoj/EI1Oqeoq/OdIzxMhhBBCCCGEEEKIckjwRAghhBBCCCGEEKIcEjwRQgghhBBCCCGEKIcET4QQQgghhBBCCCHKIcETIYQQQgghhBBCiHJI8EQIIYQQQgghhBCiHBI8EUIIIYQQQgghhCiHBE+EEEIIIYQQQgghyiHBEyGEEEIIIYQQQohySPBECCGEEEIIIYQQohwSPBFCCCGEEEIIIYQohwRPhBBCCCGEEEIIIcohwRMhhBBCCCGEEEKIcuiqugJCCCGEEEIIIYS4ehQvpaqr8J8jPU+EEEIIIYQQQgghyiHBEyGEEEIIIYQQQohySPBECCGEEEIIIYQQohwSPBFCCCGEEEIIIYQoR6VNGDtu3DgWLVrklm4wGLBareWW3bBhAzExMUyZMoWMjAy3zxVF4euvv2bIkCEey2/cuJGePXuSnp5OQECAy2e1a9dmypQpTJkyBYDffvuNGTNmsGfPHiwWC1FRUXTq1ImPPvoIvV7vXNaF7/X19aVu3brccMMNPPLII0RGRl70b3G1BfYbTNDNI9AFBGGNOUHiJ+9jOX6k7PwDhhLYdxBeIWHYszPJ2vo7yUs/QS0svOJlVrSgLm2o+9gE/Fs1xVgtjJ3D7yPpu1/LL9OtHY3feBqfxvWxxCVwfOZc4hd/7ZKn1r23U/fRCRgiQsnad5gDU14ic8ffFdmUizJ364tv78Fo/QIoPBNL+opPKYw97jFv6MMvYKjfxC09f/9uUj+cCYCxRTt8utyIV826aM2+JM18gsIzMRXZhEtytdsJ4DdgJOZOvdGYzFhPHiZj+UfYkhMrrA0X49O9H343DkHrF0BBfAzpyz+mIMZzG8MefRFjg6Zu6fl/7yL5/VdAoyXg5tsxNm2FLiQcR34e1sP7yPj6M+yZ6RXdlHKFDBpK2Ijb0AUFkX/yBGfef4e8I4fKzB86dATBA4egDwvHlpVBxu+/kfDJPNTCAgAiRo8nYvRdLmUscbEcnnBnhbbjYvx6D8C//zC0/oEUnD5F6pJ5WE8d9Zg38umZmBo1c0vP27uDxLdnABA6cQq+Xfq4fv73LhLffP7qV/4yBN10M8FDRqILDMISc4LE+XPIP3a47PyDhhPUf3DxOWXLJpIWf+Q8p4QMvw2/jl3RV6+JarWSd/gASYs/ouBMXGU1yY1Xiy4Y2vRCMfviSD5L/oZVOBJPe87buB2mfre7pKm2QrLffcIlTRMUjqHrIHTV64FGgyM1ibzVn6JmZ1RUMy7Ku1MfzN0HoPH1pzDhNNnfLKYw7mSZ+RWjNz79R2Bs2haNtxl7egpZ3y2h4PBeZx6NXyC+A0ZhaNgcRW/AlpJE5pfzscWfqowmeXQtnE8Alv91nMU7jpCaa6FBaABP9r6eppFBHvN+tz+GF9bscEnTazVse2S4872qqny4+QBf/32KbGsBLaqFMO2GVtQM9K3QdpTnap9PSgobeQfVJtxD8ldfcubDORXZjIsytuuJqXM/ND7+2JLiyP1hGbYzZe9DitGEd+9hGBq3QjGZcWSkkvPTFxQeK7pmNbbtgbFtDzQBIQDYk8+St/E7Co/tr5T2lCV40FDCbhmFLvD8+vxgNvlHy16fIUNGEDzwZvSh4diyMsn8fSMJC+Z7Xp+33kHkXZNJ/noFZ+dV7foU145KfdpOv379WLBggUuaoiioqup8//DDD5OVleWSLygoiJiYmAqv38GDB+nXrx8PPvgg7777LiaTiWPHjrFq1SrsdrtL3iNHjuDn50dWVha7d+9m1qxZfPLJJ2zcuJFmzdwvmCuKb6fuhI2bTOK8d8k/doiggcOo+dxMTjx4F/asDLf8fl16EnbnRBLef4P8IwfRV6tO5ANPACrnFs67omVWBq3Zm6x9R4hbuIo2K9+/aH5T7eq0/W4ep+d/wZ4xjxPcqyPN5r2MJSGZlF/+ACByRH+ue30q++9/nozte6nz0Fja//AJG5v0oyA5raKb5LnerToRMHQs6cvnUxBzHJ+eAwi9/xkSX3wYR06WW/6Uj95A0RbvxhqzD+FT3yD/r63FaXoj1hOHydu9haA77q2UdlxMRbTTt8/N+HTvT9pn72FPPYffwFGE3P8siS8/ArZCt2VWNO/WnQm8ZTxpy+ZhjTmKX6+BhD04nbMvPIgjO9Mtf8qHs0BX3Eat2ZeIZ98ib/cWABS9Aa+adcn6cQUF8TFovH0IvPUuQu6bStLMJyutXaUFdO9FtckPEP/um+QePkjosBHUffVNDk+4HZuHYHdAzz5ETpjM6Tf/j7yD+zFUr0HNx6eBqnJ23nvOfPkxJznx1CPO92qpY3BlM7frSvCoiSQveh/rySP433gzEY+/SNzTkz2uz6Q5r6DoSm6zflR/aQ45O/5wyZe3byfJn7zjfF8yiF0V/Lr0IPyue0mY+w75Rw8RNGg4tV54jWP3jcWemeGW379bL8LHTOLsnFnkHT6AvloNoh5+ElVVSfp0LgDeTVuQ9uO35B87AloN4aMnUuuFWRx/YDyq1VLJLQRdg+sxdh+C5dcvsSfEom/VHfOwe8hZ8Cpqfo7HMqo1n5wFr5ZMcflc8Q/Ge+RDFO7fRu6Wn1ALLGiDI8Bmq8CWlM/Yoj2+g+4ga9UCCk4fx9y1H4ETnyJl1hM4ct2Ps2i1BN39NPacLDI+m40jMx1NYAhqfp4zi2LyJvj+6VhPHCL9k9dx5GSjDQ1Hzc+txJa5uhbOJwBrD8fx1sa9TOvTimaRwSzdfZT7V27i67v6EWQ2eizjo9fx1YT+zveln7uxaPsRPv/rOC/2b0s1fzNz/zjA/St/Z+X4vhh02gpsjWcVdT4BMDVoRPCAweSf8BxUq0z6pm0x9xtJzurPsMWfxNTxBvzGPEL6u8+g5ma7F9Bq8Rv7GGpuNlnL5+LISkcTEOyybzqy0sn9ZRX21CRQFIwtO+F324NkzJ2BPflsJbauWEC3XlSbdD/xc94k78hBQoeMoO4rb3Bk4h3YPJxPAnr0IfKuu4l76zVyD+3HEFWDmo9NBVTOzne99jc1aETQTYPJP1n161NcWyp12I7BYCAiIsLlFR4e7vLeZDK55dPr9ZVSv59//pmIiAhmzZpF06ZNqVevHv369eOjjz7CZDK55A0LCyMiIoIGDRowatQoNm/eTGhoKPfeW7k/ToMHDSdj3U9kblhLQfxpEufNxmG1EtC7r8f8pkZNyD98gKw/NlCYnETu3l1k/bEBU3SjK15mZUheu4mjz79D0rfrLil/rbtHkX8qnkNPvkbO4ZPEfrCUxFVrqfPwOGeeOlPGE/fJl8Qv+oqcQyf4+77nsedZqDFueNkLrmC+vQaSu+VX8rZtxJYYT8YX81ELCjB37OUxv5qXgyM7w/kyNmqOWmB1uQjM27GJ7DUrsR6p2h41JVVEO316DiBr7Sosf++k8Oxp0ha/h9Y/EFOLtpXVLBe+fQaRs/kXcreux5YQT9qyeTgKrfh08txGR14OjqwM58t4XQvUAit5u4qCJ6olj+TZM8jbtQVb0lkKTh0l/YuPMdSKRhsYUplNcxE6fCSpP60m7ecfsZ6OIX72GzisFoL6DvCY39y4KbkH9pOxYR0FSYlk79pB+oZ1eDe8zjWj3Y4tPc35sme5Bygqk3/fIWT9tpacP9ZReDaOlEXvoxZY8e12g8f8jtwc7JkZzpepaUvUAiu5212DJ6qt0CWfI6/qfoQCBN88gvSffyTj1zVY42JJmPs2DquVwD79PeY3NWpK3qH9ZG5aT+G5JHL37CRz03pM9YvPKadnPE3G+rVY42KwxpzkzOzX0IeFY6rXoLKa5cLQugeF+7dSeGA7jrQkLOtWoNoK8GravuxCKqh52SVerkEWY+cB2E4dxPr7ahzJZ1AzU7GdPFBmMKYyeHfrT96fG8jfuQn7ubNkfbUAtdCKqV13j/lNbbujeJvJWPg2hTHHsKenUHjyMLaE4h455h6DsGekkfXlfArjTmJPT6bg6H7sqecqq1luroXzCcDSnUcZ2qwONzerQ90QP565oTVGLy3f7o8pu5CiEGI2Ol/BJYIsqqqybPcxJna4jh7RUTQIDeDFm9qRnJPPxuNnKr5BHlTU+URjNFHr6enEvT0Le46H4EQlM3W6EcuuTVj/2ow9OYGc1Z+hFhZgbNXFY37j9V3QmMxkLXsP2+njODJSscUcxZ4U78xTcGQvhcf+xpF2rqjX269foxZY0dWoW1nNchMy7FbS1nxP+i8/YT0dS/ycN1EvZX1uXEdhUiI5u3eQvvFXz+vzyeeIn/3vWJ/i2iJznpQQERFBQkICmzZtuuyyJpOJe+65h82bN3PuXCVdROh0GOs1IHff7uI0VSV3325MDRp7LJJ/+ADGevUxRjcEwCs8Ap9W7cjZvf2Kl/lvFNChJSnrt7qkJf/yB4EdWgKgeHnh36oJKb9uKc6gqqSs30JAh+srsaYlaHV41aiL5cg+lzpZjuxDX+fSfmSYO/Umb/cW1ILyh8JVqQpopzY4DK1/INbDxQEi1ZJHQcxx9LUbXtXqXxKtDn3NelgOlWrjoX3o615afcyde5O3849y16Vi8kZ1OHBU0V1fRafDu34Dcv7aVZyoquT8tRPzde7d4gFyD+7Hu34D58WQPiISv3YdyNq+zSWfPqo6TT7/musWLafm08/hFRpWYe24KK0OQ+1o8g/uKU5TVfIP7MFYr1GZxUry63ojOX9uclufxkbNqPXuEqrP/JCQMfehMVddd3lFp8NUrwG5e13XZ+7eXZgalnVO2Y+pXgNnsMQrPBLf1u3J2fVnmd+j9TYDYPfQK6DCabRowqtjiy053ErFFnsUbWTtssvp9fhMnI7PpOcxDZ6AJjiixIcKurqNcaQn4z3sHnzueQnzbY+gq1d5vVDdaLV4RdWh4NiB4jRVpeDYAbxqRXssYmzcisLY4/gNHUvo9PcJfmwm5l6DQSnur2Bs0orC+JME3Pkgoc+/T/CUlzG161HBjSnHtXA+AQrtDg4lpdO+VrgzTaMotK8Zzr6zqWWWyy+wcdO8H+g/73se+XozJ1KKg9BnMnNJybW4LNPX4EXTyKByl1lRKvJ8Uv3BR8javtV12VVFq0UXWYvCEyWGrqgqhScOFg3580DfqCWFcSfwGXgHQU++RcD9L2LqdpPLvulCUdA3bYei12OLO1EBjbi4C+sz+6+dxYmqSvZfu/C+yPo0NSixPtu6r8+o+/9F61Nccyp12M7333+Pj4+PS9q0adOYNm3aJZXPzMx0K381jRgxgrVr19K9e3ciIiLo0KEDvXv3ZsyYMfj5+V20fKNGRRePMTExhIV5vtC3Wq1uc7wU2B3otZcfx9L5+qNotdgzXOc7sGemY4iq4bFM1h8b0Pr5U/vlt0FRUHQ60teuJvWrz694mf9GhvAQrEkpLmnWpBS8/H3RGA14Bfqj0emwnkstlScVc8OqidJrfHxRtFq3IQCOrEy8wqMuWt6rVjRe1WqStnRuRVXxqqiIdmr9AgCwl5pbwJ6d4fysMmnPt7H0MDdHdgZeERdvo752NPqoWqR9Vs4QNZ0XgUNHFwVYLPn/sMZXRuvnj6LVUZjuOsytMD0dQ41aHstkbFiHzt+f6LfeRzl/DEpZ/Q3nvvjMmSf38EHyX38Va3wcXkHBRNw5jvpvvc/hu8fgyK/8tmp9/YrWZ6luxvasDLwiq1+0vKFOA/Q1apP86bsu6Xl/7yZ35xYKU5LwCoskaPgYIh6bwdmXHgfVcTWbcEmK1qcWW6njvy0jHe/qNT2Wydy0vuicMnO2c32m/fQdKSuXef4SRSFi4v3kHvwb6+mYq9yCi1NMZhSNFjXP9W6lmpeNNijcYxlH+jksa7/AnnIWxWBE37on5lEPk7Po/1BzMlG8fVD0RgztemPd/CO231ejq90I0+Dx5K14H3t85f940ZjPH2dzXI+z9pxM9GGe52bTBoehDwwh/68tpH/yOrqQcPyGjgOtltxfiuYL0waF4t2xN7mb1pCz/ju8atTFb8gYVLsdy67fK7pZbq6F8wlARr4Vu6q6Dc8JMhuJSfN8571WkC/P92tD/dAAcqyFLN5xhPHL1rNifF/Cfb1JzS0aMhfkbXApF+xtJCW38ofTVdT5JKBHb0zRDTj6wN0VWv9LpfE+v82WGjrnyM3CK9TzvqkJDMWrznVY920j87PZaIPD8Bl4J2h05G/8zplPGxZFwKRpoPNCLbCS9fn72JMTKrQ9ZbmwPt3PJ2kYang+n2RsPL8+33yveH1+/w3nli9x5gno3gtTdAOOPfTvWJ/i2lOpwZOePXsyd67rD7ugIM8TXXni6+vL7t273dLr16/v/H///v35/feiE3itWrU4cOCAW/6yaLVaFixYwMsvv8z69ev5888/efXVV3nttdfYvn37RSeDvTB3i1JWJBiYOXMmM2bMcEm7r1EdHmjsOdp8tXk3aU7IsNtI/GgO+ccOoY+IIvyu+wi55Q5SVi6tlDqIimHu2IuCM7FlTpL3X3EttNPcqQ8F8TFlTi6LRkvIpMdBUUhbNq9yK/cP+TRvSfio0cTPeYu8wwcxREURde/DhKeNJWlp0aTi2TuKey1YTp0g7/BBGi9ZQUD3XqSt+aGqqn7FfLvdgDXulNvksrl/FvdyLIyPpSDuFDVf/wRjo2ZYDu0tvZh/Je+mLQi55Q4S5hVNAqiPjCJi4v2E3nonyV8uccsfOflhDDXrcGrqQ1VQ2ytjT4jBnhDjfJ9/9hQ+46aib94J65afnHd/bSf2U7D7NwAKks+grVYHffPO5FdB8OSKKAqOnCyyVn4CqortTAwa/yDM3Qc4gycoGgrjT5Kz5ksAbGdj0UVUx7tjryoJnvxT/+XzSYtqwbSoFux837xaMMMXrGHV3pPc18V9cvL/RRc7n3iFhhF170OcePpRjxOO/q9QFAVHbhY53y0CVcWeEEueXyDenfu6BE/sqYmkz52BYjBhaNIa32ETyPz0tSoLoFwuc/OWhI28kzPvv0Xe4UPoq0URdc9DFN4+hnPLFuMVEka1ex7i5LT/7fVZmTS6sn+TiitTqcETs9lMdLTn7qKXQqPRXLT8xx9/TP75O5NeXl4Azl4jmZmZbk/bycjIwN/f3yUtKiqK0aNHM3r0aF566SUaNGjAhx9+6Bb0KO3QoaIueLVr1y4zz9SpU3n00Udd0k6NGVrucstiy85EtdvRBgS6pGv9A90ivReEjhpH5qZ1ZPz6EwDW0zEoRiOR90whZdWyK1rmv5E1KQVDuOs8EIbwEAozs3FYrBSkpOOw2TCEBZfKE4w10bXHSmVx5GSj2u1ofF23R42f/0Un6lX0Brxbdybrh+UVWMOroyLaeaGc1jcAR4llaH2LnnJT2ezn21j6LqXGN+CS2mhu25nM1V94zqDREnL34+iCQzn39vQq63UCYM/KRLXb8Ap0DYJ7BQZiS/Pc7Tti7ETSf/2ZtDXfA2CJOYnGaKLGw0+QtGwxqKpbGXtuDtb4OAzVLt7LoyLYs7OK1qd/gEu61i/gok86UvQGfNp3I+3riwenbclJ2LMy8QqPrJLgSdH6tKMrdfzXBQRiS/c8iXbY7ePJ3PgLGb/8CIA19hQag5Fq9z9K8oqlLusz4u6H8G3bgVNTp2BLrZrjrJqfi+qwo3i7Do9SvH09T6LqicOB/dwZNAGhxcu027Gnuj6JxZGWhLZanatS78vlyD1/nPVxPc5qffw9TnAM4MjKQHXYXdaZLelM0XFMqwW7HUd2BrYk18knbefOYmxWNXOBXAvnE4AAkwGtopBWqkdIWq7FZR6T8nhpNTQKCyQuo2gengvl0vKshPoUz+uXmmehYVjA1an4ZaiI84l3/YZ4BQbR8IOPnWUUrQ5zsxaE3DyMvQN6g6Nye/k58s5vs2bXHu0as1/Z+2ZO0bG55L5pTz6LxjfAuW8WJdpxpBVNHZCXEIsuqg7GDn3IXf2Zh6VWrAvr0/18ElTm+SRizATS1//svElStD6N1HjoCc59/hmm+g3wCgyiwXul1mfTFoQMHsq+QX0qfX2Ka89/bs6TqKgooqOjiY6Oplatom5+9evXR6PRsGuX69i4kydPkpmZSYMGZY+LDQwMJDIyktzc8ucUyM/PZ/78+XTr1o3Q0NAy8xkMBvz8/FxeVzJkBwCbDcuJo5iblZijQ1EwN7+e/KMHPRZRDAZUR6kfJxcONIpyRcv8N8rYtofgXh1c0kJ6dyJ92x6g6IkWmbsPENKrY3EGRSG4Z0cytv1ViTUtwW6jMO4kxoYlxskrCoYGzSgo43GoF5iu74ii05G34/Ln66l0FdBOe+q5oqFlDYvvpilGE/ra0RTEVMEjtu02Ck6fwNioeXGaomBs1JyCk+XXx7t1JxSdF7l//ub+4YXASWgk5955AUdu1U1GCaDabOQdO4pPy9bFiYqCT8vW5B7y3OtPYzSilrq4cT5Jp4xeexqjCX1kFIVpVfODG7sNa8xxTI1bFKcpCqbGLbCcKPsRvgDmdl3Ay4ucLRsu+jXawGA0Pr7YM6rmaV+qzUb+iaOYm7cqTlQUzM1bkX/E8/FfYzC6XayqJc8p50Xc/RB+HboQ8+xjFJ6rwse9Ouw4kuLR1axfIlFBV7OBS++ScikKmpDI4mCLw4496TSaQNfhuprAUNTsKrrpYLdTeOYU+ugScwsoCvroJmX2siiIOYYuONxlvelCI4sChOf30YKYo+hKDS3QhURgT6+6ffM/fz6hKPBxXXgg208Xz6nnUFW2nz5H82rB5ZQsZneoHE/JJOR80CTK30yI2cj22CRnnhxrIfsT0i55mVdTRZxPsv/ayeG7x3Dk3rucr7wjh0hf/wtH7r2ran5o2+3YEmLxqltiElRFwavuddjK6KVWePo42qAwl31TGxxRFOgr70l0ioKi87pKFb88F9anr9v6bEVeWevTYIRyfqPk7NnFkcljOXrfBOcr7+gh0jf8wtH7JkjgRFSKSu15YrVaSUx0vWjS6XSEhFTskyJ8fX2ZOHEijz32GDqdjmbNmhEXF8dTTz1Fhw4d6NSpEwDz5s1jz549DB06lHr16mGxWFi8eDEHDhxgzhzX54efO3cOi8VCdnY2u3btYtasWaSkpPDVV19VaFtKS129imoPPonlxFHyjx0haOBQNAYjGevXAhD54JPY0lJIXvopADk7txE0aDjWU8fJP3YYfUQ1QkeNJWfnNudB52LLrApaszfm6OIxkt51quPXohEFaZlY4hJo+PKjGKPC2Tv+KQBi539BrfvuoNHMJ4hbuIqQnh2IHNGfHYMnO5dx6p0FtPj0NTJ27Sdzxz5qPzQWndlE3KLKXYclZa//nqDR91Nw+oTzkYsag4HcbUU/vAJHP4A9M42s71znEzB37EX+vh0ef0wr3j7oAkPQ+hdF/3Xh1YCiu2uOUmO6K0tFtDNnww/49RuOLTkRW+o5/AeMxJ6ZTv7eHZXSptKy160meNyDFMQexxpzDN9eg9DoDeRsWQ9A8LiHsGWkkvmNa48Ec6fe5O3Z7t5GjZaQyU+gr1GX5PdfBY0GzfmeLY7cHLBXzSNRk1ctp+YT08g7dpi8w4cIHTYCjdFE2tqingg1n3iGwtQUEj4tGl6UtW0zocNGkn/iGHmHD6KvFkXk2IlkbtvsPAZVm3Qfmdu2UHguEV1wCJFjii5y0zf8WiVtBMhc+w2hkx7BeuoY1pNH8b/xZhSDkZzfi54AFjrpUWzpqaSvXORSzrfrjeTt3oaj1OMnFYORwCG3kbtzC/bMdHShkQSPHE/huQTy9rsPT60sqd+uIOrhp8k/foT8Y4cJHjQcjdFI+ro1AERNeZrC1BTOfVZ05y97x1aCb76F/FPHyT9SNGwn7I7xZO/Y6lyfkZMfxr9bb06/+iyO/DznnUh7Xi5qQeV3vbbu2oip3+3Yk+KwJ55G36o7ipeewgNFw8WM/e5AzcnE+kfR3Wx9h77YE2JwZKQUdYdv0wuNXyCFfxdPSl6wcz2mAWOxnzmBLe44utqN0NVtQt6X73msQ2XI2/QT/iMnUxh/isK4E5i79kPRG8jfURSY9R81GXtmOjk/FQ3Bydu6Du/ON+A7eDR5m39GFxKBuddg8v4oPvfnblpD8APTMfcajGXvn3jVqIupQ0+yVn5aJW2Ea+N8AnBHmwY8/9N2GocH0iQyiGW7jpFfaGNw09oAPPfjdsJ8TDzYrSiQNH/LQZpVC6JGgA/Z5+c8ScjKZWizonndFEXh9lb1+XjbIWoG+hY9qnjzfkJ9TPSIvvh8MRXhap9PHPn5WGJOuXyHw2LBnpXpll6Z8rf8jO/QCdjOxmCLP4WxYx8UvQHL7s0A+AybgCMrnbx1Rdejlu0bMLbrhbn/beT/+Sva4HC8u91E/rbic6J3n2EUHNuPIzO1aA6m5u3xqt2QrM/erpI2AqR89SU1Hp9K3rEj5B05ROjQ8+vz56L1WePxaRSmppC4YD4AWX9uIXToreSfOOocthMxZgJZf24pXp+xntZnllu6EBWlUoMna9ascZs3pGHDhhw+XP6du6th9uzZ/N///R9PPfUUsbGxREREcMMNN/DKK6845yhp164df/zxB/fccw9nz57Fx8eHJk2a8M0339C9u+uj/Ro2bIiiKPj4+FC3bl1uvPFGHn30USIiIjx9fYXJ3vIb5/wDCB01Fm1AINZTJzj98jTnxIZeIWEu3fxSVhZ1ow69bRy6oBDsWZlk79xG8rJPL3mZVcG/dVM6/lrc7bDxG0WTDMct/op9E6ZiiAzFVKN428qPiWfH4Mk0fnMqtR8cgyU+kb8nP0vKL8WPCU1Y8RP60CAaPP8QhohQsvYeYvvAiRScq/xZ5p313r2FDB8//AaMROsbQOGZGFLef8XZlVMXFOI2rEEXVg1D9HUkv/eSx2WamrUhaPT9zvfBdz0CQNaPX5L144oKakn5KqKd2eu+LfpBettkNCZvrCcOk/LBK2ArrPD2eJK3azMaXz/8B92G1i+AgvhTnJvzkrON2qAQ1FKTgurCq2Gs35hzs92HCGoDg/Bu0Q6AyOfecvks6a3nsB699PmdrqaM39aj8w8gcswEdIFB5J88zslnHncO89OHhbusy8Sli1FVlcixE/EKCcWWmUHmts0kLvjImccrNIza055H6+uHLTOD3AN/c/ThyVV6DMrd/jtaX38Ch96Jzj8Q6+mTJL453dnFXxcc6jbJq1dEFKaGTUh4/Vn3BToc6KvXwbdzbzTeZmwZaeTv/4v0r5aArWoCYQBZf2xE5xdA2O3j0QUGYjl1gtgZTzmHJ3mFhLnc6U3+8jNQVcLuuAuvoBBsWRnk7NhK0pJPnHmCbroZgDqvvuPyXWdmv1YlQXnb0b+weJsxdOqP4u2HI/kMeV/Ncz5+WOMbiKPENqsYTJhuGIni7YdqzcOeFEfu57NxpBXfsbcd/xvLuhXo2/XB2HMYjrRk8lcvwH626i7oLXv/RGP2w7fvcDS+/hSejSX941k4zj/lSBvgepx1ZKaR/vFr+A66k5BHX8WelU7eH2vJ3bDamccWf5KMRe/g038kPn2GYE9LJvvbJVj+2uL2/ZXlWjifAPRtVIP0PCtzNx8oGloTGsB7t3R1Dr9JzMpDU6LzXpa1gJfW7iI1z4KfwYvrwgNZcFsv6oYUDxcZ264h+YU2Xv55J9nWQlpGhfDe8K4YdNrKbh5QMeeTf6OC/TvI9fbFu9cQND5+2BLjyPrsbdTzvdm0/kGu+2ZWOlmfvY2530gC75uBIzud/G3ryP/9J2cejdkP32ET0Pj6o1rysSXFk/XZ2xSeqLpe4xmb1qP1DyBi9F3O9Xnq2bLX54WhuxFjJ+IVXLQ+s/7cQsLCf/f6FNcWRVU9DDAXlerQ8BuqugqV4uR3p6u6ChWuxeTmF88k/mc4bOV0h/0PSTuZXNVVqHB+1fwvnuk/ID89r6qrUClqdL82jrV5CVU0HKaS2fLLfiT7f0Vgi6p5zHFlO7bCw5DT/6DqHS7tUdj/685sP1bVVahwLdb8Dwx5v0K/XdeyqqtwWbof2lPVVbio/9ycJ0IIIYQQQgghhBBXkwRPhBBCCCGEEEIIIcohwRMhhBBCCCGEEEKIckjwRAghhBBCCCGEEKIcEjwRQgghhBBCCCGEKIcET4QQQgghhBBCCCHKIcETIYQQQgghhBBCiHJI8EQIIYQQQgghhBCiHLqqroAQQgghhBBCCCGuHkWrVHUV/nOk54kQQgghhBBCCCFEOSR4IoQQQgghhBBCCFEOCZ4IIYQQQgghhBBClEOCJ0IIIYQQQgghhBDlkOCJEEIIIYQQQgghRDkkeCKEEEIIIYQQQghRDgmeCCGEEEIIIYQQQpRDgidCCCGEEEIIIYQQ5ZDgiRBCCCGEEEIIIUQ5JHgihBBCCCGEEEIIUQ5dVVdACCGEEEIIIYQQV49Gq1R1Ff5zpOeJEEIIIYQQQgghRDkkeCKEEEIIIYQQQghRDgmeCCGEEEIIIYQQQpRD5jz5FwhuFFXVVagUvpEBVV2FCrd33r6qrkKl6PRi76quQqXQGvRVXYVKodFpq7oKFc4Q4FPVVagUWn16VVehUtitBVVdhUqh9zdXdRUqhZfZWNVVqHCK5tq4XxlUN7Sqq1ApDKFBVV2FShHRolZVV0GIf5Vr40guhBBCCCGEEEIIcYUkeCKEEEIIIYQQQghRDgmeCCGEEEIIIYQQQpRDgidCCCGEEEIIIYQQ5ZDgiRBCCCGEEEIIIUQ5JHgihBBCCCGEEEIIUQ4JngghhBBCCCGEEEKUQ4InQgghhBBCCCGEEOWQ4IkQQgghhBBCCCFEOXRVXQEhhBBCCCGEEEJcPYpGqeoq/OdIzxMhhBBCCCGEEEKIckjwRAghhBBCCCGEEKIcEjwRQgghhBBCCCGEKIcET4QQQgghhBBCCCHKIcETIYQQQgghhBBCiHJI8EQIIYQQQgghhBCiHBI8EUIIIYQQQgghhCiHBE+EEEIIIYQQQgghyiHBEyGEEEIIIYQQQohy6Kq6AkIIIYQQQgghhLh6FK30k7ja5C8qhBBCCCGEEEIIUQ4JngghhBBCCCGEEEKUQ4InQgghhBBCCCGEEOWo8DlPxo0bx6JFi5zvg4KCaNu2LbNmzaJ58+YAKIqCwWDgyJEj1KpVy5l3yJAhBAQEsHDhwktelicbN26kZ8+epKenExAQ4PJZ7dq1mTJlClOmTAHgt99+Y8aMGezZsweLxUJUVBSdOnXio48+Qq/XO5d1od6+vr7UrVuXG264gUceeYTIyMh/8ue6Iqb2vfHu2h+Njz+2xNNkf78EW/ypMvMrRm/MNwzH0KQ1GpMZe0YqOT8so+DoPgDMvYZg7j3EpYwtOYG0d6ZWZDMuytytL769B6P1C6DwTCzpKz6lMPa4x7yhD7+AoX4Tt/T8/btJ/XAmAMYW7fDpciNeNeuiNfuSNPMJCs/EVGQTyhXUpQ11H5uAf6umGKuFsXP4fSR992v5Zbq1o/EbT+PTuD6WuASOz5xL/OKvXfLUuvd26j46AUNEKFn7DnNgyktk7vi7IptySQytumFofwMaHz/s5+LJ+/lL7AmxHvPqm3XAPHCMS5pqKyTj9Yed7xVvX0w9h+BV5zoUoze2uGPk/fwljvTkCm1HebxadMHQpheK2RdH8lnyN6zCkXjac97G7TD1u90lTbUVkv3uEy5pmqBwDF0HoateDzQaHKlJ5K3+FDU7o6KacVH/9X3zAmP7Xnh3KT7W5ny/FNuZ8o61Jsx9hqMvcazN/fFz57G2JFO3m/C5cQR5W34m98fPK7IZF+XToz/+Nw5F6x9AQXwMaZ9/REHMMY95wx97GWPDpm7peX/vJHnOywD4DxqFuW0XtIEhqDYbBadPkPHNEgpOeV5mZbgWjj8AhtY9MHa8AY2PP/akeHLXfoH9bEyZ+RWDCVPPIegbXo9i8saRmUbez19SeGL/FS+zMhja9sTUue/5fTOOvJ8+v+i+6d1rKPrrWqGYzDgyU8lds5zCY0XnRmOX/hiua4U2JBLVVoAt7gS5v6zEkZpUWU3yaPnuYyzafpjUXAsNwgJ4qk8rmkYGX7TcmkOnmbp6Kz2io3h7WBdnemquhdm/7WXrqURyrIW0qhHKk71bUSvItyKbcVE+3fvhd+MQtH5Fx6D05R9TEOP5nBL26IsYG7gfg/L/3kXy+68A4D9wJN5tOqMNDIELx6Bvl5V5XKsMXs06oW/VHcXbF0dKApZN3+BIivOYV9eoDaYbRrqkqbZCcuZO85jf0GMY+mYdsWz6lsK9f1z1ul8OU8c+mLvdhMbXH1tCHFnfLsYWf7LM/IrRG5++IzA0bYPG24w9PYXs1UspOLLXmUfjF4hP/5EYGjZH0RuwpSSRteKjcvd5Ia6WSpkwtl+/fixYsACAxMREnn32WQYOHMjp08U/IhRFYfr06S7BkStd1pU6ePAg/fr148EHH+Tdd9/FZDJx7NgxVq1ahd1ud8l75MgR/Pz8yMrKYvfu3cyaNYtPPvmEjRs30qxZs39cl0tlaNYOn5tGkf3tIgrjTuLd+UYCxj1O6ttPo+ZmuxfQagkY/ziO3Gyylr2HPSsDbUAwqiXPJZstKZ6MT193vlcd9tJLqlSmVp0IGDqW9OXzKYg5jk/PAYTe/wyJLz6MIyfLLX/KR2+gaIs3b43Zh/Cpb5D/19biNL0R64nD5O3eQtAd91ZKO8qjNXuTte8IcQtX0Wbl+xfNb6pdnbbfzeP0/C/YM+Zxgnt1pNm8l7EkJJPyS9HJMnJEf657fSr773+ejO17qfPQWNr/8Akbm/SjIDmtoptUJq/rWmPqPZy8NZ9jOxuDsW0vfEY+SNb8F1DzcjyWUS35ZM6fUSJBdfnc55bJqHY7OavmoVrzMbbrjc9tD5H10UtQWFCRzfFI1+B6jN2HYPm16EeZvlV3zMPuIWfBq6j5ZbTRmk/OgldLprh8rvgH4z3yIQr3byN3y0+oBRa0wRFgs1VgS8p3LeybAIam7fDpP4rs7xZjizuJqdMN+I97jLR3ppZ5rPUf9wSO3CyyPn8fR1Y62oAQHKWOtQC6qDqY2vbAlvDPz2P/lHebzgSNuIvUpXMpOHUU396DCXv4ec5Ovx9HdqZb/uS5/we64vWpNfsSOf0d8nZucaYVJp0l7fP52JKTULz0+PYZTPiUFzjzzL0et5GKdi0cfwD0jdvgfcMt5P60DNuZUxjb9cb3tofInPs8ap6HbVajxfeOKThys8lZNQ9HdgYa/yBUS/6VL7MS6Ju0xdz3VnK/X4LtzEmMHfrge+cUMt57tsx902/0ozhys8n+8kMc2elo/F2vg7xqN8SyYwO2MzGg0eDdexh+ox8l4/3nqmx9rj10mjc37OGZG1vTNDKYZTuPct+Xv/HNxJsIMhvLLHc2M5e3N+zh+uqhLumqqvLI13+g02h4Z1gXzHovluw8wj1fbuSru/pj0lfNMyW8W3cm8JbxpC2bhzXmKH69BhL24HTOvvCgx2NQyoez3I5BEc++Rd7uUsegLz7GlpKExkuPb+9BhD08nbPP3V8lxyBd/RYYug7Ccv6GilfLrngPnkjuklmo+bkey6jWfHKXvF4iQfWYT1e3KdqIWjhy3P9Wlc3QvD2+A28n6+sFFJ4+gXeXfgROeJKUN55EzfXwd9dqCZz4FI6cLDKXvIv9/Hmz5L6pmLwJuvc5Ck4eIv3TN3DkZqMLCS/z7yb+295//31ef/11EhMTadGiBXPmzKFdu3Ye8xYWFjJz5kwWLVrEmTNnaNiwIa+99hr9+vW7rO+slGE7BoOBiIgIIiIiaNmyJU8//TRxcXEkJxffkXnggQdYsmQJ+/fvL2dJl7asK/Xzzz8TERHBrFmzaNq0KfXq1aNfv3589NFHmEwml7xhYWFERETQoEEDRo0axebNmwkNDeXeeyv3Qt+7c1/yd/6GZfcf2JPPkv3tItTCAkytu3nMb2zdDY3Jh8wl71J4+jiOjBQKY45gS3SNdqsOB46cTOerrAvKyuLbayC5W34lb9tGbInxZHwxH7WgAHPHXh7zq3k5OLIznC9jo+aoBVaXH2h5OzaRvWYl1iNV3wsDIHntJo4+/w5J3667pPy17h5F/ql4Dj35GjmHTxL7wVISV62lzsPjnHnqTBlP3CdfEr/oK3IOneDv+57HnmehxrjhFdSKS2Ns1wvr3s0U/L0NR2oieWs+B1sB+uadyiyjoqLmZhW/Slyoa4LC0EXVJW/tF9gTYnGknSNvzRcoOj36xm0qo0luDK17ULh/K4UHtuNIS8KybgWqrQCvpu3LLqSCmpdd4uW63xk7D8B26iDW31fjSD6DmpmK7eSBMoMxleFa2DcBTJ1vxLJzE9bzx9qc7xajFhZgbN3VY35jq65ovM1kLZ2D7fRxHBmpFMYcwV7qWIvegO+Iu8n+ZqHHwEpl87vhZrL/+JncLespTIgnbelc1AIrPp17e8zvyMvBkZXhfBkbt0QtsJK3a7MzT972TVgO7cOWkkRhQhzpKz5FYzKjr167klrl6lo4/gAY2/fB+tcfFOzdgiMlgbwfl0JhAYaWnttpaNkZxWQmZ8UH2OJP4MhMxXb6GPZz8Ve8zMpg7HgD1t2/Y92zGXtyArnfLymq0/VdPOY3XN8FxWQm+4v3scUV7Zu22KPYk4rbmb3kHax7tmBPPos9KZ6cbz5FGxCMrlotj8usDEt2HmFY87rc3Kwu9UL8eaZvG4xeOr75u+y77XaHg2nfb+WeLk2pHmB2+ex0eg5/n03lmRtb0yQymNrBfky7sQ1Wm52fDnnuhVUZfPsMImfzL+RuXY8tIZ60ZfNwFFrx6eT5nOJ2DLquxfljUHHwJG/H71gP78N+4Ri0cgEakxmvqKpZn/qW3Sg88Ce2QztxpJ/DuuErVFshXo09/+i7wOX6wMN5XzH7Yeh+M5afl0EV3/QEMHftT/72jVh2/o793Fmyv16AWmjF1NbzbxRTm+4o3mYyFr9DYewxHOkpFJ467HJjwdx9IPbMtKKeJvEncaQnU3BsP/a0c5XVLPEvsXz5ch599FGef/55du/eTYsWLejbty/nznneFp599lnmzZvHnDlzOHjwIPfccw9Dhw7lr7/+uqzvrfQ5T3JycliyZAnR0dEEBxd3NezcuTMDBw7k6aef/sfLulIREREkJCSwadOmyy5rMpm455572Lx5c5kr7arTatFVq03B8YPFaapKwfEDeNWs57GIoVFLCuOO4zt4NCFTZxP00Mt4dx8IiuKSTxccTvBTbxP82Cz8RkxG4x9UkS0pn1aHV426WI6U6OquqliO7ENfp8ElLcLcqTd5u7egFlgrqJKVL6BDS1LWb3VJS/7lDwI7tARA8fLCv1UTUn4tvoBAVUlZv4WADtdXYk1L0WjRRtTEdupIiUSVwpjD6KLqlFlM0Rvwu+8l/O9/BfPwyWhCSgyRu9CTwVboskzstqLhLZVNo0UTXh1b7FGX+thij6KNrF12Ob0en4nT8Zn0PKbBE9AER5T4UEFXtzGO9GS8h92Dzz0vYb7tEXT1Kq+nm5trZd+8cKw9caA4TVUpPHEQrxrRHovoG11P4ekT+Ay6k+Cn3yHwwZfw7j7A7VjrO2g0BUf2UnjioMflVCqtDn3NelgOlVqfh/ZiqNvwkhbh06UPuTv+KHt9anX4dr0RR14uBeUML60w18LxB4raGVmTwlOHXOpU1M66Hot4NWiOLf4k3v1uJ2DK6/jdPR1j5/7F2+wVLLPCabXoqtWi4GSp66CTh/Cq7rlO+oYtscWfxDzgdgIffwv/+2Zg6nqT275ZkmL0Llp0Fd3dLrTbOZSYTvva4c40jaLQvlY4+86mlFlu/paDBHkbGdrc/W9RcL5HtV6rdVmmXqthz5myl1mhyjwG7UN/iccgc+fe5O0s/xjkc/4YVBgf88/rfLk0WjRhUdjjSg4ZUrHHHUMTUU4wx0uPeew0zOOewThgHJqg8FIZFIw33EbB7t9wpFXt8DKgaN+Mqk3BMdfzZtFvFM/nTUPjVhTGHsd3yFhCnn2P4Edm4t1zkMu+aWjcisL4U/jf8SChz71P0EMvYWrXo4IbIyqL1WolKyvL5WW1et6X33rrLSZNmsT48eNp3LgxH374Id7e3nz66ace83/22WdMmzaNm266ibp163Lvvfdy00038eabb15WHSslePL999/j4+ODj48Pvr6+fPfddyxfvhyNxvXrZ86cyZo1a/j999//8bKuxIgRI7jtttvo3r07kZGRDB06lPfee4+srEvr0teoUSMAYmJiyszjcaOwXVl0WOPti6LVunXNc+RkofHx91hGGxSGoUlbUDRkLHqL3A3f4d2lH949BzvzFMafIGvVx2QsfJPsbxejDQwhcNI0FH3Z3UIrksbnfDtLddd0ZGWi9Qu4aHmvWtF4VatJ7pby5w/5X2MID8Ga5HqBY01KwcvfF43RgD4kEI1Oh/Vcaqk8qRgiQiqzqi4Ubx8UjRZHnut+peZmo/Hx81jGnpZE3g9LyF05j9zvFoKiwW/04yi+AQA4UhOxZ6Zi6nEzitEEGi2GDjeg8Qssc1+oSIrJjKLRunVjV/Oy0Zg9t9GRfg7L2i/I+/YT8n9aAoqCedTDKOfrr3j7oOiNGNr1xhZziLxVH1J4fB+mwePRVtEPtGtl3yw+1rpus46czDK3WW1QKIYmbUCjIXPx2+RtWI2pcz+8exQfaw3N2qGLrEXuLysrtP6XSnt+fdqzMlzS7dmZaP0DL1peX7s++qha5Pzxi9tnpmZtqPHu59R8/0t8+wwm6e3nceRU/jCPa+H4A8XtLD1spdzrg4DQojlANArZX8zB8sePGNv3wdhlwBUvs6I565RTen1mOY+dpWkDQ9A3bg2Khqyls8n/7XuMHW/E1G1gGV+iYO43ksLTx7CfO3u1m3BJ0vMKsKsqQd6u12HBZiOpuRaPZf6KT+abfSd5rm9bj5/XDvIjws+bOZv2kWUpoNBuZ8Gfh0jKziclx/MyK1pZxyBHdsYlnVP0taOLjkGb3XvwGpu1pvo7S6kx5wt8ew/k3OwZODwN66pgF64PHKV6lqp5OWi8Pc8148hIxvLrCvJ/WIjl589RFAXvW+5HMRdv4/rWPUB1VPkcJxeU+RslOwvt+WNnadqgUIzN2qJoNGQseIOcX7/B3LW/yzyM2qBQvDv0wp6SSPons8jfth7fwaMxtvLc00z8b5k5cyb+/v4ur5kzZ7rlKygoYNeuXfTp08eZptFo6NOnD1u3bnXLD0W/wY1G12OoyWTijz8ub5+plOBJz5492bNnD3v27GH79u307duX/v37Exvr2i2wcePGjBkzptzeJxdbVv/+/Z3BlSZN3CclLI9Wq2XBggXEx8cza9YsoqKiePXVV2nSpAkJCQkXLa+eH3+olHP3wtNG8e6WSuyarig4crPI/mYBtrOxWP/eTu7G1Zja9XRmKTj6N9b9O7AnxVNwfD8Zi99GMXljaFZ+d8J/K3PHXhSciS1zAkvx72c/c4qC/X9iPxePLe4YuV/Nw5GfXdwt2+Eg96v5aILCCHjkTQKeeAevWg2KJjksY1zwv409IYbCQztwJJ/BHn+C/NWfoubnFA8lOH9csZ3YX3RnKfkMBTt+xXbyIPrmnauw5lfuP71vnj/W5nyzsOhYu387eRtXYzx/h0zjH4TPgNvJWjGvSuesuZp8uvShID7G4ySMliN/k/DSIyS+9jSWA38ROvkJNL5V84P7cl0Lxx/g/DabTe4PS7Annqbg4E4sm3/C2MpzF/v/Wef3zdzVi7EnxFJwYAf5v/+AsU13j9nNN92BNiyKnJXzK7miVy7XWsizP/zJc/3aEuht8JjHS6vhzSGdiU3Ppvu7X9PxrVXsPH2OznUjy+uE869m7nThGOR+TrEe2U/iK4+R9Po0LAf+ImTSY/8zxyBHYiy2w7twpJzFfvYk+T8uQs3PxatpBwA0oVF4teiKZd3yKq7pP3R+38xa9Qm2MzFY9/1J7obvMLUvMWRL0VB4NpactSuwnY0lf/sG8rdvxNTB87Au8b9l6tSpZGZmurymTnV/YElKSgp2u53wcNceWOHh4SQmJnpcdt++fXnrrbc4duwYDoeDX375ha+++uqSfuOXVCmzQZnNZqKji7toffzxx/j7+/PRRx/x8ssvu+SdMWMGDRo04JtvvrmiZX388cfk5xdNbubl5QWAn1/R3aTMzEy3p+1kZGTg7+968IyKimL06NGMHj2al156iQYNGvDhhx8yY8YMynPoUFFX1tq1a5eZZ+rUqTz66KMuaZmv3F/ucsviyMtGtdvd7vhofPzKnCjKkZ0BdrvLBZ09+WxRFFirLfqsFNWShz0lEW1w2BXV859y5JxvZ6mTnMbP3+3uRGmK3oB3685k/fA/fkLxwJqUgiHctQeJITyEwsxsHBYrBSnpOGw2DGHBpfIEY02soi65FN1dUR12NN5+lNzaFLPvpU/c5nBgT4xHG1g8AZ49MY7sT2eCwYii0aHm5+A79okqmYRTzc9FddhRSt1FUrx9cXiaJM0ThwP7uTNoAkKLl2m3Y091PSk40pLQVit7uEFFulb2zeJjrWvPBI2Pf5nbrCM7o2jMucuxNsF5rNVVq4XGx5/A+15wfq5otXjVaoCpfW9SXphU6T+87efXZ+k7vFpff+yZ6eWWVfQGzG27kPGt5ycFqQVWbMmJkJxI6qmjVHvpA3w69yFrzaqrVf1Lci0cf6C4nYrZ9RhU7vVBTqb7NpuSULR/a7RXtMyK5qxTqX1TMfuhlnkdlFk0CX6pfVPj4TrIfNPteDVoTtaCWTiyyt8HKlKgtx6topCW59ojJDXXQrCHyWLjM3I4m5nLlFXFPbkd59vb5vUv+XriTdQI9KFxRBDLx/Ul21pAod1BkLeR0Z/9QuOIqhmqXdYxSOMbcEnnFHPbzmSu/sLj5yWPQWmnjhL54nv4dOpN1tqvrlLtL82F6wONtw+OEumKtw+OS5102eHAnnwGTUDR9Z22Wh0UbzPmccVP31E0WgxdBqFv2ZXcRe537itamb9RfP2wl/F0QEd2Jqrd5rJv2s6dLdoezu+bjuwM7ElnXMrZzp3F0LTq5pf6N9No/7cioQaDAYPBc8D3n5o9ezaTJk2iUaNGKIpCvXr1GD9+fJnDfMpS6XOeQFHPDI1G4wxylFSjRg0eeOABpk2b5vaEm0tZVlRUFNHR0URHRzsfe1y/fn00Gg27du1yKXvy5EkyMzNp0KDssfmBgYFERkaSm1v+ONf8/Hzmz59Pt27dCA0NLTOfwWDAz8/P5WXQacvMXy67HdvZGPT1GhenKQr6eo0pPH3CY5HC2GNog8Ndxg9qgyOwZ6V7DJxA0QlJGxRW9GOgKthtFMadxNiwxNwOioKhQTMKTh0tuxxgur4jik5H3o7Ln8fm3y5j2x6Ce3VwSQvp3Yn0bXsAUAsLydx9gJBeHYszKArBPTuSse3yJke6qhx27Imn0dUuOX5ZwatWw0t/zJyioA2r5vnHjtWCmp+DJjAUbUQtCo+5Pxa2wjnsOJLi0dWsXyJRQVezAfaEmEtbhqKgCYksDrY47NiTTqMJdA1iagJDUbOr6KL+Wtk3Lxxr67oea73qXkdhnOdeM7bTx9EGlTrWhhQfawtPHCLt3WdJf/9556sw/hTWfdtIf//5qumxYC96hKexUfPiNEXBeF1zrCePlF2OoidkKDovcv/87dK+S6NBOX+Do1JdC8cfKGpnwmm86lxXIlHBq3YjbGc8PybUFn8CTWAoULzNaoLCiwOBV7DMCme3Yzsb61onRcGrbiMKy3gcamHccbRBYaWug8KLby6dZ77pdvSNridr0Rs4MqruhgOAl1bLdRGB/BlbPJeFQ1XZHptE82ruw3BrB/uxYnxfvhh3o/PVPTqKtjXD+GLcjUT4uT4EwdegJ8jbSGxaNgcT0+kRHVXhbfKorGNQo+YUXPQY1OnyjkFK1R2DHOfOoK1ect4PBW2NaByJlzhR7/nrgwtD6AqP7CZv2Vvkff628+XIyaTgr43kffvx1W/DpbDbsZ2JQR9d6jdKdBMKT3s+bxbGHEVX+jdKiOtvlIKYo2hDI13KaUMisGe4DlEX/20hISFotVqSklzn90lKSiIiIsJjmdDQUL755htyc3OJjY3l8OHD+Pj4ULfu5c3ZVSk9T6xWq7MLTXp6Ou+99x45OTkMGjTIY/6pU6fy0UcfcerUKUaOdH2u+eUuC8DX15eJEyfy2GOPodPpaNasGXFxcTz11FN06NCBTp2KusXPmzePPXv2MHToUOrVq4fFYmHx4sUcOHCAOXPmuCzz3LlzWCwWsrOz2bVrF7NmzSIlJYWvvqrcCHbe5rX4DZ+E7cwpCuNP4t3pRhS9gfxdRXcbfG+ZhCMrndyfi8bU52/fgKlDH3wG3EH+1l/QhkRg7jGQvK3F40N9+o3EengP9oxUNH4B+PQeAqoDy94/K7VtJWWv/56g0fdTcPqE83GoGoOB3G0bAAgc/UDR7NvfLXMpZ+7Yi/x9O3DkepiV3NsHXWCIcyy/LrwaAPasjCoJFGnN3pijazrfe9epjl+LRhSkZWKJS6Dhy49ijApn7/inAIid/wW17ruDRjOfIG7hKkJ6diByRH92DJ7sXMapdxbQ4tPXyNi1n8wd+6j90Fh0ZhNxiyp3Oy3Nsn095oFjsCfGYjsbi7FtT/AyULCvaJyi98CxOLIzsPz2LQDGzv2xnY3BkX4OxeCNsUMfNH5BWPcUP9HDq9H1RU9yyUpDGxqFqc8ICo/uxeYyuWHlse7aiKnf7diT4rAnnkbfqjuKl57CA0X7kbHfHag5mVj/+B4AfYe+2BNicGSkoBhMGNr0QuMXSOHfxWM3C3auxzRgLPYzJ7DFHUdXuxG6uk3I+/K9KmkjXBv7JkD+5p/xHT6RwrMx2OJPYjp/rLXsKhor6zt8Io6sDOf8JfnbN2Bs3xufm24nf9s6tMHheHcfQP75Y61aYMF+zvXumVpoxZGX45ZembJ++ZaQ8Q9TEHsc66lj+PUZhKI3krO5aF6a4PEPY89IJePrJS7lfLr0IW/Pn25zCCh6A/43jSBv73bsmeloffzw7dkfXUAQeTs3UxWuheMPgOXPdZgHj8OWEIPtTAzG9r3BS491b9Ek4ubB43BkZ5C/4RsArLt+w9imB959R2LZsR5tUBimzv2x7Fh/ycusCpatv+Az9C7sZ2OLHp/coQ+KlwHrX0Xrx2foXTiyMsj7tei8Z92xEWO7Xnj3G4Vl+/l2dh2A5c/iuZfMA+5A36w92Z+/h1pgcfZsUS35pSYGrjx3tmnI9B//pHFE0PlHFR8hv9DGzc2Keh4++8M2wny8eah7cww6LdGhAS7lfY1FgYKS6b8cjiPQ20CEnzfHkjN5/dfd9KgfRcc6nn98VIbsdasJHvdg0TEo5hi+vQah0RvI2VK0HQaPewhbRiqZ3yx1KWfu1Ju8PdvdzimK3oBf/1vI37cDe2Y6Gh9ffLufPwbtqprttmDPJox9RmI/F48jKQ6vll1RdHoKD+4AwHjDqKLgx9afANC37YM98TSOzKLrA32r7mh8A7Gcv57Akuf+tDaHHTU3GzXjnz+N9Erl/v4T/rfeTWH8+d8oXfqieBmw7Cy6aeJ362QcWenkrPl/9u47vKnq/wP4O3sn3ZO9N8geIlBAQKYCIipLQEVFkJ9fFVBQEXEiKKKgKKCCoCDgAtmobJC9oS1tobtJ2+z1+yOQkjYNQ5qovF/Pkz96cu7NOb3Jufd+7hkrAQCm3ZuhaN8dmr6PwrRzI0RRsVB16Qfzn79592n6Yz0inpoGZZe+sB7ZA0nlmlC26YLCVTfXe4D+3aRSKVq0aIHNmzdjwIABAACXy4XNmzfjmWeeCbitXC5HYmIi7HY7Vq1ahQcffPCmPjsowZP169cjPt4TJdRoNKhXrx6+++47dO7c2W/+iIgIvPjii5gyZUqZ9252X1fNnTsXb731Fl588UWkpqYiLi4O3bt3x8yZM71zlLRu3Rp//PEHnnzySVy6dMk7b8qaNWvQqZPvWNi6detCIBB4I1b33nsvJk2aVG60q6JYj+5FsUoDVdf7IdTo4Lh8EfrF73vXTxfpIn2eYLoM+dAvfg+a+x6GYvwbcBUWwLRzI0w7fvbmEeoioB3ypKdLobEI9tSzKPh0RpnJL4PJfHAn9GottL2HQKQJgz0jBbkfz/ROVCmOiCrzpFYckwBZrfrImTfD7z4VjVsiYljJkKnIx54DABT+shKFv3xXQTUpn65FI7Tb/JX37wbveb7/aUtX48joyZDFR0NRuSTabk5Jx75+T6DB+5NRbfxwWNIzcfSJl5G7sWTio8vf/QppdATqTH8WsrhoFB4+ib19xsCWHdoIvf3kAZiVasg79oFQpYUzOx3FK+d5v2NCbTjgLunQKpAroez1MIQqrWcYWWYair56D65rhrAI1TrIuw660v3eANuxPbD88WvQ63aV48xfsChVkLXvBYFSC1dOBkyrF3iXHxZqwr3dqAFAIFNA0X0IBEot3FYTnFlpMC6f6zNrvuPcUVg2fQdp626Qd3kArvwcmH/8Es5LIVi15Io74bcJANZjeyFQaaDqOgBCtaetNSyZ7W1rhWFl21rDkvehvm8owp+ZAVdRAcy7NsK045eQlP9Gmfb/iQKNDmH9hkKkDYctPRnZH752zfGMLns8YxMgr90AWR9ML7M/t8sFSVwiotu9CJFaC6exCLaUs8h8Zwrsl9PK5A+GO6H9AQDbif0QKNVQdOrnqWdWOoqWf+h9Wi3URfh+ZwsLULTsQyi7D4bu8WmeANK+LbDsXH/D+wwF2/F9MKnUUHTpD6FaC0dmGoq+nlPy29RFeuekA67U86sPoOw5BGHjXoWrsACWPZtgvuZ4yVt55oHTjXrB57OK13wB66HQ3HD3qF8FBWYrPvnjGPKMFtSNCcPHgzt5h+1kFpogvMnJSnKMZry/9S/kGa2IUsvRp2E1PN6+wfU3rECmA39CqNFC13coRNowTxv00QxvGySKiILb7fLZ5moblD237PD6q22Qql1niFRX2qDUc8h67+WQtUGOs4dhVagga9PD02bkXIJp3efe5YcF6jAIS10fyJM87YvbYoYrJx2m7+bBVfDPXp7XemQPilQaqO8d6LlHuXQRBV+86+21J/Jz3tQvegfqvo8gcuJMOAsLYPpzA0zbfvLmcaQnQ790LtQ9H4S66wA4C3JQ9OPXsITod0mhM2nSJIwYMQItW7ZE69atMWfOHBiNRowaNQoAMHz4cCQmJnonnN2zZw8yMjLQrFkzZGRk4NVXX4XL5cILL7wQ6GPKELjd/6bZzP6bsqeODHURgsJmCM0Sf8F0eEGIumgHWfvXu4a6CEEhkklDXYSgKLwQup4OwSILU4e6CEFhyg7dvAzBpK2eEOoiBIX7BoYv/xe4b3HVwX8TReU74zubu+9YqIsQFOENQ7QMeZCZ0v1PvvlfEvv2V9fP9C+1u82/a7GPtnv23lT+efPm4d1330VmZiaaNWuGDz/8EG3atAEAdO7cGdWqVcPixYsBANu3b8e4ceNw4cIFqNVq3HfffXjrrbeQkHBzbXNQep4QEREREREREd0OzzzzTLnDdLZt2+bzd6dOnXDixIm//ZkhmTCWiIiIiIiIiOjfgsETIiIiIiIiIqIAGDwhIiIiIiIiIgqAwRMiIiIiIiIiogAYPCEiIiIiIiIiCoDBEyIiIiIiIiKiABg8ISIiIiIiIiIKgMETIiIiIiIiIqIAxKEuABERERERERHdPgKhINRF+M9hzxMiIiIiIiIiogAYPCEiIiIiIiIiCoDBEyIiIiIiIiKiABg8ISIiIiIiIiIKgMETIiIiIiIiIqIAGDwhIiIiIiIiIgqAwRMiIiIiIiIiogAYPCEiIiIiIiIiCoDBEyIiIiIiIiKiABg8ISIiIiIiIiIKQBzqAhARERERERHR7SMUCUJdhP8c9jwhIiIiIiIiIgqAwRMiIiIiIiIiogA4bOcfwHg5P9RFCAqJUhbqIlS49q93DXURgmLntM2hLkJQVOmREOoiBIU6RhPqIlQ4u8ka6iIEhUQlD3URgkKiVYe6CEFhzdOHughBIVarQl2ECieQ3Rm/TYHwzhgmUJySEeoiBIXdaAl1EYj+UdjzhIiIiIiIiIgoAAZPiIiIiIiIiIgCYPCEiIiIiIiIiCgABk+IiIiIiIiIiAJg8ISIiIiIiIiIKAAGT4iIiIiIiIiIAmDwhIiIiIiIiIgoAAZPiIiIiIiIiIgCYPCEiIiIiIiIiCgAcagLQERERERERES3j0AkCHUR/nPY84SIiIiIiIiIKAAGT4iIiIiIiIiIAmDwhIiIiIiIiIgoAAZPiIiIiIiIiIgCYPCEiIiIiIiIiCgABk+IiIiIiIiIiAJg8ISIiIiIiIiIKAAGT4iIiIiIiIiIAmDwhIiIiIiIiIgoAAZPiIiIiIiIiIgCEIe6AERERERERER0+wiE7Cdxu/E/SkREREREREQUAIMnREREREREREQBBG3YjtPpRMeOHREXF4fVq1d70w0GAxo1aoThw4dj7NixqF69uve98PBwNG7cGG+88QY6duzoTX/11Vfx2muvAQBEIhEqVaqE+++/HzNmzIBarfb7+SNHjoRer8eaNWt80rdt24YuXbqgoKAAYWFhcDqdePfdd7F48WKkpqZCoVCgdu3aGDt2LMaMGePd15IlSwAAYrEYERERaNKkCYYOHYqRI0dCGOQuUpqk+6DreT9EunDY0pKR981C2JLP+s0b98JMKOo1LpNuOrwPWXNnAACiHpsAzd1dfd8/ehBZH7x628t+M1T39ICmaz+ItGGwZ6Si4LsvYE895zdv9IRXIavdsEy6+dhB5H06y/u3tvcQqNp3hVChgvXCKehXfAZHTmaF1eFGyJrfA1mb7hCqtXBmp8P020o4L6f6zStt3BaqPsN90twOO/TvTvD+LVBqoOgyAJLq9SGQK+FIOwvTbyvhKsip0HqUJ+Lulqjxf6Oha94I8oQY7B/4FLLWbQ68zT2t0eC9l6BuUBuWtMs4N+sTpC/9wSdP1XEPo8ak0ZDFRaPwyCkcnzgDhn1HK7Iq1xXRewCiHxgCcXgELMnncWnBhzCfOVVu/sh+AxF5Xz9IomPhKDSg8M/tyFzyGdx2OwAgevDD0LbrCFmlKnDbrDCePI7MxQthy0gLVpX8ulPaoDulnqqOPaDp2rekrf3+C9hTz/vNG/3sdP9t7fGDyPv0Le/f2vseLGlrk09Bv+LzkLa1Kw9fwNKD55BnsqJ2lBYvdGqCRnHhfvOuO3ERr236yydNKhJi19N9vX8v2H0KG85mIKvIDIlIiPoxOjzVrj4ax0VUaD2uR9ayMxTt74VQrYMjKx2mX5fDcSml3PwCmQLKpAGQ1msOgUIJlyEfxg0rYD93DAAgrlIbivb3QhxfFUJNGApXzIf99KHgVCYAabO7IWuVBIFKC2dOBiybV8GZedFvXknD1lD2esQnze2wo3DO8z5pwohYyO/pC3HlWoBQCGdeFkxrv4C7qKDC6nE93+47hSW7jiGv2Iw6sRF4sWdrNE6Mvu52648l46UfdqBzncqYMyTJm/7K2j/w4xHf33b7mgmY/3D32172m6G+pyc03ftDpA2DLT0F+pWLYCvvem/ia5DXaVQm3XzsAHLnvwkIRdD1Gwp5w+YQR8XCbTbBcvoI9Gu+hssQumOp7NAdqs59INLoYL90EYU/LIE9zX87CwACuRKa+x6EvHErCJVqOAtyUbjmK1hPHbqSQQB1j0FQNO8AkTYMTkMBzPt2oHjTD+XuMxjUnXpCe+8A77EsWPE5bCn+j2XMpNf9H8ujB5Dz8UxAKEJY/4chb+Q5li6zCdZTR6D/4Ss4Q3gs6c4StOCJSCTC4sWL0axZM3zzzTd45BHPiWv8+PGIiIjA9OnTcenSJQDApk2b0LBhQ+Tm5mLmzJno06cPzpw5g9jYWO/+GjZsiE2bNsHhcODPP//EY489BpPJhAULFvytcr722mtYsGAB5s2bh5YtW6KwsBD79+9HQYHvj7Jnz5748ssv4XQ6kZWVhfXr12PChAn4/vvvsW7dOojFwfnXqlrdjcgho5H71XxYL5yBtns/xE16DelTxsFVZCiTP/vjWRCISsomVGuQ+NqHMO7/0yef6egB5C6a6/3b7bBXXCVugKJ5e4TdPwIFKxbClnIO6i69Ef30VGS+PgGu4sIy+XM/e8+3nio1Yie/B/Nfu7xpmm79oe7UC/lfzYMzLxvaPg8h6umXkfnGc0CI6iup3wKKrgNhWu+5wJW3SoJ6yHgULnwVblOx323cFjMMC1+7JsHt87560BNwO50oXrUAbqsZ8tZdoR76LAo/mwHYbRVZHb9EKiUKj5xG2uJVaPn9x9fNr6hWCa3WLcDFhd/i0PDnEZnUDo0XvAHL5RzkbvwDABA/uBfqvzsZx56eDv3ew6j+7Ai0+XkRtjXsCVtOfkVXyS9dxy6IHzMOlz7+AKbTJxHVfxCqv/4OTj8xHE6Dvmz+Tl0RN/JxpM99B6aTxyBLrIxKE18EAFz+fD4AQNWoKfJ+XgPz2dMQiESIHT4G1We8gzPjRsFttQSzel53Sht0p9RT0bwdwu4fjoIVn8GWehbqzr0R/dRUZM6Y6L+t/bx0W6tB7Evv+m9rv/7Y09b2HoKop6Yic+akkLS1v53JwOzfj2NKUhM0ig3HskMX8MzaXVg9rCsilDK/26ikYqweVhLoEgh8368SrsaLnRojUaeC1eHEN3+dx9NrdmHt8G4IL2efFU3aoCVU9w6G8edv4MhIhrxNV2gemQD9x9PgNhWV3UAogvbR5+AyFaHo+0/hKtRDGBYJt8XkzSKQyuDISof1rz+hGfJUEGtTPknduyDvfD/Mm1bCeTkFsuadoRo0DkVfzCz/vGk1o2jRzHL3KdRFQjV0AuxHd6N456+A1QJhVDzgDN3vc8PxZLy/cR+m3tcWjROj8c2eE3hq2SasfWoAIlSKcrfL0Bdj9qb9aF4lxu/7HWom4rV+Hbx/S0Wh7ZSuaNEeYQNHomD5AlhTzkKT1AfR41/B5VfH+22D8ha+C4h926C4Ke/DdNDTBgmkMkgr10Dhr9/Dnp4CoVKFsMGPIfrJl5D19otBq9e15M3aQtvvURi+/wL2i+eg6tgLEY+/hJy3/89vHSESIeKJyXAVF6JgyVy4DPkQhUfBZS75baqS+kHVvhv0yz+BIzMdkso1oBvyBFwWE0x/bAhi7UooW3RA+KBRyF+2ANaUM9Am9UHM+Gm49Op4v+fN3E/f8TmWIpUGcS/PhungTgCeYympUgOFv3wHW3oKhEo1wh98DFFPTUbWrBeCVi+6swW1haxTpw7eeustjB8/HpcvX8batWvx7bffYunSpZBKpd58kZGRiIuLQ6NGjTBlyhQUFhZiz549PvsSi8WIi4tDpUqVMGTIEDzyyCNYt27d3y7junXr8NRTT2Hw4MGoXr06mjZtitGjR+P5532fSMhkMsTFxSExMRHNmzfHlClTsHbtWvz6669YvHjx3y7HjdL26I+iHb+h+I/NsF9KQ97S+XDbrNB07OY3v8tYDGeh3vtSNLzL8wR7n+8Fvdtu98nnMhmDUZ1yaZL6wLhzM0y7t8GRmQ79twvhttmgapfkN7/bVAxXkd77ktdrArfN6nNBr+7SG4UbVsFydD/sly4if+k8iHThUDRtFaxqlSFvnQTr4T9hO7obrrxMmNYvBxw2SJu0L3cbN9xwGwtLXtdcFAsjYiBOrAHThm/hvJwKV342TOu/hUAshbRBy2BUqYycDTtwZvocZK3ddEP5qz7+EMzJ6Tj5wtsoPnUBqfO/QeaqDag+YaQ3T/WJo5C2aCXSl6xG8cnzOPrUdDhNFlQeObCCanF9UQMGo2DDzyjYtB7WtFRkfDwbLqsFEd17+c2vqt8QppPHYNi+GfbsLBT/tR/6HVugqF3Pmydl+ovQb94A68UUWJLPI/2DtyCNiYOiVp1gVauMO6UNulPqqenSB8Zdm2Hasw2OzAzoV3x2pa3t4je/22SEq8jgfZW0tbu9edSd70PhhtUlbe1XV9raJqFpa7/+6xzub1QV/RpURY1ILaYkNYVcLMLaE/57+AGAAECUSu59RSrlPu/3qlsJbarEoJJOhZqRWkzq2AhGmwNn8/zcCAWJvF13WA/+AevhnXDmXobx528Auw2yuzr4zS+7qwMEChWKVsyHI+08XIY8OFLPwJmV7s1jP3cM5q1rYfsH9Da5StqyM2xHd8J+bA9ceVkwb1wJt90GaaO25W/kdsNtKvJ5XUvWsQ8cF07AsmMdXNkZnv/F+WPlBmOC4avdJ/DAXbUxoFlt1IwOw8u920EuEWHNIf9P8QHA6XJhyg87MK5TMySGafzmkYiEiFIrvC+tIjTBvqs0SX1R/OcmGHdvhSMzHQXLF8Bls0LVvqvf/C5TMVyFeu/L2wZdueF2W0zI+eh1mA/uhCP7EmwpZ6Ff+TmkVWtBFB4VzKp5qe65D6bdW2Hetx2OrAwYVi2C226FonUnv/mVrTtDqFSj4MvZsKecgbMgF7YLp+C4XNK7SlqtNizH9sN68hCcBbmwHNkL65mjkFapGaxqlaHp1hfFf26EcdcWOC6nI3/ZArjsVqjb+792L3Ms6zeF22aF6cA1x3LuazAd2AlH1iXYks+g4NvPIQvhsaQ7T9DDy+PHj0fTpk0xbNgwPP7445g2bRqaNm3qN6/ZbMbSpUsBwCe44o9CoYDN9vefosfFxWHLli3Iybn5IQ1JSUlo2rSpz7CkCiUSQ1a1FswnDpWkud0wnzgMWc165W52LU3Hbije+zvcNqtPurxeI1SZsxSJb85H5LBxEKr8n3SDQiSGpHINWE4fKUlzu2E5fQTS6jd206hq3xWmgzu99RRFxkCkC4f1VMmwDrfFBFvKOUir1b2txb9hQhFEcVXgSD59TaIb9pRTECdWL3czgVQG7VMzoHt6JlQDn/A8Hbvq6hNhn6e7bsDpgLhS6E6oNyOsbTPkbtnlk5az8Q+Et20GABBIJNA1b4jczTtLMrjdyN2yE2Ft7wpiSUsIxGIoatVB8aEDPmUqPnQQynplhzgAgPHkcShq1oGijue3K4mNh6ZlGxTt3+M3PwCIVCoAgNPfk6pguIPaoDujnqIrbe01w93cblhOH4W02g22te2S/Le117TfbovZ09beYPt9O9mdLpzKNqB15ZKhDkKBAK0rR+Po5fK7fZvtTvT+8jfc98UGTPpxD84HCIrYnS6sPp4KtVSM2lHa21r+GyYUQRxfBbbkk9ckumFLPglJpRp+N5HWaQpH+nmoeg1F+KT3oHtyOhR39yrbzeafRCiCKLYyHKlnrkl0w3HxDEQJ1crfTiqD5vHp0Dz+KpQDxkAYGXfNmwJIajSAqyAbyoFPQvPUG1A98hzEtcoOwwsWu9OJk5fz0KZ6gjdNKBCgTfUEHEkv/3p1wY4jiFDJcf9dtcvNsz81E13eX4H+H/+Amb/sgt4Uml6MAACRGNIqNX3aC7jdsJ46AtnNXO8d+LNMW3stgVwFt8sFlzkEwWqRCJJK1WE9e6wkze2G9cwxSKv6P06yhi1gTz0L3QOjEPPqJ4h6/m2ouvb3+W3aUs5CWrsRRFGe77I4vgqk1evCcupwhVanXFeOpeVkqWv3k0cgrXFj19mqDl1h2v9H4GOpUIbuWNIdKehLFQsEAnzyySeoX78+GjdujJdeeqlMnvbt20MoFMJkMsHtdqNFixbo2tV/xBkADhw4gGXLliEpyX8k82bMnj0bgwYNQlxcHBo2bIj27dujf//+6NXL/9Pi0urVq4cjR46U+77VaoXV6tsIWJ1OyESimy6rSKOFQCSCs1Dvk+4s1EMSn3jd7aXVa0NaqRpyvvzIJ9187CBMB3fBnpMFSUwcwgcOQ9xz03Fp5guA23XT5fy7hGoNBCJRmS5+rkIDJLHXr6ekai1IEqog/5tPvGkibRgAwFmk98nrLNJ73ws2gVINgVAEl8n3otxtLIIoMtbvNs78LJh+/hrO7AwIZArI2nSDdtjzMHw+A+4iPVx5mXAa8qDo3B+m9cvgttkga50EoTYcQrUuGNX622SxUbBm5fqkWbNyIdFpIJTLIAnXQSgWw5qdVypPHlR1/d8kVDSRVgeBSASH3vdmzKEvgKxSFb/bGLZvhlirQ423P4RAIIBALEbeL2uR8903/j9EIED82GdgPH4U1tSU21yDG3OntEF3Sj2FKk89XaXq6SrSQxKb4H+ja0iq1vS0tcv8tbW+7bezyBCStlZvtsLpdiOy1FCaSKUMKQV+hrIAqBauxrRuzVA7Sodiqx1fHTyHUd/9ju8eSUKspmS4xI7kTExZvx8WuxNRKjnm398e4SF6in/1fOI2lj2fCK4NsF9DFB4NYfV6sB7dg8LlH0IUHgPVfQ8DQhHMO34KRrFvmkChulJP32PnNhZBGOF/mIorPxvm9cvhzLkEgUwOWaskqB+eiKIvZ8FdbPD876RyyNp0g+WPX2DZ8SMk1etD2f8xGFfMgzO9/HkpKkqB6cr3Vu3b4ylSJUdKbtnhDwDw18UsrDl0Fise7+v3fcAzZKdrvSpIDNMgraAI87YexNPLN2HpqPsgCsESp1ev98q0tUUGiG/gek9atRakiVVR8PX88jOJJQi7/1HPTbnF/DdLfPOEqnKuaYsNEMf4b2fFkTEQ1WoA88E/kf/5OxBHxUL3wCgIRCIU/+Z5YGvcsg5CuQLRL77nOX8IhCj6dSUsB//0u8+KJirnWLqK9JDE3cCxrOY5lvlfBRjeLZYg/P5hITuWdGcKycDGL774AkqlEsnJyUhPTy/z/ooVK/DXX39h1apVqFWrFhYvXgyJROKT5+jRo1Cr1VAoFGjdujXatWuHefPm4eLFi1Cr1d7Xm2++eVNla9CgAY4dO4bdu3fjscceQ3Z2Nvr27eudLPZ63G43BAGe0syaNQs6nc7n9cmR8rtcViRNx+6wpaWUmfDQuPd3mA7thT0jFaa/9iBr7gzIatSBvF7ZSZz+DVTtkmDLSC13ctl/M2dGMmzH9sCZnQ5H2lkYVy+Ay1wE2V13ezK4XDCuXghhRAzCnnsfYf+bA0nVOrCfP1ZmbhQKLVXjpoh+8BFc+mQOzk54HKkzX4GmZVvEPDTMb/6EcRMgr1odF995PcglvX3ulDboTqmnqu3Vtjb4N5cVqUl8BPrUr4K60Tq0qBSFd3u3RrhChlXHUnzytaoUheVDO+PLwR3RvmoMXvp1P/JN5T8x/ccRCOAyFsH401dwXr4I24n9MP/xC+Qt/A8l+LdyXk6B/cQ+uHIy4Ew/D9PaRXCZiiFtemU405VrOPu5Y7Ad2AZXTgasezfBcf54SZ5/OKPVjqlr/8C0Pu0QXmqI2bV6NqqOznWroHZsOJLqVcGHD3XF8Ut52J+aFcTS3j6q9l1hy0gtd3JZCEWIGvN/AAQo+HZhUMv2twgEcBUXwvDd53CkJ8NyaDeKN62Fsl3Jg2V507ZQNO8A/TcfI3f2VBi+/RTqzr2haNkxwI7/uVTtu8GWnlLu5LIQihA19nlAIED+sr833yXRzQh6z5OdO3figw8+wG+//YY33ngDo0ePxqZNm3wCDpUrV0bt2rVRu3ZtOBwO3H///Th27BhkspInOHXr1vVOzJqQkOAd1uNwOHDo0CFvvogIz0z3Wq0WqallxzPr9XqIRCKornR/BwChUIhWrVqhVatWmDhxIr7++msMGzYMU6dO9VkNyJ+TJ08GzDN58mRMmjTJJ+3S+KEB91keZ1Eh3E5nmad3nlm29QG3FUhlULfuiII1y677OY6cLDiLDJDExPt2vwsSV3ER3E4nhBrfnhJCra5MRLs0gVQGZYsOKPx5hU/61e1EmjCfp6wijWc28FBwm4rhdjkhVGrhvCZdoNL4n0DMH5cLzsx0iMJLuqQ7M9NQ9MUsQCaHQCiG21wMzYj/+YyV/SezZuVCFus7llUWGwW7oQguixW23AK4HA7IYiJL5YmENdO3x0qwOAsNcDudEIf5rt4hDguHo8D/BLaxjz4G/ZbfUPDbLwAAa2oyhDI5Ep/5P2Sv+Non2JXw5LPQtGqHCy9NgCMvNHUE7pw26E6pp8voqaewVD2FmrDb0NbqSrW1OtgyUv5+oW9SmEIGkUCAvFJBjTyTFVEBbjKvJREJUTdah3SDbzdxhUSMymFqVA4DGsdHYMCSTVhzPBWPtQr+8KSr5xOBynfYkEClgbvYf08FV7Gn3bq2rXHmZnrOvUIR4HL63S6U3GbjlXr6DncTqDRleqOUy+WCKzsdwrCokn06nXDl+a4G5crPgigxNL0Zw5VXvrfFvkNq8owWRKnLThabVlCES/piTPh2izfNdeW4tnhjKdY8NQCVI8oOKasUrkG4Uoa0/EK0qe6/h1JFunq9V6atLdV++COQyqBs2QGGn1b4zyAUIXLM/0EUEY2cudND1lPBZSznmlatg6tUb+irnIV6oNRv05GdAZE2HBCJAKcT2r4Po3jLOlgOeYY5OzLTIAqPgrprf5j3/15R1SmXs5xjeaPnE1WrDjD8+K3/DEIRoh5/HuLIaGR/MI29TiiogtrzxGQyYeTIkRg3bhy6dOmCRYsWYe/evfj000/L3WbQoEEQi8WYP9+3C55UKkWtWrVQrVo1n/lQxGIxatWq5X1dDZ7UrVsXx48fLzNk5uDBg6hevXqZni3XatCgAQDAaAw8nm7Lli04evQoBg4sf5JKmUwGrVbr87qVITsAAKcD1tRzkNe/Zs4YgQCK+k1gPV/+cqgAoGrVAZBIULxr23U/RhQeCaFKE7plwJwO2NMuQF73mvHGAgFkdRrDlnym/O0AKO5qB4FYDNO+Hb67zMuG01AAWd2SJ7wCuQLSarVgSzldejfB4XLCmXkRYp85VwSQVK0LR0byje1DIIAoJsF/sMVqgdtcDGF4NERxVWE/G/ybs1uh330IkUm+E/9FdW2Pgt2HAHgm3DQcPI6opHYlGQQCRHZpB/1u3+VFg8XtcMB87gxUTZv7lEndtDlMp4773UYok5fpDeR2ubzbXpXw5LPQtrsbyVMnwZ4V2mW176Q26M6op9PT1l67VKRAAFmdRrClXK+tbXulrfW9SC9pa0vab29be532uyJIRELUi9FhX1rJPBEutxv70nLQON7/UsWlOV1unMsrvG6wxeV2w+4M/vArz4c74bh8EZLq187JI4Cken3Y0y/43cSedg6iiGh4psf1EEXEeG7o/oGBEwCe82ZWGsRVrg1QCSCuUgfOAEsy+xAIIIxKKBnidOVcLAz3HfYjDI+BqzA0v02JSIT68ZHYm3LZm+Zyu7E3+TKaVCq7VHH1KB2+f6IfVjze1/vqVKcyWlWLw4rH+yJOpyqzDQBkFRqhN1n9BmSCwumA7eJ5n/YCAgFkdZvAer3rvebtIRBLYNq7veybVwInkph45Hz4GlzG0E38C6cT9vRk3yXeBQLIajeELfWs303syWcgior1uRYQRcd7zhVOz29TIJECLj/XEKGas+jKsZTXa1KSJhBAXq8JbBcCX2crW3iOpXGP/2MZ9fjzEEfHI3vOq6E9lnRHCmrPk8mTJ8PtduOtt94CAFSrVg3vvfcenn/++XLnFBEIBHj22Wfx6quv4oknnoBSqbylz37kkUfw+uuvY/jw4XjhhReg0+mwY8cOzJkzB++8844336BBg9ChQwe0b98ecXFxSE5OxuTJk1GnTh3Uq1dyEWK1WpGZmemzVPGsWbPQp08fDB8+/JbKeCsKN6xF1JiJsKWcgzXZs3ymQCZH0R+bAQBRYybCWZCPglVLfbbTdOwO08HdcJV6MiOQyRHW7yGYDuyC01AAcUwcIgaPhCP7MkzHDgatXqUVbfkJEcOehu3iee9SxUKZDMbdWwEA4cOegdOQj8J1vk93Ve2SYD6yz2/jWrz1Z2h7DoQjJxOOvGzoeg+B01AA8+F9QamTP5a9W6DqMxzOzFQ4LqVC3qoLIJHBdsTzJEHZZwRcRXpYtq8FAMg79ILjUgpcBdkQyJSQt+0GoTYC1kMlY1wl9e7yrD5UmA9RdCIU3QbDfuYwHD4TCQaPSKWEqlbJvB/K6pWgbVoPtnwDLGmXUfeNSZAnxuLwKM8SgqkLv0XVpx5BvVn/Q9riVYjq0hbxg3thX78nvPtInvMlmn7xNvQHjsGw7wiqPTsCYpUCaUuCNHmzH7lrvkOl516C+ewZmM+cRGT/QRDK5SjYtB4AUGnSZNjzcpC15HMAQOHenYgaMBjmC2dhOn0SsvhExD76GAr37gKuBFESxk1EWKeuSH3jZbhMJm/PFqfJCPdtmDD7VtwpbdCdUs+irT8h4tGnYbt4AbbUc1B3vu9KW7sNABA+7Gk49fko/HG5z3bettbPaiTF236BtscDcGRf9rS1fR7ytLVHQtPWPnpXLUzfeBD1Y8OuLFV8HmaHE/0aeNqlab8dQLRKgfEdPA9OFu45jcZx4agcpkLRlTlPMgtNGNDQk99sd2DRvjPoVD0OUSo59BYbVh5JRo7Rgm61rz9XTEWx7NoI9YBRcF5KheNSMuRtukEgkXrPD+r+o+Aq0sO05QcAgHX/dshbdYGy5xBY9m6BKDIWirvvg2VvSe8FSGRXAiweorAouGIrwW02wVUYmmXhbfu3QdHrETizLsJ5+SKkLTpBIJHCdswz2bai1yNwFRtg/d0zb4usXQ84L6XAqc/1zBXWyjMPmO1oycTk1n1boOw7Ao7083CmnYW4en2IazaEccW8kNQRAIa1bYBX1v6BBvGRaJQQhW/2noTZ7kD/prUAAC+v+R0xGiWe7doCMrEItWJ8g4EauedB49V0k82OT3ccRrd6VRGpViC9oAhzNu1H5Qgt2te8/pwUFaVoy4+IHD4ettTzsKWehaZLH08btMvzPYwYMR5OfT4Ma33nA1O3T4L58N6y13tXhndIqtRA7vw3AaHQ27vOZSwGnI5gVMuHcccvCHvoSdjTLsB+8TyU9/SCQCqH+UrgRzd0HFyGfBT94ulFY9y1Ecq7u0M7YDiMv2+AODoO6q79Yfp9vXeflhMHoe7WH059LhyZ6RAnVoOq030w790W9PpdVbTpR0SOHA9b6rkry073hVAqQ/FOz7GMHPksHPo8GNb4HktV+64wHSrnWD7xP0gr10DOx/+MY0l3nqAFT7Zv346PP/4Y27Zt8wmAPPHEE1i9ejVGjx6Nzz//3O+2I0aMwNSpUzFv3jy88MKtreMdFhaG33//HS+99BL69esHg8GAWrVqYfbs2Rg9erQ3X48ePbB8+XLMmjULBoMBcXFxSEpKwquvvgrxNWuPr1+/HvHx8RCLxQgPD0fTpk3x4YcfYsSIERAGcZIt474/INToED7gYc+KBmkXkPXBq97ujeKI6DKRaElcIuR1GuLye9PK7tDlgrRyNWg6JEGoVMGhz4f5+CEU/PAN4Ahdo2Q+uBN6tRba3kMg0oTBnpGC3I9neifcEkdElXlqL45JgKxWfeTMm+F3n0Wb1kIgkyN86BMQKpSwnj+F3PkzS61ME1z2kwdgVqoh79gHQpUWzux0FK+c511GUagN95lIUiBXQtnrYQhVWrgtJs8Qna/e8+luLFTrIO866MrwHwNsx/bA8sevQa/bVboWjdBu81fevxu8NwUAkLZ0NY6MngxZfDQUlUu6C5tT0rGv3xNo8P5kVBs/HJb0TBx94mXkbvzDm+fyd79CGh2BOtOfhSwuGoWHT2JvnzGwlZpENpgMv2+FWKdD7KMjIQ6PgOXCeSRPe9E7iawkOsYbFAGA7G+/AtxuxD46GpLIKDgMehTt3YXMr0raxcje/QEANd6a4/NZaR+8Bf3mDRVfKT/ulDboTqmn+eCuK23tgyVt7fw3S9racH9tbTxkNa/T1kplJW3thVOem5gQtbX31klEgdmKT3efQp7RijrRWnzUv613+eHMIrPPUOIiqw1vbDmEPKMVWrkE9WLC8MXgjqgR6Rn2IBQIkFJQjJ9O7oPebINOIUHDmHB8Puhu1IwM0Wo7AGwn9sOk0kDRuR+Eai0cWekoWvahdziLUBcB9zXH0lVYgKJv5kJ574MIe3I6XIV6WPZuhvnPkhs0cUJV6EY87/1b1eNBAIDl0E4Y1y0OTsVKsZ/+CwKlGvIO90Gg1MKZkw7j95+WOm+W1FMgU0LR4yEIlFq4rSY4s9JQvHwOXHkl83w4zh2BeeNKyNp0hzDpAbgKsmFa+wWcGf577QRDj4bVUWCy4JPth5BbbEbd2AjMf7gbIq/0ErlcaAw4515pQoEAZ7MK8OPh8yiy2BCtUaBdjQQ83fkuSMW32CP6NjAf2Am9Wgddn4cg0obBlp6MnHlveNsgUXhUmbbWc73XANkfvlZmf6KwCCiatgYAxE2d7fNe9gfTYD3rvzdoRbIc2o1ClRbqHoMg0obBnpGK/M/e8vYaFoVF+lzrufT5yF/4NrT9H0X082/BaSiA8ff1MG5Z581T+MMSaHoOhvaBURBpdHAaCmDatRnFG0P3EMl04E8INVro+g71Hsvsj2aUHMuIKLhLTY4ujk2AvHYDZM/1cyzDI6C8cizjX/E9llmzX4H1TPCPJd15BG43Z40MteTH+oW6CEEhUYZm1YFgUiWW7T77X7Rz2uZQFyEoqvQI3VPjYFLHhHB5XLqtJKobm7fj3y6sXrVQFyEorHn6UBchKMTKEA0TCSJpnP9V8/5rcnceCHURgkIcopW0gs1uDOHS1UFS5dPQBZgq2oEu/45Jrq9qsTU0q0PdjKBPGEtEREREREREFUcgDNGcN/9hIVmqmIiIiIiIiIjo34LBEyIiIiIiIiKiABg8ISIiIiIiIiIKgMETIiIiIiIiIqIAGDwhIiIiIiIiIgqAwRMiIiIiIiIiogAYPCEiIiIiIiIiCoDBEyIiIiIiIiKiABg8ISIiIiIiIiIKQBzqAhARERERERHR7SMUCUJdhP8c9jwhIiIiIiIiIgqAwRMiIiIiIiIiogAYPCEiIiIiIiIiCoDBEyIiIiIiIiKiABg8ISIiIiIiIiIKgMETIiIiIiIiIqIAGDwhIiIiIiIiIgqAwRMiIiIiIiIiogAYPCEiIiIiIiIiCoDBEyIiIiIiIiKiABg8ISIiIiIiIiIKgMETIiIiIiIiIqIAxKEuAAFiuSTURQgKl8MZ6iJUOJFMGuoiBEWVHgmhLkJQXNxwKdRFCIrGoxuGuggVzmlzhLoIweF2h7oEQeF23Rn1lEWGhboIQeG+A64PBCJRqIsQFHfKb1MkvzOu9+xGS6iLQPSPwuAJERERERER0X+IQCgIdRH+czhsh4iIiIiIiIgoAAZPiIiIiIiIiIgCYPCEiIiIiIiIiCgABk+IiIiIiIiIiAJg8ISIiIiIiIiIKAAGT4iIiIiIiIiIAmDwhIiIiIiIiIgoAAZPiIiIiIiIiIgCYPCEiIiIiIiIiCgAcagLQERERERERES3j0DIfhK3G/+jREREREREREQBMHhCRERERERERBQAgydERERERERERAEweEJEREREREREFACDJ0REREREREREATB4QkREREREREQUAIMnREREREREREQBMHhCRERERERERBQAgydERERERERERAEweEJEREREREREFACDJ0REREREREREAYiD9UG7du3C3XffjZ49e+Lnn3/2pqekpKB69erev9VqNapUqYLOnTtj4sSJqF279g3vqzwjR46EXq/HmjVrfNK3bduGLl26oKCgAGFhYXA6nXj33XexePFipKamQqFQoHbt2hg7dizGjBnj3deSJUsAAGKxGBEREWjSpAmGDh2KkSNHQigMfjxKfU9PaLr3h0gbBlt6CvQrF8GWes5v3uiJr0Fep1GZdPOxA8id/yYgFEHXbyjkDZtDHBULt9kEy+kj0K/5Gi5DQUVXJSB1p57Q3jvAW8+CFZ/DluK/njGTXvdfz6MHkPPxTEAoQlj/hyFv5Kmny2yC9dQR6H/4Cs4Q11PS9G7IWiZBoNLAlXMJ5q2r4Mq86D9vg9ZQ9HzYJ83tsKPow//5pAkjYiHr2BfiSjUBoRCuvCyYfvwC7iJ9RVXjuiJ6D0D0A0MgDo+AJfk8Li34EOYzp8rNH9lvICLv6wdJdCwchQYU/rkdmUs+g9tuBwBED34Y2nYdIatUBW6bFcaTx5G5eCFsGWnBqpKPiLtbosb/jYaueSPIE2Kwf+BTyFq3OfA297RGg/degrpBbVjSLuPcrE+QvvQHnzxVxz2MGpNGQxYXjcIjp3B84gwY9h2tyKpc153y29Qk3Qddz/sh0oXDlpaMvG8WwpZ81m/euBdmQlGvcZl00+F9yJo7o0x65LBx0Hbphbzln6Nw47rbXvabobqnBzRd+0GkDYM9IxUF330Be3nnlAmvQla7YZl087GDyPt0lvdvbe8hULXvCqFCBeuFU9Cv+AyOnMwKq8P1SBq3h7R5JwiUGrhyL8OyYw1cWf7bCnG9llB0H+KT5nbYUfzJFL/5ZZ0fgLRxO1h2rIX98B+3vew3Y+XhC1h68BzyTFbUjtLihU5N0Cgu3G/edScu4rVNf/mkSUVC7Hq6r/fvBbtPYcPZDGQVmSERCVE/Roen2tVH47iICq3H9UiadIC0Recrx/MSLNt+KP941m8Fxb0P+aS5HXYUf/yS929594cgadDKJ48j5RTMaz+7/YW/Cd/uPYElfx5DbrEZdeLC8VKvdmhcKfq62/169AJeWrUNXepWwZyh3bzpn2w9iPXHkpFZaIREJESD+Eg807UFmlSKqchqXNdtPacA0PUZAmXLDhCFRwEOB2wXz0O/dhlsKf7b72BQtOkKZcdeEKp1cGReRNFPX8ORnlxufoFcCVX3gZA1bAGhQgWnPg/FPy+D7cwRAIAqaQBUXQf4bOPIuYz8OZMrshrXdadcH9CdI2jBk0WLFmH8+PFYtGgRLl26hISEBJ/3N23ahIYNG8JkMuHo0aOYO3cumjZtih9//BFdu3a9qX3dqtdeew0LFizAvHnz0LJlSxQWFmL//v0oKPD9Qfbs2RNffvklnE4nsrKysH79ekyYMAHff/891q1bB7E4aP9WKFq0R9jAkShYvgDWlLPQJPVB9PhXcPnV8XAVF5bJn7fwXeCa8glVGsRNeR+mg7sAAAKpDNLKNVD46/ewp6dAqFQhbPBjiH7yJWS9/WLQ6lWaskUHhA8ahfxlC2BNOQNtUh/EjJ+GS6+Oh6vIUCZ/7qfv+NRTpNIg7uXZMB3cCcBTT0mVGij85TvY0lMgVKoR/uBjiHpqMrJmvRC0epUmrnMX5J0GwLJ5JZyXUyFt3gmqB55E8Zdvwm0u9ruN22pG8ZdvXpvi875AFwnlkGdhP7Ybxp2/wm2zQBQZBzgcFViTwHQduyB+zDhc+vgDmE6fRFT/Qaj++js4/cRwOA36svk7dUXcyMeRPvcdmE4egyyxMipN9HwfL38+HwCgatQUeT+vgfnsaQhEIsQOH4PqM97BmXGj4LZaglk9AIBIpUThkdNIW7wKLb//+Lr5FdUqodW6Bbi48FscGv48IpPaofGCN2C5nIPcjZ4bsPjBvVD/3ck49vR06PceRvVnR6DNz4uwrWFP2HLyK7pKft0pv01Vq7sROWQ0cr+aD+uFM9B274e4Sa8hfco4v/XM/ngWBKJr2lq1BomvfQjj/j/L5FU2bwtZzbpwFORVaB1uhKJ5e4TdPwIFKxbClnIO6i69Ef30VGS+PsHvOSX3s/d866lSI3byezD/tcubpunWH+pOvZD/1Tw487Kh7fMQop5+GZlvPAc47EGp17XEtZtC1rEvLFcC05JmHaHsNwbGr9+B22z0u43baobx63evSXD7zSeu0QiiuKpwFZf9TgTbb2cyMPv345iS1ASNYsOx7NAFPLN2F1YP64oIpczvNiqpGKuHlVxzCQS+71cJV+PFTo2RqFPB6nDim7/O4+k1u7B2eDeEl7PPiiau3Qyyjv1g2fp9yfEc8DiMS98OeN40Ln372pQyeRwpJ2HZuKIkhzN050wAWH/sAt7bsBcv92mPxonR+Gb3cYz7egPWPjMQkWpFudtlFBRh9m970bxKbJn3qkbqMPm+tqgUroHF4cTXu45j3Fcb8OOzgxChKn+fFel2n1MAwJ51Cfnffg5HbhaEEik0XfsiZsI0XHrlab/tWkWTNW4N9X0PoWjtEtjTLkDZ4V6EjXweeR+8BLexqOwGIhHCRj0Pl7EIhcvmwVmohygsEm6LySebIysd+i9K2im3y1nRVQnoTrk+oDtLULpJFBcXY8WKFRg3bhx69+6NxYsXl8kTGRmJuLg41KhRA/3798emTZvQpk0bjB49Gk6n86b2davWrVuHp556CoMHD0b16tXRtGlTjB49Gs8//7xPPplMhri4OCQmJqJ58+aYMmUK1q5di19//fW2ludGaJL6ovjPTTDu3gpHZjoKli+Ay2aFqn1Xv/ldpmK4CvXel7xeE7htVpivNExuiwk5H70O88GdcGRfgi3lLPQrP4e0ai1PxD5ENN36ovjPjTDu2gLH5XTkL1sAl90Kdfskv/nL1LN+U7htVpgOXFPPua/BdGAnHFmXYEs+g4JvP4csxPWUtegM+7FdsB/fC1d+FiybvoPbYYOkUZvyN3IDblPRNS/fi0V5h95wJJ+A9fcf4crJgNuQB8eF4+VeVAZD1IDBKNjwMwo2rYc1LRUZH8+Gy2pBRPdefvOr6jeE6eQxGLZvhj07C8V/7Yd+xxYoatfz5kmZ/iL0mzfAejEFluTzSP/gLUhj4qCoVSdY1fKRs2EHzkyfg6y1m24of9XHH4I5OR0nX3gbxacuIHX+N8hctQHVJ4z05qk+cRTSFq1E+pLVKD55Hkefmg6nyYLKIwdWUC2u7075bWp79EfRjt9Q/Mdm2C+lIW/pfLhtVmg6dvOb32UshrNQ730pGt7l6RG1zzd4IgqLQOTDjyNn4fshvzkDAE1SHxh3boZp9zY4MtOh/3Yh3DYbVO38H0+3qRiuIr335T2nXBM8UXfpjcINq2A5uh/2SxeRv3QeRLpwKJq28rvPiiZtdg/sx/fAcXI/XAXZsG5dDbfDDkmD1gG382ln/bSfApUWsk79YfltGRDimxYA+Pqvc7i/UVX0a1AVNSK1mJLUFHKxCGtPpJa7jQBAlErufUUq5T7v96pbCW2qxKCSToWakVpM6tgIRpsDZ/OCfwN6lbT5PbAf3w3HiX1w5WfBumWV53g2vInjaSp7PN1Op08eWM0VVYUb8tWuY3igeV0MuKsOasaE4+U+HSCXiLHmrzPlbuN0uTBl9XaM69IclcI1Zd6/r0lNtK2ZiEoRWtSKCcfzPVqj2GrH2azQPcW/3ecUADDt+x3WU0fgzM2C/XIaCr7/EkKFCpLEqsGqlg9lhx4w798Oy8E/4My5hKK1S+C226BocY/f/PIW90CoUMPw9YewXzwHlz4X9pTTcGT69q5yu1xwFRu8L3/f62C6U64P/skEQsG/6vVvEJTgycqVK1GvXj3UrVsXjz76KL744gu4y3lq4y2YUIgJEyYgNTUVBw4c+Fv7ulFxcXHYsmULcnJybnrbpKQkNG3aFKtXr74tZbkhIjGkVWrCevpISZrbDeupI5BVv7EbRlX7rjAd+BNum7XcPAK5ytMgl/NErsJdqaflpG89LSePQFqj7g3tQtWhK0z7/whcT4UytPUUiiCMrQRH6rUXQm44Us9AFF+t/O2kUqjHTIN67HQo+o2GMDLumjcFENdoAFdBDpQPPAn1kzOgGvocxDXLDicIFoFYDEWtOig+VPK7htuN4kMHoaxXtvs/ABhPHoeiZh0o6niCJZLYeGhatkHR/j3lfo5IpQIAOEPwVOlWhLVthtwtu3zScjb+gfC2zQAAAokEuuYNkbu55IIQbjdyt+xEWNu7gljSa9wpv02RGLKqtWA+cagkze2G+cRhyGrWK3eza2k6dkPx3t996ykQIHrsJBjW/wD7pdAML/MhEkNSuQYspc4pltNHIL2Zc8rBnd56iiJjINKFw3qqZGiZ22KCLeUcpNVu7DtyWwlFEMYkwpl2bXd9N5xpZyGMC3AjJZFCNWIKVCOnQt57JIQRpZ/iCyDvPhS2g9vhys+qiJLfFLvThVPZBrSuXDKkQygQoHXlaBy9XP6NsdnuRO8vf8N9X2zApB/34HyAoIjd6cLq46lQS8WoHaW9reW/YUIRhDGV4LxY6nhePHP94zlqKlSPvQJ5n1F+jicgrlQTqrGvQjX8Rci6DATkyttf/htkdzhx8lIe2tYo6WktFArQtkYCjqSXf826YPshhKvkeKD59X+/docTqw6chkYmRZ3YEA3DCsY5RSSGuuO9cJmMsKen/P0y3yyRCOKEarCdO1GS5nbDdu44JFVq+t1EVq8Z7GnnoOk3DFGT5yLi2Teg7NSnTNcwcWQsIl/8AJH/9w60g5+AUBfC4XR3yvUB3XGCEjxZtGgRHn30UQCeIS8GgwHbt2+/7nb16nkuSlNSUv72vm7E7NmzkZOTg7i4ODRp0gRPPvkkfv311xvevl69ej5lrWhCtQYCkQjOQr1PurPIAKE27LrbS6vWgjSxKox/BngyLpYg7P5HPY2XJTRPXUTl1NNVpIfoRupZzVPP4uvUM/z+YSGtp0ChgkAo8jzhuobbVAShyv+FqasgG5YN38K0dhHMv34NCARQPTQBArXOs0+lGgKpHLLWXeFIOQnTqk9hP3cEin6jIKrk/yRd0URaHQQiERx63wt4h74A4nD/J3rD9s3I+uZL1Hj7QzRasxH1Fi2D8egh5Hz3jf8PEQgQP/YZGI8fhTU15TbXoGLIYqNgzcr1SbNm5UKi00Aol0EaFQ6hWAxrdl6pPHmQxYXmicud8tsUabT+29pCPUS6sOtuL61eG9JK1VC04zefdF2vgYDTicJNP97G0t66q+eU0t2pXYWGGzqekqq1IEmoAuPOkrl9rm7nLDW/kvMGvyO329V21lXqiazbVAyhsuyTeQBw6XNg2fwdzD8vhuW35RAIBFAOehoClc6bR9qiM+B2hXyOk6v0ZiucbjciSw2liVTKkGvyP4yxWrga07o1w+w+bTDj3hZwud0Y9d3vyCry/d3tSM7E3Z/8hHYf/4hlf53H/PvbI1wRmiE7Jcez9HmzGEJVOcezIBuWjStg/vFLWDZ84zmeD473njcBwJF6CuYNy2Fe/Smsf/wMUWINKPuPLTuOKUgKTFeOZ6nhOZEqBXKLTX63OZiaiR8OnsH0vncH3Pf20xfRduZStHpjCb7afRyfDu+BcJU84DYVpSLPKfLGLVBpzjeo/NG30HTtg+y5r8Hlb4hMBRMqr7SzpYb2uYoLIbzmO3gtUUQMZA1bAQIh9Etmw7h1HZR394SySz9vHnv6eRSu+hz6xe+jaO1SiMKjED52CgTS/96x9PoHXB/QnafCgyenT5/G3r17MXToUACeSVaHDBmCRYsWXXfbqz1KBFdOVtfb18WLF6FWq72vN9980/+Oy9GgQQMcO3YMu3fvxmOPPYbs7Gz07dvXO1nsjZRXcJ0Tq9VqRWFhoc/L6gxN915V+66wZaSWO7kshCJEjfk/AAIUfLswqGW7nVTtu8GWnlLuBFUQihA19nlAIED+sgXBLdzf5LycAvvJfXDlZMCZfh7mH7+A21wMaZP2ngxXvo+O88c8T0RzMmDbtxmOCycgbdIhhCW/OarGTRH94CO49MkcnJ3wOFJnvgJNy7aIeWiY3/wJ4yZAXrU6Lr7zepBLSjfjv/zbvJamY3fY0lJ8JpeVVq0Jbfe+yPlibghLdnup2iXBlpFa7uSy/1auzFQ4Th2AK/cSnJcuwPzLErjNRkgatQUACKMTIWnaEZZNK66zp3+2JvER6FO/CupG69CiUhTe7d0a4QoZVh1L8cnXqlIUlg/tjC8Hd0T7qjF46df9yDeV/2T4n8bneGZcgPnnxVeOZztvHseZQ3AmH4crLxOOC8dgXrcIorgqEFWqFcKS3zij1Y6pP+zA9H4drhsIaVU9HiufHIClo/ugQ61E/O+7rcgr/nfeiAY6p1hPH0PmzP9D1rtTYDn+F6LG/h+EGv/Bin8cgQAuYyGK1nwJx6VUWI/uhXHbj1C07uLNYjtzFNZj++DMSoft3DHol34AgUIJWePAw9f+qe6U6wP696nwmU0XLVoEh8PhM6mr2+2GTCbDvHnzAm578uRJAPCuxnO9fSUkJODQoUPe9yIiPE+xtVotUlPLjvHV6/UQiURQXeneD3iGC7Vq1QqtWrXCxIkT8fXXX2PYsGGYOnWqz6pA5ZX3enlmzZqF1157zSdtYst6mNSqQcDt/HEVF8HtdJaJ4Io0OrhKRXpLE0hlULbsAMNP5VzsCUWIHPN/EEVEI2fu9JBGdJ3l1FOoCSsT0S5NIJVB1aoDDD9+6z+DUISox5+HODIa2R9MC2k93WYj3C4nBKWefgqUGriMNzj0xOWCMzsDwrDokn06nXDm+a5q4crPgigh8He1ojgLDXA7nRCH+a74IA4Lh6PA/6SnsY8+Bv2W31Dw2y8AAGtqMoQyORKf+T9kr/jaZ/LGhCefhaZVO1x4aQIcebl+9/dPZM3KhSzWtweJLDYKdkMRXBYrbLkFcDkckMVElsoTCWtmaOp5p/w2nUWF/ttabZjfCY6vJZDKoG7dEQVrlvmky+s0hEijQ+V3Sx4kCEQiRAwZBW33vkh/YeztKv4Nu3pOKX1DIdTqbuh4Klt0QOHPvueUq9uJNGE+5yWRxrPyQrBdbWeFSjVc16QLlOoyvRfK5XLBmZMBYZjntyhKqA6BUgXVyJLVdwRCEWR394W0WUcYl8wqb08VJkwhg0ggQF6poEaeyYoo5Y09iZaIhKgbrUO6wbc7vEIiRuUwNSqHAY3jIzBgySasOZ6Kx1oFf36pkuOpKXs8b7RXgfd4lt+Dz12YD5epGEJdZKkhX8ERrrxyPEsFNfKMZkSpyw4nSssvxCV9MZ5dVvLU3nXlPNn8tS+xdvxAVI7w9GhVSiWoEilBlUgtmlSOQd8Pv8eav85gdMemFVgj/yrynOK2WT0rfOVkIj/5DOJfnwd1+64o3BDE4fYAXKYr7WypXiZCtbbciaZdRXrA6fS51nHmXIJIEwaIRJ73SnFbTHDmZkIUGZqVk+6U6wO681RozxOHw4GlS5fi/fffx6FDh7yvw4cPIyEhAcuXLy93W5fLhQ8//BDVq1fHXXfddUP7EovFqFWrlvd1NXhSt25dHD9+HFar70XEwYMHUb16dUgkknLL0aCBJ6hhNAYeS7dlyxYcPXoUAwcGnrhx8uTJMBgMPq+nm9/iuG+nZ7k1Wd1r5q8QCCCr2wTW5PInEAM8KyoIxBKY9voZ8nQlcCKJiUfOh6/BZQzthFNX6ymv16QkTSCAvF4T2C6cDripsoWnnsY9/usZ9fjzEEfHI3vOq6Gvp8sJV1Y6xFWuXZ5bAHGVOnBeTrmxfQgEEEbFlwRbXE44sy5CGO578hSGR8NdFJoJ4dwOB8znzkDVtHlJokAAddPmMJ067ncboUxeZnULt8vl3faqhCefhbbd3UieOgn2rNAtg3or9LsPITKprU9aVNf2KNh9CADgttthOHgcUUklT0chECCySzvod/suLxo0d8pv0+mANfUc5PWvuZkQCKCo3wTW8+Uvrw0AqlYdAIkExbu2+aQX79yKjOnPIuPVCd6XoyAPhvU/IGv2q7e/DjfC6YA97QLkpc8pdRrDdr1zyl3tIBCLYdq3w3eXedlwGgogq1uy/KRAroC0Wi3YUgJ/RyqEywlXdkapHgQCiCrXgiuz/IlUfVxpZ6+uimE/fRCmZbNhWv6B9+UqNsD21zaY1n5+++twAyQiIerF6LAvrWQ+DJfbjX1pOWgc73+p4tKcLjfO5RVeN9jicrthd7oC5qkwLidc2ekQVfY9b4oq17654xkZD3eAhxQCtQ4ChTIkwzwAQCIWoX5CJPYkX/KmuVxu7LlwCU38LFVcPUqH78fdjxVPDvC+OtetglbV47HiyQGI06rKbOPdr9sNmyNEEx5X1DnFH4EQggDX/xXG6YTjUgqkNa95aCoQQFqzAewXz/vdxJ56FqLIWJ/rHVFkHJyFBX4DJ4AnACGKiPEEXkLhTrk+oDtOhfY8+emnn1BQUIDRo0dDp/ONsA4cOBCLFi1Cz549AQB5eXnIzMyEyWTCsWPHMGfOHOzduxc///wzRCIR1qxZc919Pfnkk37L8cgjj+D111/H8OHD8cILL0Cn02HHjh2YM2cO3nnnHW++QYMGoUOHDmjfvj3i4uKQnJyMyZMno06dOt75VwDP0JvMzEyfpYpnzZqFPn36YPjw4QH/JzKZDDKZ79hgg0h0/X9mOYq2/IjI4eNhSz0PW+pZaLr0gVAmg3HXFgBAxIjxcOrzYVjrOzeEun0SzIf3lm10rnSDk1Spgdz5bwJCoXf+FJexGAjRahBFm35E5MjxsKWeu7Ikc18IpTIU7/TUM3Lks3Do82BY41tPVfuuMB0qp55P/A/SyjWQ8/E/p57WA9ug6PkwnFlpcGZehLR5JwgkUtiPeyZGlfd8BO5iA6x//AQAkLbtAeflFLj0uRDIFJC1TIJQGw770ZKJR237t0DRewScGefhSDsHcbV6ENdoCNPKwD2/KlLumu9Q6bmXYD57BuYzJxHZfxCEcjkKNq0HAFSaNBn2vBxkLfHceBTu3YmoAYNhvnAWptMnIYtPROyjj6Fw7y7gShAlYdxEhHXqitQ3XobLZPL2bHGajHDbbEGvo0ilhKpWFe/fyuqVoG1aD7Z8Ayxpl1H3jUmQJ8bi8CjPksupC79F1aceQb1Z/0Pa4lWI6tIW8YN7YV+/J7z7SJ7zJZp+8Tb0B47BsO8Iqj07AmKVAmlLgvvk7Fp3ym+zcMNaRI2ZCFvKOViTPUsVC2RyFP3hmd8jasxEOAvyUbBqqc92mo7dYTq4u8xNl8tYVCbN7XTAadDDnplRsZUJoGjLT4gY9jRsF897lyoWymQw7t4KAAgf9gychnwUrvPtSaNqlwTzkX1+L2SLt/4Mbc+BcORkwpGXDV3vIXAaCmA+vC8odSrNdmgH5N2GwJmdDldWGiTNOkIglsJ+wlMeefeHPMGPXZ45z6StusGZeREug6edlTbvBKEmHJYr7TIsJrhKLRkKlxNuYxHc+pufgP52efSuWpi+8SDqx4ZdWar4PMwOJ/o18LRL0347gGiVAuM7eG7iFu45jcZx4agcpkKR1Y6vDp5DZqEJAxp68pvtDizadwadqschSiWH3mLDyiPJyDFa0K12QrnlqGi2gzsgv/chOLPTPEsV33WP57x5Yi8AQH7vUM/x3OnpuSht3R3OzFTveVPaoguE2muOp0QKWZt7YT93BG5jEYRhUZB16A23Pg/Oi4GDpRVpWLtGeOWH39EwIQqNEqPx9e7jMNsdGHCXp8fP1NXbEaNVYUK3lpBJxKgd6xsk08ilAOBNN9ns+HzHYXSuWwVRGiX0Jgu+3XsS2YUmdG8Ymp6pwO0/pwikMmh7DYL5yD44DQUQqjXQdOoFcViEz4o8wWT6cwO0A8fCkZEMe/oFKNvfC4FUBvOB3wEAmkFj4SosgPG37wEA5r1boWjbDerej8C8ayNEUXFQde4D066SnkXqnkNgPXUITn0ehNowqLsOANwuWA6XP7F+RbtTrg/ozlKhwZNFixahW7duZYIdgCfg8c4776Cw0BPp79bNs9yjUqlE1apV0aVLFyxcuBC1atW64X0dOXIETZo0KfN+WFgYfv/9d7z00kvo168fDAYDatWqhdmzZ2P06NHefD169MDy5csxa9YsGAwGxMXFISkpCa+++irE16w7vn79esTHx0MsFiM8PBxNmzbFhx9+iBEjRkAoDMocvF7mAzuhV+ug6/MQRNow2NKTkTPvDe+Ef6LwKMDl+8ReHJMAWa0GyP7wtTL7E4VFQNHUMz4ybupsn/eyP5gG61n/PQMqmunAnxBqtND1HeqtZ/ZHM0rqGREFt9v3yZc4NgHy2g2QPddPPcMjoLxSz/hXfOuZNfsVWM+Epp6OM3/BolRB1r4XBEotXDkZMK1e4F1uTqgJ93a9BQCBTAFF9yEQKLVwW01wZqXBuHyuz2oPjnNHYdn0HaStu0He5QG48nNg/vFLOC8lB71+Vxl+3wqxTofYR0dCHB4By4XzSJ72oncSWUl0jDcoAgDZ334FuN2IfXQ0JJFRcBj0KNq7C5lflTzVjezdHwBQ4605Pp+V9sFb0G/eUPGVKkXXohHabf7K+3eD9zxd+tOWrsaR0ZMhi4+GonK8931zSjr29XsCDd6fjGrjh8OSnomjT7yM3I0lE1Be/u5XSKMjUGf6s5DFRaPw8Ens7TMGtlKTyAbTnfLbNO77A0KNDuEDHvasHpN2AVkfvOodiiKOiC7T1kriEiGv0xCX35sWghLfGvPBndCrtdD2HgKRJgz2jBTkfjzTezzFEVFleoF5zin1kTNvht99Fm1aC4FMjvChT0CoUMJ6/hRy588EHPYKr48/jrOHYVWoIGvTAwKVBq6cSzCt+9y7/LBAHQZhqXZWnjQIApUGbosZrpx0mL6bB1dBdkjKf6PurZOIArMVn+4+hTyjFXWitfiof1vv8sOZRWafedqKrDa8seUQ8oxWaOUS1IsJwxeDO6JGpGd4h1AgQEpBMX46uQ96sw06hQQNY8Lx+aC7UTMyRKvtAHCcPeQ5nm17eM6buRkwrfnMe94UaEodT7kC8q6DvedNV3Y6TCs/KjlvulwQRiVAUb8lBDIF3MZCOFJPw7Z7fblP+YOhZ6MaKDBaMH/rQeQWm1E3LgLzH73XO4lspsEI4U1MaCsSCJCca8C6w1ugN1kQppChYWI0vnzsPtSKubHeSRXhdp9T3C4XJHGJULXrDJFKC6exCLbUc8h672XYL4dmlTPr0b0oVmmg6no/hBodHJcvQr/4fW/vJ5Eu0qeddRnyoV/8HjT3PQzF+DfgKiyAaedGmHb87M0j1EVAO+RJz5BEYxHsqWdR8OmMMosQBNOdcn1AdxaB+3at80u3LO2pwEN9/ivcrv/+Vy2sTpXrZ/oPSN1yONRFCIqLGy5dP9N/QOPR/peI/i9x2u6MJ1ISZWhWPQk2Xd1qoS5CUAiEoVndJdjcoRomEkSSmNDMPRFs2dtD19MhmOQhDBgGkyXAcuX/FVU+DV3v3Yp2tE+X62f6B2n809ZQF+G6gttNgoiIiIiIiIjoX4bBEyIiIiIiIiKiACp8qWIiIiIiIiIiCh6h6M4Y+hlM7HlCRERERERERBQAgydERERERERERAEweEJEREREREREFACDJ0REREREREREATB4QkREREREREQUAIMnREREREREREQBMHhCRERERERERBQAgydERERERERERAEweEJEREREREREFIA41AUgIiIiIiIiottHIBSEugj/Oex5QkREREREREQUAIMnREREREREREQBMHhCRERERERERBQAgydERERERERERAEweEJEREREREREFACDJ0REREREREREATB4QkREREREREQUAIMnREREREREREQBMHhCRERERERERBQAgydERERERERERAGIQ10AAow5RaEuQlBYDOZQF6HCCcWiUBchKNQxmlAXISgaj24Y6iIExdFFx0NdhApX58GaoS5CUBjSC0JdhKBQV44NdRGCojgtK9RFCApjTmGoi1DhKvdoG+oiBEXu2exQFyEoKkfpQl2EoCjOMoS6CET/KOx5QkREREREREQUAIMnREREREREREQBcNgOERERERER0X+IQMh+Ercb/6NERERERERERAEweEJERERERERE/xoff/wxqlWrBrlcjjZt2mDv3r0B88+ZMwd169aFQqFA5cqV8dxzz8FisdzUZzJ4QkRERERERET/CitWrMCkSZMwffp0HDx4EE2bNkWPHj2Qne1/xa9ly5bhpZdewvTp03Hy5EksWrQIK1aswJQpU27qcxk8ISIiIiIiIqJ/hdmzZ2Ps2LEYNWoUGjRogE8//RRKpRJffPGF3/w7d+5Ehw4d8PDDD6NatWq49957MXTo0Ov2VimNwRMiIiIiIiIiChmr1YrCwkKfl9VqLZPPZrPhwIED6NatmzdNKBSiW7du2LVrl999t2/fHgcOHPAGSy5cuIBffvkF9913302VkcETIiIiIiIiIgqZWbNmQafT+bxmzZpVJl9ubi6cTidiY2N90mNjY5GZmel33w8//DBef/113H333ZBIJKhZsyY6d+7MYTtERERERERE9O8xefJkGAwGn9fkyZNvy763bduGN998E/Pnz8fBgwexevVq/Pzzz5gxY8ZN7Ud8W0pDRERERERERHQLZDIZZDLZdfNFRUVBJBIhKyvLJz0rKwtxcXF+t3nllVcwbNgwjBkzBgDQuHFjGI1GPP7445g6dSqEwhvrU8KeJ0RERERERET0jyeVStGiRQts3rzZm+ZyubB582a0a9fO7zYmk6lMgEQkEgEA3G73DX82e54QERERERER/YcIhIJQF6HCTJo0CSNGjEDLli3RunVrzJkzB0ajEaNGjQIADB8+HImJid45U/r27YvZs2fjrrvuQps2bXDu3Dm88sor6Nu3rzeIciMYPCEiIiIiIiKif4UhQ4YgJycH06ZNQ2ZmJpo1a4b169d7J5G9ePGiT0+Tl19+GQKBAC+//DIyMjIQHR2Nvn37YubMmTf1uQyeEBEREREREdG/xjPPPINnnnnG73vbtm3z+VssFmP69OmYPn363/pMznlCRERERERERBQAgydERERERERERAEweEJEREREREREFACDJ0REREREREREATB4QkREREREREQUAIMnREREREREREQBMHhCRERERERERBQAgydERERERERERAGIb2WjkSNHYsmSJZ4diMWIiIhAkyZNMHToUIwcORJCYUlMZufOnXjjjTewa9cumM1m1K5dG6NGjcKECRMgEol89rt161a8//772LNnD4qKipCYmIiWLVvi6aefxj333AMA2LZtG7p06eK3XJcvX0ZcXJzf9zp37oxmzZphzpw5PumLFy/GxIkTodfrAQAmkwkzZszAypUrkZGRAY1GgwYNGmDSpEno37+/d1/bt28HAEilUkRFRaF58+YYNWoUHnjggZv7Z94GYT36IrLfYIjCImBNvYCsLz6G5dzpcvOH33c/wnr0gSQqBs7CQhTt/h05yxbBbbff8j6DIarv/YgZPBTiiAiYL5xHxsdzYDp9stz80fcPRmSfAZDGxMJRqIf+9+24vGgB3HYbACBu2CjEDXvMZxtLWipOjX60QutxPap7ekDTtR9E2jDYM1JR8N0XsKee85s3esKrkNVuWCbdfOwg8j6dBQCQN20N9d33QlKlBkQqDbJm/Q/2jJSKrMIN0STdB13P+yHShcOWloy8bxbClnzWb964F2ZCUa9xmXTT4X3ImjsDABD12ARo7u7q+/7Rg8j64NXbXvYbpe7UE9p7B0CkDYMtPQUFKz6HLcX/sYyZ9DrkdRqVSTcfPYCcj2cCQhHC+j8MeaPmEEfFwmU2wXrqCPQ/fAWnoaCiq1KuiLtbosb/jYaueSPIE2Kwf+BTyFq3OfA297RGg/degrpBbVjSLuPcrE+QvvQHnzxVxz2MGpNGQxYXjcIjp3B84gwY9h2tyKpcl657H4T3Huj5zl5MRvaST2C9cMZv3sSpb0HZoEmZdONfe3HpvVcBALW/+cXvtjnLFkH/86rbVu6bdbvb2mvFDHkECaOfRM7qlcj49KOKrEZA0rvugbxNVwhUWjizM2De9B2cl1P9523UBsrew3zS3A47DO8/V5IgkULRqT8kdZpAIFfBZciD9cB22A79UZHVuK475XwSdm9fRPQd5L1myf5yPizn/V+zVJ72DpQNm5ZJLz64BxlvTwMACGRyRD88GupW7SDSaGHPzkTBr2th2PRzhdbjelYcPIsle04iz2hBnZgwvNitBRolRF53u/UnUjH5x13oXDsRHzzQ0Ztustnx4fYj2HomHQaLDQk6FYa2qIPBd9WqyGoEFNX/AcQ+OBSSiAiYz59H2kcfBG5/HhiM6H73e9ofgx4FO7bh0ue+7Y8kKgqJY8dB27othDI5rBnpSH33TZjOhO66Vt4mCcq7e0Go1sGReRHFP30DR0ZyufkFcgVU3QZC2rAFhAoVnPo8GH9ZDtuZI579te4CResuEIZFAQCc2RkwbV0H29nQnjfDe/VH5IAHIQ6LgDXlPC5//hEsZ8v/v0f0eQDhPft57lGKDCjcuQPZX3/uvUdRNmiMyAFDIK9ZG5KIKKTNmoaivX8GqzpEtxY8AYCePXviyy+/hNPpRFZWFtavX48JEybg+++/x7p16yAWi/HDDz/gwQcfxKhRo7B161aEhYVh06ZNeOGFF7Br1y6sXLkSAoEAADB//nw888wzGDZsGFasWIGaNWvCYDBg69ateO6553DgwAGfzz99+jS0Wq1PWkxMzK1Wx+vJJ5/Enj178NFHH6FBgwbIy8vDzp07kZeX55Nv7NixeP311+FwOJCeno4ffvgBDz30EEaOHImFCxf+7XLcKE37TogZ8QSyFn4I87lTiOj9ACpPfRMXJoyGs1BfJr/27i6IfmQ0Mj95H+bTJyCJr4T4p58H4Eb2kgW3tM9gCOuUhIQnnkH6h+/DeOoEoh8YjBpvvo9Tox+GQ1+2TGFduiF+9BO4+P5bMJ04Blmlyqjy/BTA7calBfO8+cwpF3D+xZILYLfTGYzqlEvRvD3C7h+BghULYUs5B3WX3oh+eioyX58AV3Fhmfy5n70HgajkZyxUqRE7+T2Y/9pVkiaVw3r+FEwHdyLikXFBqcf1qFrdjcgho5H71XxYL5yBtns/xE16DelTxsFVZCiTP/vjWb71VGuQ+NqHMO73PWGajh5A7qK53r/dDjtCRdmiA8IHjUL+sgWwppyBNqkPYsZPw6VXx/utY+6n7wDikjqKVBrEvTwbpoM7AQACqQySKjVQ+Mt3sKWnQKhUI/zBxxD11GRkzXohaPUqTaRSovDIaaQtXoWW33983fyKapXQat0CXFz4LQ4Nfx6RSe3QeMEbsFzOQe5Gz41m/OBeqP/uZBx7ejr0ew+j+rMj0ObnRdjWsCdsOfkVXSW/1G3vQdQjY5HzxTxYzp9CWM8BSHxpBlKffxzOwrLH8/KcNyAQS7x/i9QaVJn1MYr2ltxMX3jqEZ9tVE1bImbsBBSH8EKwotpaAFDUqYfI3v1gPu//5j1YJPWaQ5F0P8y/rYDjUgpkLbtA9eDTKPrsdbhNxX63cVvNKPzs9WsSfN9XJA2EuGodmH5cCpchD+Lq9aG490G4ig1wnAvNzcudcj7RtOuE6OGPI+vzj2A5ewrh992PSlNmIvm50X5/mxnvz4Dg2rZWo0W1dz5B0e7fvWkxw5+AslEzXJ73Duw5WVA1aY7Y0ePhKMiD8cDuoNSrtA0nL+L9LX9h6r0t0SghEsv2n8ZTK7dhzdjeiFDJy93ukqEYH2w9hLsqRZd57/0tf2FfajZm9m2LBJ0Ku5IzMeu3A4hWK9C5dmJFVsev8M5JqPTkM7g45z2YTp1AzAMPotbbs3Fi5FC/7U94Unckjn0Sqe++BePxo5BVqoyqL0wF4EbGJ572R6TWoM7cT1B86CDOvfQ8HAY9ZImV4CgqCm7lriFr1BrqXg+haN1SONIuQNG+O3Qj/w/5cybDbfRTLpEIupH/g8tYiMLlH8NVWABRWBRcFpM3i8uQD+Nv38OZl+X5jLs6QPvIsyiYPx3O7EvBqpoPbYfOiB31JC5/OgfmM6cQ2fcBVJ32Ns49MxJOg75s/o5JiBk2FpfmvQvzqeOQJlRCwrOe65usLz8BAAjlClhSzkO/+VdUfun1Mvsgqmi3HDyRyWTeXh6JiYlo3rw52rZti65du2Lx4sUYOnQoxo4di379+vkEE8aMGYPY2Fj069cPK1euxJAhQ3Dx4kVMnDgREydOxOzZs30+p0mTJnj22WfLfH5MTAzCwsJutfjlWrduHebOnYv77rsPAFCtWjW0aNGiTD6lUumtf6VKldC2bVvUq1cPjz32GB588EF069bttpfNn4g+A2HY/CsM234DAGQunAtV89bQJfVA/poVZfIr6jaA+fRxFP6xFQBgz8lC0Z9bIa9d75b3GQzRA4cg79cfkf+b50lt+tz3oG3dDhE9eiN7xTdl8qsaNILx+DHot24CANiyMlGwdROU9Rr4ZnQ64SgIzc2YP5qkPjDu3AzT7m0AAP23C6Fo2Byqdkko2rimTH63qdjnGl7Zoj3cNqvPxa5p3w4AgCii7IVTqGh79EfRjt9Q/Ienh0Le0vlQNmkJTcduMPxS9om7y+h7Q6Nqcw/cNiuM+3xvMt12e8gCfKVpuvVF8Z8bYdy1BQCQv2wB5I1bQN0+CYUbfiiT31Xqpk3V8m64bVaYDniCJ26LCTlzX/PJU/Dt54ib/A5E4VFwFuRWUE0Cy9mwAzkbdtxw/qqPPwRzcjpOvvA2AKD41AVEtG+B6hNGeoMn1SeOQtqilUhfshoAcPSp6Yjp1RmVRw7E+Xc/u/2VuAHhve5H4db1KNyxEQCQ/cU8qJq1grbTvSj48bsy+Ut/ZzXt7oHLZkXxnpIbtNI9hlQt2sJ84ggcOZkVUIMbU1FtrVCuQNWXpiHtg3cQ9/CIiq9IALJWSbAd3gnbUc9NsHnDt5DUbAhp43aw7tnofyO32/9NzRXixOqwHdsDR5qn95zt8J+QNusAcXzVkAVP7pTzSXjvB2DYvB6FV65Zsj7/0HPN0qUH8teuLJPfVeo4ajt0hstqQdHuknZMUbcBCrdvhPmE56m+YfOvCOvWG4padUMWPPl63yk80LQm+jepAQCY2qMVfj9/GWuOXsBjbRv43cbpcmHKj7vx5N2N8Fd6Doqsvg8UDmfkoU+jamhZJRYAMLBZLaw6dB7HL+eFJHgSM+gh5P7yI/I3eNqfi3PehbZtO0T27IOsb78uk1/VsBGKjx1FwRbP7/Zq+6O6pv2JfegR2HOykfruLG+aLfNyBdckMEWHe2HZvwPWg55zXvG6pZDWbQp5i44w7yjbI1HevCOEShX0C2cCLs9DPpfe96Gu7fRhn79Nm1ZD0boLJJVrhix4EtlvEPQbf4FhywYAwOVP50Ddoi3CuvZE3upvy+RX1msI86ljKPzdc91kz8lC4e9boahTco9SfHAvig/uDU4FiPy4rXOeJCUloWnTpli9ejV+++035OXl4fnnny+Tr2/fvqhTpw6WL18OAFi1ahXsdjteeMH/09OrvVOCIS4uDr/88guKbiEiPWLECISHh2P16tUVUDI/xGLIa9SG8chfJWluN0xH/oKiTn2/m5hPn4C8Rm3Ia9UFAEhi4qC6qzWMVxuiW9hnRROIxVDWroPiv67pfeR2o/iv/VDVL9vFGACMJ45BWbsOlHU9ZZbGxUPbui0K9/pe9EgTK6Hh8h9Qf8kKVHnpFUii/37vpVsmEkNSuQYsp4+UpLndsJw+Amn1Oje0C1X7rjAd3Am3zVpBhbwNRGLIqtaC+cShkjS3G+YThyGrWa/cza6l6dgNxXt/L1NPeb1GqDJnKRLfnI/IYeMgVGluY8FvgkgMaZWasJwsdSxPHoG0Rt0b2oWqQ1eY9v8R8FgKFEq4XS64zMa/W+KgCWvbDLlbdvmk5Wz8A+FtmwEABBIJdM0bInfzzpIMbjdyt+xEWNu7gljSa4jEkFWvBdOxQz5lMh075BN4DkTbuQeKd22H2+r/eIq0YVA1a4XC7b/dhgLfmopsayuNfw6Fe3f57jsUhCKI4irDkXptt3E3HCmnIU6sXv52Uhm0T74O7bgZUD3wOIRRvkOEHRnJkNRqDIFaBwAQV6kNUXgM7MnlDzeoUHfQ+UReozZMRw+WpLndMB39C/La/gMKpem69EDRTt/fpvn0CahatoU43DMkRtGwKaTxiTAeCc331+504mRmAdpUjfWmCQUCtKkWiyMZeeVut/DP44hQynB/05p+32+aGInt5y4hu8gEt9uNfalZSC0oQtvq/ofAVySBWAxlnTooOri/JNHtRtHB/VA1KKf9OX4Myjp1S9qf+AToWreFYW/JOUbXvgOMp0+h+rQZaPz9j6j36ReIvK9vhdYlIJEI4oRqsJ0/XpLmdsN+/gQklf0Pl5LWuwv2i+eh7vsoIl+ag/DxM6Ds1Bso7/5IIICscWsIpDLYL56vgErcALEY8pp1YDzs+9s0HjkIZV3/v03TqeOQ16wDee0r9yix8VC3aI3iAwyW3CqBUPCvev0b3HLPk/LUq1cPR44cwZkznnHg9ev7v+GuV6+eN8+ZM2eg1Wp95itZtWoVRowoeTq1a9cuNG5cMudBpUqVfPZXtWpVHD9+HH/XwoUL8cgjjyAyMhJNmzbF3XffjUGDBqFDhw7X3VYoFKJOnTpISUkpN4/VaoW11MWzzemCVHTzcSyxRguBSARHqaeXDkMBlImV/W5T+MdWiDQ6VJ0xG4AAArEYBb/9iLwfvr3lfVY0kVYHgUgMe6keIvaCAsgqV/W7jX7rJoh1OtSa/TEEAk89c39cg+xvv/LmMZ46AfO7b8KangZJRCTiHh2J2rM/xqnHh8NlNldonfwRqjUQiERlhnS4Cg2QxF7/CZCkai1IEqog/5tPKqqIt4XoynesdA8RZ6Eekvjr11NavTaklaoh50vf+RLMxw7CdHAX7DlZkMTEIXzgMMQ9Nx2XZr4AuF23swrXJbpyLEvX0VWkhyTuBupYrRakiVWR/1WAYTBiCcLvH+YJsFiC/329VbLYKFizfHvJWLNyIdFpIJTLIAnXQSgWw5qdVypPHlR1awSzqF7e72zpdrFQD2XC9dtFWY06kFWuhqyFc8rNo72nG1wWM4r3hW7ITkW1tWGdu0JRqw7OPPN4hZb/RgiUagiEojK9D1ymQogjY/1u48zPhumXb+DKyQBkCshbd4Xm0f9D4aKZcBfpAQDmTd9B2WModE/P9Az/dLtgWr8czvTQ3LjcMecT7dVrFr1PutNQAOkN/DblNetCVqU6Mj/9wCc9+8v5iH18Amp+ugxuhwNutwtZC+fCfPLY7Sz+DSsw2eB0u8sMz4lUypGSV3YIFgD8lZ6DNUcu4NtRPcvd74vdWmDGhn3oMX8dxEIBBAIBXunZCi0qB/9BkljnaX9K9wZ2FORDXk77U7BlI8Q6HerMne9tf3LW/YCsZSXtjyw+AdH9BiD7+xXIXLYUyrr1UfmZiXA77Mj/bX2F1skfofLKb7PU0DlXsQGSKP9BK1FENERh9WE5sguGpR9AFBELdb9hgFAM09a1JfliKyH88amAWAK3zYrCZfPgzAlNrxOxRuf/fkJfAFl59yi/b4FYq0P1mXOBK8czf/065K5aFowiE92Q2x48cbvdPj1F3G53gNwlSvcu6dGjBw4dOoSMjAx07twZzlJzUfz+++/QaEqeKkskEm96r169vOkLFizAI4/4jisP5J577sGFCxewe/du7Ny5E5s3b8bcuXPx2muv4ZVXXrnu9qXrX9qsWbPw2mu+Xe+frl8DzzT0/1TgdlM2aILIBx5C5mcfwXLuFCRxiYgdNQ6OgfnIW1W2S/a/lbpJM8Q+NAzpH82G6dQJyBITkThuAmLzRyDrG89kx0X79njzW5LPw3TqBBp8/R3COiUhf31oJ4W7Fap2SbBlpJY7GeB/haZjd9jSUspMLmvcWzIcwp6RClt6Ciq//Rnk9Rr59gD5F1C17wZbekq5k8tCKELU2OcBgQD5yxYEt3B003Sd74X1YnK5k8sCgLZTdxT9udVn4u5/g+u1tZLoGCSOexbnX5rkdwLZfwPnpWQ4L5VM5GjMuADNmFcga9YBlt895wpZi04QJVRD8fefwlWYD3HlWlB2fxDGYkOpXi7/DnfK+USX1APW1AtlJpcN69kfitr1kP72NDhys6Go3xixjz0NR0EeTEf/Kmdv/xxGqx0v/7Qbr/RshXClrNx83x44i6OX8jBnYEfEa1U4mJaNtzZ65jxpWy34vU9ulrrpXYh7eBjSPnwfxpMnIEuohMpPT4D90Vxkfu251oNACNOZU7i0yDOFgPncWSiqVUdU3wEhCZ7cEoEALmMhitcsBtxuOC6lQqgNg6JjL5/giTP3MvI/ng6hXAFZw1bQDBwD/edvhSyAcrOUDZsiauDDuLzwQ5jPnIQ0PgFxo5+GY/CjyP2u7LAtolC47cGTkydPonr16qhTp4737/bt2/vN16CBp9tW7dq1YTAYkJmZ6e19olarUatWLYjF/otYvXp1v3OetGzZEocOHfL+HRvreZKk1WphMJSdOEyv10On0/mkSSQSdOzYER07dsSLL76IN954A6+//jpefPFFSKXScuvudDpx9uxZtGrVqtw8kydPxqRJk3zSUkbe2go9jqJCuJ1OiHXhPuliXTgcev/zeEQ9NAKGHZth2OI5YVgvpkAokyPuiQnIW73slvZZ0ZyFBridDkjCI3zSJeHhcOT7764aN2IMCjb/hvz1PwEALCkXIJQrUHnC/5C1bCngJ6jnNBbDmp4GWUKlMu8Fg6u4CG6nE0KN7/dRqNVddx4PgVQGZYsOKPw5NHPS3Aznle+YSBvmky7ShvmdQOxaAqkM6tYdUbDm+k8hHDlZcBYZIImJD3rwxHnlWJauo1ATdkPHUtWqAww/lh0P7NmJCFGPPw9xZDSyP5j2r+p1Anh6mchio3zSZLFRsBuK4LJYYcstgMvhgCwmslSeSFgzQzOvi/c7W7pd1IbBYQjcLgpkMqjbdUL+9+Vf+MnrNoQ0oTIuf/TWbSnvraqItlZZuy4k4RGoO/9z7zYCkRiqxk0R1f8BHO7dFXAFr2eY21QMt8sJoUqDax/JCJVauI3+n+CX4XLBmZUGYdiVeT/EEsjv6Qvj6s/guODpAWvLuQRRTCXIWncNSfDkjjmfFF69ZgnzSRfpwuHQB16FTCCTQdO+M3JXLvVNl0gRPXQkMt57Hca/PMMFrBeTIatWAxF9BoUkeBKulEIkECDfaPFJzzNZEKlSlMmfri/GJYMRE1eVPFRwXbnuafnOCvww9j5EqxX4aMcRzH7gbnSsmQAAqBMThtPZeny191TQgycOg6f9EZdqf8ThEbCX0/4kjBqD/I0bkPfLlfYn+QJECjmqPPcCMr/xXOvZ8/NgSU3x2c5yMRVh93SuiGpcl8t05bep9l30QqjW+Z3IGfD0WoXL6XPt6sy5DJEmDBCJgKsPmJ1OuPKz4QLguJQKcaVqULTvjuK1SyqmMgE4igz+7yfCyr+fiHl4FPTbN0K/yTPvi/ViMoRyBeLHPYfc77/xe+1OFGy3dc6TLVu24OjRoxg4cCDuvfdeRERE4P333y+Tb926dTh79iyGDh0KABg0aBAkEgnefvvtv10GhUKBWrVqeV9Xe6fUrVsXBw8eLJP/4MGD3kBPeRo0aACHwwGLxRIw35IlS1BQUICBAweWm0cmk0Gr1fq8bmXIDgDA4YDlwlmoGjcrSRMIoGzcDOYz/sdZC2XyMheq7iuTT0EguKV9VjS3wwHT2TNQN7tm4l6BAOpmLWA86X+ollAuh7t0PZ3X1NPvNgpI4xNhzw/NDRqcDtjTLkBe95oleQUCyOo0hi25/CfWAKC4qx0EYrF3Mr9/NKcD1tRzkNe/ZqlIgQCK+k1gPX8q4KaqVh0AiQTFu7Zd92NE4ZGeG6RQLOPrdMB28Tzk9a5ZqlYggLxeE9guBL6RUrZoD4FYAuOe7WXfvBo4iY5H9pxXy0xK+m+g330IkUltfdKiurZHwe5DADyT/hoOHkdUUruSDAIBIru0g353iJ74Oh2wJp/zXd5UIICiUTNYzgb+zqrbdIRALEHhn1vKzaPrfC8sF87CdrH8ZSqDoSLa2qK/9uPU48Nxetxj3pfp9EkUbNmI0+MeC2rgBADgcsKZmQZx1WvnHhJAXK1OwGVCfQgEEEUnwHU12CIUXVmlptSFvdtV/pwEFe0OOp9YLpyFsvE18yEJBFA2agbL2RMBN9W0vcfz2/zdd2l1gVjsWSmr9HBPV+iOp0QkQv24cOxJzSopjtuNvSlZaJJYdqniapFafPdYT3w7qof31al2IlpVjcG3o3ogTquEw+WGw+VC6RqJBAJvoCWY3A4HTGfOQHOXb/ujuasFjCfKaX9k8jI93N1Ol3dbADAeOwp55So+eWSVKsOWFaKJuZ1OOC6lQFrjmnk/BAJIatSHPc1/Ty/HxXMQRcT6fP9EUXFwFhaUBE78EQh9VtAKKocDlvNnoGri+9tUNb4LptP+f5sCmQxwlT6ega/diYLtln9RVqsVmZmZPksVz5o1C3369MHw4cMhEomwYMECPPTQQ3j88cfxzDPPQKvVYvPmzfjf//6HQYMG4cEHHwQAVKlSBe+//z4mTJiA/Px8jBw5EtWrV0d+fj6+/trztE4kEvl8fnZ2dplgRmRkpHf4Tmnjxo3DvHnz8Oyzz2LMmDGQyWT4+eefsXz5cvz444/efJ07d8bQoUPRsmVLREZG4sSJE5gyZQq6dOniszSyyWRCZmamz1LFH3zwAcaNG4cuXbrc6r/1puX/tArxT/8P5vNnYTl3CuG9H4BQJodhq2dm6/hn/gdHfh5yln0BACjevxvhfR6AJfn8lWE7CYh+aASKD+z2XsReb5+hkLNqBar8bwpMZ0/BdOokoh8YDKFc4Z2Rvcr/psKel4vLX3iGMBTu/hPRDwyB+fxZmE6dgDQhEfEjxsCw+09vPRPGPgXD7p2wZ2dCHBmF+OGeC/mCrZvLLUdFK9ryEyKGPQ3bxfPepSWFMhmMuz2rI4UPewZOQz4K1/n2vFC1S4L5yD6/N9MCpRri8CjvU3NxrOcJk7NQ73maEQKFG9YiasxE2FLOwZrsWapYIJOj6MrqO1FjJsJZkI+CVb5PBDUdu8N0cHeZ+QoEMjnC+j0E04FdcBoKII6JQ8TgkXBkX4bpWNmgaTAUbfoRkSPHw5Z6DtaUs9Ak9YVQKkPxTs9NdOTIZ+HQ58Gwxne4nKp9V5gO7S17LIUiRD3xP0gr10DOx28CQiGEV3q2uIzFgNMRjGqVIVIpoapVcmGqrF4J2qb1YMs3wJJ2GXXfmAR5YiwOj3oRAJC68FtUfeoR1Jv1P6QtXoWoLm0RP7gX9vV7wruP5DlfoukXb0N/4BgM+46g2rMjIFYpkLYkSJNx+1Hw6w+IfWISLMlnYTl/BuE9+0Mok6Fwu2eVh9gn/w+OgjzkrVjss52u070wHtgFV7H/SciFCgXUrTsid9nnft8Pttvd1rrMZlhSfIMSLosFzkJDmfRgse7bAmXvYXBkXoTzsmepYkhk3tV3lL2HwVVkgGXHOgCArH1POC+lwFWQA4FcAVnrbhBqI2A7fGVSY5sFjotnoeg8AGa73TtsR9qwNcxbQvedvVPOJwU/r0bcU8/Dcv4MLOdPI/y++z3XLFdW34l7+n9w5Ocid/mXPtvpuvRE8f6dZX6bLrMJpuOHEf3oWLhsNjhysqBo0ATae7ohZ+lChMqjreph2s+70SAuAo3iI7Bs/xmY7Q70b+yZC+rln3YjRqPAs52aQiYWoVZ0mM/2Gpnn+vhqukQkQovK0Ziz7TDkEhHitSocSMvGT8dTMCmpWRBrViL7+29R9cWpMJ250v4MfBBCuQJ5GzzD46q++DLsuTm4tMjT/hh2/YmYQUNgPnfGM2wnMRHxo8bAsKvkWi971QrU/fBTxD48DPptW6Cs1wBRvfvh4gfvhKSOAGD+8zdoBo6B/VIKHOkXoGh/LwRSGSwHPKvvaAaOgatQD+PG7z35926FvE1XqO97GObdmyCKjIWyU2+Yd23y7lPVfRBsZ4/Aqc+DQKaAvElbSKrVhWFJ2YfYwZK37nskPPsizOfPwHz2FCL7DIRQLod+s+d+IuHZF+HIz0X214sAAMX7diGi3yBYks9dGbaTiJiHR6Fo3y7v8RTI5ZBeM3ecJDYOsmo14SwugiM3O/iVpDvOLQdP1q9fj/j4eIjFYoSHh6Np06b48MMPMWLECAiFnp4UgwYNwtatWzFz5kx07NgRFosFtWvXxtSpUzFx4kSfuUHGjx+P+vXrY/bs2Rg0aBAKCwsRGRmJdu3aYf369T6TxQKeniSl7dq1C23bti2TDgA1atTAjh07MHXqVHTr1g02mw316tXDd999h549SybT6tGjB5YsWYIpU6bAZDIhISEBffr0wbRp03z299lnn+Gzzz6DVCpFZGQkWrRogRUrVuD++++/1X/pLSnauR0irQ7RQ4ZDFBYOa8oFpM2c6h3+IImK8enmlrvqG7jdbkQPHQFxRBSchQYU79+NnGsuKq63z1DQb98CsS4M8cNHQxweAfOFc7gw9Xlvt1xpTKxPPTO/WQq32434EWMgiYqGw6CHYfefyPyyZJlTSXQMqk2ZDpFGC4dBD+Pxozgz4YmQ1tN8cCf0ai20vYdApAmDPSMFuR/P9E76J46IKtNtURyTAFmt+siZN8PvPhWNWyJi2NPevyMfew4AUPjLShT+UnaJ1WAw7vsDQo0O4QMehkgXDmvaBWR98CpcV7qTiyOiyzx9kMQlQl6nIS6/N63sDl0uSCtXg6ZDEoRKFRz6fJiPH0LBD98AjtAEFUwH/oRQo4Wu71CItGGwpScj+6MZ3mMpioiCu9STTXFsAuS1GyC71JLEACAKj4CyaWsAQPwrvku6Z81+BdYzf3/C7Fuha9EI7TaXTM7X4L0pAIC0patxZPRkyOKjoagc733fnJKOff2eQIP3J6Pa+OGwpGfi6BMve5cpBoDL3/0KaXQE6kx/FrK4aBQePom9fcbAlu2/63YwFO/eAZFGi8hBwyDShcOWegEZb0/zDoEQR0aXeVItiU+Eol4jZMyaWu5+1W07AQKgaOe2Ciz9jauItvafxn7qIMxKNRR394ZApYEzOwPGlR/DbfLcRAu1ET51FMiVUPZ8GAKVBm6LGc6siyj+ejZceSVPro3rvoC8U38o+46AQK6EqzAflt9/gu3QH2U+P1julPNJ0S7PNUvUgyXXLOmzrrkOiowu08NJEl8JyvqNkPbGZL/7vDR3FqIffgzx41+ESK2BPScbud8uhn7jTxVdnXL1qF8FBSYLPvnjKPKMFtSNCcPHD3ZG5JVJZDMLjbjZxSre6tceH20/gik/7kahxYZ4rRJPd2yMwc38r/pS0Qq2XWl/Ro6BJDwC5vPncO6l/4Oj4Nr2p+RYXv56iaf9GTUW0qhoOPSe9ufq/CYAYDp9CuenT0Hi6CcQP2wkbJcvI33+hyjYXM6y5EFgPbYXApUGqq4DIFTr4Lh8EYYls71DB4VhkT6/TZchH4Yl70N931CEPzMDrqICmHdthOmaZY0Fag00A8dCqNHBbTHDkZUGw5L3YT8fuAdWRSr8c5vnfuKhkRCHh8OafB4XX3/J2yNYEu17j5Lz3ddwu92IeXjUlXsUPYr27/YGVwBAUbMuqr1Rcg0U99hTAAD9lg249FHoAmJ05xC4b3RGV6owpwbfG+oiBIXF8O+am+FWRNX550+wdjvYTf/gpStvI5E0RN1dg+zootAEXoKpzoPBmZQ71Iw5/nu4/NdU69r0+pn+A4rTsq6f6T/AmHOD8838i1Xu4f/h3n/NqW9C13s3mCq3qx3qIgRFzvGLoS5ChWvww3/3O3t6SI9QF+Gm1F0RulEON+q2znlCRERERERERPRfw+AJEREREREREVEADJ4QEREREREREQVwZwzoJyIiIiIiIrpDCG52Fmm6LvY8ISIiIiIiIiIKgMETIiIiIiIiIqIAGDwhIiIiIiIiIgqAwRMiIiIiIiIiogAYPCEiIiIiIiIiCoDBEyIiIiIiIiKiABg8ISIiIiIiIiIKgMETIiIiIiIiIqIAGDwhIiIiIiIiIgqAwRMiIiIiIiIiogAYPCEiIiIiIiIiCoDBEyIiIiIiIiKiAMShLgARERERERER3T4CIftJ3G78jxIRERERERERBcDgCRERERERERFRAAyeEBEREREREREFwOAJEREREREREVEADJ4QEREREREREQXA4AkRERERERERUQBcqvgfQCi+M2JY2gRdqItQ4WRh6lAXISjsJmuoixAUTpsj1EUIijoP1gx1ESrcmZXnQ12EoGgytlGoixAUYp0m1EUIijvjjAIoYsJDXYQKJ1SpQl2EoNDEaUNdhKBwWu2hLkJQKMLvjO8t0Y26M+7aiYiIiIiIiIhuEczwsw4AAQAASURBVIMnREREREREREQBMHhCRERERERERBQA5zwhIiIiIiIi+g8RigShLsJ/DnueEBEREREREREFwOAJEREREREREVEADJ4QEREREREREQXA4AkRERERERERUQAMnhARERERERERBcDgCRERERERERFRAAyeEBEREREREREFwOAJEREREREREVEADJ4QEREREREREQXA4AkRERERERERUQAMnhARERERERERBcDgCRERERERERFRAAyeEBEREREREREFIA51AYiIiIiIiIjo9hEIBaEuwn8Oe54QEREREREREQXA4AkRERERERERUQAMnhARERERERERBcDgCRERERERERFRAAyeEBEREREREREFENTVdnJycjBt2jT8/PPPyMrKQnh4OJo2bYpp06ahQ4cOAICdO3fijTfewK5du2A2m1G7dm2MGjUKEyZMgEgk8u5LIBDghx9+wIABA27oszt37oxmzZphzpw5PumLFy/GxIkTodfrAQAmkwkzZszAypUrkZGRAY1GgwYNGmDSpEno37+/d1/bt28HAEilUkRFRaF58+YYNWoUHnjggb/3T7oFuu59EdF3EES6cFgvXkDO4vmwnD/jN2+lV96BskGTMunFf+3FpXemAQDqLF/vd9ucbz5HwU/f376C3yRt197Q9XoAIl04bBeTkff1AliT/dcz/qVZUNRrXCbddHgfMj94DQAQPWYiNHd3833/6AFkvj/99hf+JsjbJEF5dy8I1To4Mi+i+Kdv4MhILje/QK6AqttASBu2gFChglOfB+Mvy2E7c6RMXsU990F972CYdv4G4y/LK7Ia16VJug+6nvd7jmdaMvK+WQhb8lm/eeNemFnu8cyaOwMAEPXYBGju7ur7/tGDyPrg1dte9ht1u+t4rchh46Dt0gt5yz9H4cZ1t73sN0PXvQ/Cew/0/jazl3wC6wX/v83EqW/5bYOMf+3FpfdeBQDU/uYXv9vmLFsE/c+rblu5b0bE3S1R4/9GQ9e8EeQJMdg/8ClkrdsceJt7WqPBey9B3aA2LGmXcW7WJ0hf+oNPnqrjHkaNSaMhi4tG4ZFTOD5xBgz7jlZkVa5LfU9PaLr3h0gbBlt6CvQrF8GWes5v3uiJr0Fep1GZdPOxA8id/yYAQNGsDdQd74Wkck2I1Bpkvvl/sKenVGQVrmvlofNYeuAs8owW1I7W4YUuTdEoLsJv3nXHU/Habwd80qQiIXY9O8D795azGfj+SDJOZethsNiw7JEk1I0Jq8Aa3BjpXfdA3qYrBCotnNkZMG/6Ds7Lqf7zNmoDZe9hPmluhx2G958rSZBIoejUH5I6TSCQq+Ay5MF6YDtsh/6oyGpcl6xlZyja3+s5b2alw/TrcjgupZSbXyBTQJk0ANJ6zSFQKOEy5MO4YQXs544BAMRVakPR/l6I46tCqAlD4Yr5sJ8+FJzKBPDtnhNY8udR5BabUSc2Ai/1bofGlaKvu92vR8/jpe+2oUu9KpjzcHcAgN3pwrzN+/HHmXSkFxRBI5eiTY0ETOjeEjFaVUVXJaA74ZyibN8Nqk69IdToYL98EUVrlsKedqHc/AK5EupegyFv1ApCpQrOglwUrvsatlOHAQDRkz+AKKLsd8G4cyOKflhSYfW4njvhWo/uLEENngwcOBA2mw1LlixBjRo1kJWVhc2bNyMvLw8A8MMPP+DBBx/EqFGjsHXrVoSFhWHTpk144YUXsGvXLqxcuRICQcUuufTkk09iz549+Oijj9CgQQPk5eVh586d3jJeNXbs2P9n7z7DoyraBo7/z+5m+6ZXeu9NepFeBFEsWMAG2HvvPq9YHx97L4CAYBdFxA5KkyZNei8JCZCQhCSbbG/vh8UNm2xCkWRV7t917YedzDk7d87ZObNz5szw1FNP4fV6ycnJ4euvv2bMmDGMHz+eyZMn12gZj2Xu2Y+Uq2/g8NQ3ce7eQfyIC6n78LNk3nc9PmtJpfwHX3kKRRMTeq+2xNLwf+9QtvK3UNqem8eGbWPq1JW0G++hbFX0Gkem7n1JGnM9+TPexrV3B3HDLiD9/qfIfvgm/KWV48x781kUTfnprTLFUu/pNylbHR6DfeMa8qe+Fnof8HhqLIYToWvXHfOIMZTOnYk3ey+G3kOJG38fR157hICttPIGajVx4x/Ab7Ni/fRt/NYi1PHJ+J32Slk1dRtj6DYA76H9tRBJ9Uzdzibp8uso+PAdXHt3Ejt0FOn3PknOo7dEPJ6H334ORX3M8TRbqPvkG9jWLAvLZ9+0loKpr4feB7zRO541FSOAsXNPdE1b4i0qrPS32mbu2Y/kK28gf9pbOPdsJ374hdR9+Gmy7r8xYh106LVnwusgs4UGz71N6TH1y95brwzbxtSxK6k33EXZqsr/i9qiNhmxbtxB9gdf0fXLt4+b39CoHt3mTmL/5M9Yf839JA3qRftJz+A8lE/B/GCsGZeOoPWLj7D5tokUr9pA4zvH0eP7qSxqOxx3/pGaDilyubv0Jn70eIo+nYQrcxeWQeeRcsf/ceiJO/CXWSvlL5z8IoTVtRbSH30Z+7oVoTRFq8e1ezv2tctJvOrWWomjOvN25PDKkk08OrgT7dIT+WTdbm6fvYzZ44eSaNRH3Mak1TB7/LDQ+4otEYfHR6e6SQxtUZdnfvmjBkt/4mJadcYw6CIc8z7HezATXdeBmC67jdIpTxGwl0XcJuByYJ3y1DEJ4X83DBqNpmEL7N/OxF9SiKZxawzDLsNfVoJ3d3Q6/bRtumIadim274M3GvQ9BmO58i6K336cgD3CdVOlJvaqe/DbSyn98j381mJU8UkEjrluKlod3rwcXH8sw3J59M9ZgJ827eWln37nP+f3oX29FD5esYVbZv7EN3deQpLZUOV2B4pKeeXnVXRumBaW7vR42X6wkBsHdKJleiJWh5vnf1jJXZ/8wqc3X1DT4VTpTLim6Dv2wHL+lVi/mo57/25MfYeTcP1DFLwQbM9VolaTeOPD+MqsFH/4Ov6SIlQJyQQc5edswRuPo6jKHyjQpNcj8cZHcG1YVRshRXQmtPXEmafWOk+Ki4v57bffWLRoEf379wegYcOGdO/eHQCbzcYNN9zAqFGjwjofrr/+etLS0hg1ahRffPEFl19+eY2Wc+7cubz++uuce+65ADRq1IguXbpUymc0GklPTwegXr169OzZk1atWnHttddy2WWXMWTIkErb1ISEkRdjXfAT1sXzATg89U3MZ3UndsA5FM39olJ+vy28wWTp3R+/y0np70tCab6SorA85i69cGzdgOdwbg1EcGLizrkQ6+KfKVv6CwAFM97G2LEbln5DKfm+8miYinGaevQj4HZhq9ABFPB68JUU11i5T5ahzzCca5bgWhcsZ9ncmWhbdkTfpS+OJZXvnOg790VlNFE8+Vnw+wDwF0f4Qa3VYbn0RkrnfIBxwPk1GsOJiD3nAkqXzKNsafDOfeHMdzB26Iql7xBKfqh8F6jK47k6/IIa8HjwWYtrrNwno6ZiVMcnknTFjeS+MpG0ux+vuQBOUMKIi7Au/AnrkqN10LS3MHXqRmz/YRR9O6tS/kp1UK9++N0uyn4v78CtWAeZuvTEsXUj3vzo1UH5Py8h/+clx894VMMbx+DYl8O2B58HoGz7XhJ7d6HxXeNDnSeN755A9tQvyJkxG4BNt04kdcQA6o8fzZ4Xp5z+IE6AZdD5lC37BdvKhQAUfToJfbvOmHoPpnTe15Xy+yv8CDd26UPA7cKxbnkozb4qOFIz0l3RaPho3S4uateIUW0bAfDokLNYui+XbzZnMaF7y4jbKIpCsilyxwrAyDYNADhYYjvt5T1Vum6DcG9YjnvTSgAcP39GTNO2aNv3wvX7/MgbBQKRO+qP0tRtjHvz73izg3eO3RuWoe3UB01Gw6h1nuh7DcW1bimuDcFzzvb9x2ibt0d3Vh+cyyqPpNWd1QfFYKJ0+vPl182S8OumZ/fm0CiUv4sPl2/m4i4tubBzCwD+c34fluzMZs66nVzXr2PEbXx+P49+uYhbBnbmj6w8Sp2u0N8sei2Txo8Iy//Ieb24ctJcDhWXkRFvrrlgqnEmXFOM/UZg/30hjjXBa4p19nR0rTth6N4f28JvK+U3dOuPYjRR/NaToXPWV1QQlidgKw3r69QNPB9vQR7uvdtqLI7jORPaeuLMU2tznpjNZsxmM3PmzMHlclX6+7x58ygsLOT++++v9Lfzzz+fFi1a8OmnNf+YQXp6Oj/88AOlpVU3Hqoybtw4EhISmD17dg2ULAK1Bn3j5tg2H3OXKxDAtvkPDM1bn9Au4gacQ+mKxQQiHBMAdVw8prO6U7Lw59NR4lOj1qBr1AzH1vXlaYEAji3r0TdtdUK7iO07jLLflxBwh8epb9Wehm98RL3n3iP5mltRmSynseAnSa1GU6cR7j1bytMCATx7thJTv1nETbStzsKzfw/m868i6eHXSLjjaYz9R0KFEVqW86/GvWMDnj1bazKCE6PWoGsY4Xhu3YDuBI+npe8Qylb9FuF4tqPBazOp+993SLr6lugdz5qKUVFIueFeSn76Gs/B7NNb5lOh1qBr3Az75vXlaYEA9s3r0Tc/we/mgHMoq64Oio3H1Kkb1sXzTkOBa098z04ULFgRlpY/fykJPTsBoMTEENe5LQW/lncyEAhQsGA58T3PqsWSHkOtQdugKa4dxzzyFwjg2r4RXeMWJ7QLU+/B2Ncuq/Td/Lvw+Pxszyume4PUUJpKUejeIJVNh6oe7eNwexn5/o+cO+VH7v1mBXsKItwd/jtRqVGn18ebteOYxADezB1o6jauejutjtibnyL2lqcxXXwjquT0sD97D+wjpll7FHMcEHy8RZ2QimdflH6gqdRoMhrgDvv8AO5924ip1yTiJtoWHfHm7ME0YiwJ975E3M0TMZw9otJ18+/E4/Wx7VABPZvWCaWpVAo9m9ZhY87hKrebtGg9CWYDF3eJ3ClYUZnTjaIEO1ai4ky4pqjVxNRtjHtXeFvPvWsLMQ0jt/X0bTrjydpN7EXjSHn8bZLuew7ToFFVn7NqNYbOfXCsXlwDAZygM6GtJ85ItdZ5otFo+OCDD5gxYwbx8fH06dOHRx99lI0bg420nTuDzzK2bh35R3+rVq1CeWrS5MmTWb58OUlJSXTr1o177rmHZctObFifSqWiRYsWZGZmVpnH5XJhtVrDXm6f/5TKqo6NRVGrK42c8JUUo45POO72+qYt0DVojHVh5DlOAGL7DcHvdFC2OorD5S1VxGktRh13/Dh1jVugrd+I0goXSvumdeRPfoWDLzzGkVkfoG/ZjvT7ngQlOvMoq4wWFLW60tB4f1kJKnNsxG3UiSno2nYFlYqSma9iX/gthj7DMQ4YFcqja98dTUZDbPOjN1/NsULHs8Jdg+DxjD/u9trGzdHWa0TpkvDj6di8joL3X+PQi/9H0awZ6Fu2Jf2eiVE5njUVY9yI0eDzYf2l8p2paCj/bobf1fNai9HERZ4/4li6Ji3Q1W9Ubefs36EOOhW6tGRceeF3Bl15BcTEWVDpdWiTE1BpNLgOF1bIU4guPbk2ixqiMlsin7elJahi44+7vbZhM7R1G2Jb9kvNFPA0KHa48AUCJBl1YelJRh0FdmfEbRolmHl8WGdeGdWLp0d0xR8IMOHzReSVVn488u9CMZpRVGr8FUaR+O1WFFPk64nvyGHsP3yMbfYkbN/NAEXBctV9KJb4UB7HL7PwF+QSd9uzxN3/OqZLb8U+/wt8OXtqMpwq/RlnoMKjDgFbaaiDpyJ1QgraNl1ApcL66Rs4lnyPvudQDH1H1kaRT0mR3YnPHyDJFP54TpLJQEGpI+I267Jy+XrdDiaOOvuEPsPl8fLavNWMaN8Uc5Q6T86Ea4rK9GdbL/yxFV9ZCSpLFedsUir69t1ApaJo6ovYfpmDqd8ITEMujJhf37Yrit4YGtkSDWdCW++fQFGp/lGvf4JaLeXo0aM5ePAgc+fOZfjw4SxatIjOnTvzwQcfhPIEAoGqd3ACfvvtt9AoF7PZzMcff3xS2/fr14+9e/fy66+/cskll7Blyxb69u3L009XnrAxkkAgUO28LM899xxxcXFhr0lbq54gqibFDhiOa/++KieXBYjrfw7WZQuiPhfIX2HpNxRX9r5Kk8vafl+Cff0qPDlZ2NetJPe1J9E3aYE+wmRVf1uKgt9mpWzOB3gPZuHavAr7om/Rdx8AgCouEfPIK7DOmgReb3TLeppY+g7FnZ1ZacIx26rfgsfzQBb2P34n7/Wn0TVpgb5V5cks/+4ixaht2JTYoeeTP+31arb8Z4kbMAzX/n1VTgQIENt/KKXLFv6j66Azhan3YNwHsqqcXPafqkOdJM5r05CWqfF0qZfCi+f3JMGg46tNVU/k/U/kO7gPz5ZV+A4fwJe9G9vXU/Dby9B16hPKo+vSH3WdRpR9+R6lM57HsfBrjEMvQ9PwxEY2/C0oCn5bKbbvPsR3aD/urWtwLP0BfZf+0S7ZaWNzuXnsq8VMHHU2CdU8bvYnj8/PA18sJAA8dl7vmi9gDfnXXlMUBX+ZFeuXU/EeyMS54XfKFszF2HNwxOyG7v1x7diA/x/8aMuZ0NYT/0y13sWj1+sZOnQo//d//8fy5csZP348EydOpEWL4JDgbdsiD/3ctm1bKE91unbtyvr160OvUaOCd+BjY2MpKak8OVFxcTFxceE9vTExMfTt25eHHnqIefPm8dRTT/H000/jdrur/Wyfz8euXbto3LjqIbGPPPIIJSUlYa+b2kQeWno8PquVgM9XqQdXHRePr7go8kZHKTodlt79Kalm1ImhZVu0detTsqDqPLXBV1pFnLHxle5OVKRodZh79KN0SRXPdx/Dm5+Hz1pCTFrGXynuKfPbSwn4fJVGmajMcREnagTwlxbjK8yFYzodffmHUFvijz4G1BCVOY6EW58g+cn3SX7yfbSNW2HoOYTkJ9+PyjDl0PGscCc7eDyLq91W0eowd+9L6W8neDxLS4hJrf3jWRMx6lu0RW2Jo/6LU2k05WsaTfmamOQ0Ei+fQL0XojM/Rvl3M3wEmCY2Hm9J9ROeKjod5l79sS6qeui0vmVbtHXqU7Ioio8NniJXXgG6tPARJLq0ZDwlpfidLtwFRfi9XnSpSRXyJOHKDR+xUlv8ZaWRz1tL3HEb4YpWh7FrH2zLq1+BKNriDTrUikKhPXwYeKHdRXIVk8VWFKNW0TI1npziv8/8JhUF7GUE/L5Kw9lVxthKozSq5Pfjy8tGFX90rhpNDPp+5+NYMBvvns348w/iXrcE9/Z16LpH/hFX0/6Ms+JoGsVkIVBWuc0HwdGcvsK88OtmQW7wrr9KHXGbaEsw6lGrFApt4aNMCm0Oki2VJ4vNPlLKweIy7vxkPp2fmEbnJ6bx7YZdLNqxn85PTCP7SPk5EOw4WcCh4jImjRsetVEncGZcU/y2P9t64b891Oa4iJOoAvitxXgLwtt63rwDwbpaHX7OquKT0DZvh2PVotNd9JNyJrT1xJkp6uNj2rRpg81mY9iwYSQmJvLyyy9XyjN37lx27drF2LFjI+whnMFgoFmzZqGXxRJsOLRs2ZJ169ZVyr9u3brjdsq0adMGr9eL0xl5SO+fZsyYQVFREaNHj64yj06nIzY2NuylVZ/iYfB5ce7bhbFdp/I0RcHYthOOXdU/f2zp0Q9FE4N16YIq88QOHI5z707c+6N8d83nxZW5G0ObYyZEUxQMbTri3LO92k1N3c+GmBjKli887seoE5JQmS34iqOzygU+H96DmWibtClPUxRimrTGkx35Tq53/27UiWlhnSDq5HR81iLw+fDs2caRN/5D0dsTQy9Pzj5cG1dS9PbEsAtxrfF5cWXtRt+6wvFs3QHX8Y5ntz7B47li0XE/Rp2QhMpkOW4HW42ogRjLli/kwMQ7OfDEXaGXt6iQkp++Ju+VJ05/DCfC58W1bzfGthXibNcJ567q4zT36Busg5ZVXQfFDRiGc++u6NdBp6B45XqSBvUMS0se3JuileuB4IR3Jeu2kDyoV3kGRSFpYC+KV0ZptRafF/f+PehaHjP6TlHQtexQ5bLwfzJ07o2iiQlNDvt3FaNW0SotntXZ5fNE+AMBVmcfpn3G8R8LAPD5A+wuKKl2Atmo8/vw5WZXGBGioGnUAu+BE/w+KQrqlDrlq3+o1EdXwqhw3Qj4ozdfiN+H99B+YhofO4eCQkzj1nhyIo/q9WTvPjp58THXzcRU/KXFock4/25iNGpaZyTz+95DoTS/P8Dvew/SoV5qpfyNk+P48raL+PyWC0OvAS0b0K1RBp/fciHpR5ci/rPjZH9hCZPGDyf+BDsQa8yZcE3x+fAc2Ie2WdvyNEVB26wtnipG7bkzd6FJCm/raVIygu0bX/g5a+zWH3+ZFde29TVR+hN3JrT1xBmp1lbbKSws5NJLL+Xaa6+lQ4cOWCwW1qxZwwsvvMAFF1yAyWRi0qRJjBkzhhtvvJHbb7+d2NhYfv31Vx544AEuueQSLrvssrB97tu3j/Xr14elNW/eHJOp8vr0t9xyC2+99RZ33nkn119/PTqdju+//55PP/2Ub78tnz9gwIABjB07lq5du5KUlMTWrVt59NFHGThwILGx5Xc27HY7ubm5YUsVv/rqq9xyyy0MHDjw9P7zqlH0/WzSb7kf195dR5cqvgiVTh+aCCv9lvvxFhVS8Nn0sO1iB55D2Zrl+MsiT4yrMhix9OhL/se1t+xydUp+nkPKDffg2rcL196dxA27AEWnp+y34LP1KTfci7eokKIvw9eyt/Qdhn3dykrPfSs6PQkXjsW2Zjm+kiI0KRkkXT4Bz+FD2DdX7mSrLY5l87CMvh7PwUy8OXsx9B6GotXhXBtcncMy+nr81uLQ/CWOVQvR9xiM+dwrcKz8BXVSGsb+I3GsCP5fAm4nvsMHwj4j4HHht5dVSq9N1p+/Ifn6u3Fn7sa1L7h8naLTU3p0Rvbk6+/GV3SEoq9mhm1n6Tu0yuMZP2oM9rUrgsczNZ3ES8fjjeLxPN0x+m2lldICPi++kmI8udE7lkU/fk3aTffi3LcL556dJAy/AJVOF1oBLO3m+/AWFVL4+Qdh28X1H4Zt7Ypq6iAD5u59Kfjk/ZoO4YSoTUZMzRqE3hsb1yO2YyvcR0pwZh+i5TP3oq+bxoYJDwGQNfkzGt56Ja2ee4DsD74ieWBPMi4dwepRN4X2se+16XSc9jzFazdTsnojje4ch8ZkIHtGLU06HkHpgm9JuuYO3Fl7cGftwjLwPFQ6HbYVwR8kiePuwFd8hJJvwh+JNfcehGPDqkqrJQCojGbUicmoj85ZoEkLTnrpsxZHZVj5VZ2bM/HnNbROTaBdegKf/LEbh8fHqLYNAXj8pzWkmPXccXZwGPjkldton5FI/TgzpS43H67dRa7VzoXtGoX2WeJ0k2u1k28L3mTJKgr+H5JM+qh1srhWL8A48mq8ufvxHQouVUyMLrT6jnHk1fhLS3AumQuArvdwfAcz8Rflo+gN6LoPQRWbiPvoKja4nXj378Iw4EIcHg9+6xE09Zuhbdsdx4LonbPOFfMxXzgB38EsvAf3oe8xBCVGi2t9cE4L8wUT8JcWY18QXC3KtWYx+m4DMQ6/HOeqBaiT0jCcfS7OVcf86I7Rha0OpY5Pxp9Wj4DDjt8anRssV/dux/99vYS2dZJpVy+Fj1ZsxuH2hlbfeeyrxaTGGrlraDd0MRqap4V3Blr0wXl+/kz3+Pzc//mvbDtYyJtXDcXvD1BwdB6fOIOOGE10RuGcCdcU+5Ifibv8Jjw5+/Bk78HUdziKVhea4DVuzE34Sooo+zG4aqZ9xS8Y+wzFMupq7MvmoUlOxzRoFPalFUbQKAqGbv1wrPkN/Kc2n+LpdCa09cSZp9Y6T8xmMz169ODVV19lz549eDwe6tevzw033MCjjz4KwCWXXMLChQt59tln6du3L06nk+bNm/PYY49x9913V5pL5N577630Ob/99htnn115cqwmTZqwZMkSHnvsMYYMGYLb7aZVq1bMmjWL4cOHh/Kdc845zJgxg0cffRS73U6dOnU477zzePzx8CVBp0yZwpQpU9BqtSQlJdGlSxc+//xzLrrootPx7zphZSuXUBAbR9IlV6OOT8CVtZcD//tPaEicJjm10jwyMRn1MLZqR85/H6lyv5Ze/UGB0mWLarD0J8626jfUljgSLroKTVwCrv17yX358dBEVJqklODdr2PEpNfF0LIth178T+Ud+v1o6zXG0mcwKqMJb/ERHJv/oGj2R1GdG8S1eRWKyYJp8IWozHF4D+2nZMYroWHWqviksNEi/pIjlMx4GfO5Y0m4/Wn8pUU4VszHHmFZ478T2+qlqCxxJFx4Beq4BFzZe8l79YnQDylNYgr4K5y36XXRt2jLoZciLM/r96Ot3whLn0Hlx3PLeoq+/jhqx/O0x/g3VbZyCWpLbLAOikvAnbWXA88f57uZURdDq3YceO6xKvdr7nm0Dlq+qAZLf+LiurSj168fht63eSl43cqeOZuN1z2CLiMFQ/3yYcOOzBxWj7qJNi8/QqM7rsGZk8umm/4TWqYY4NCsH9GmJNJi4p3o0lOwbtjGqvOux304wnLjtcSxdjnF5jjizhuDOjYed84+8t96JjScXJ2QXOm81aTWQdesDYffeDLiPvUdupF0ze2h98nX3QdAyfefY/3+ixqKpGrDWtajyOHivRVbKbS7aJESx5sX9SHpaCdHbqk9bCBFqdPDM/PXUWh3EauLoVVaPNPGDKBJUvkNlcV7DvHkvLWh94/8sAqAG3u24qZex4wmrEWe7etwGM0Yzh6JYrLgO3wA2xdvE7AHf5CoYhPDrieK3ohx+BXBR16cDnx5+yn76BX8heXLudrmTkPf/wKM549D0RvxW4/g/O073OuXVvr82uLeuga7yYJhwChU5li8eTmUfvJGaMllVVxiWDvIby2i9OPXMQ67jPibJ+K3FuNc9SuOY5Y11tRpSNy48tUfTecEb9451y/HNveD2gmsguHtm1Bkd/LOgrUUlDlomZ7EO1efQ5I5+NhObkkZqpMYAXTYamPR9v0AXPbOnLC/vT/hXLo1js5jEGfCNcW54XdUplgs54xGZYnDczCLovdfCD2irY5PrtTWK3r/eSznX0Xyvf/FZy3CvvTnSssaa5u3RZ2QHN1Vdo5xJrT1xJlHCfzVGVrFX7Zz7PDjZ/oX0Ohqra8uaiz1Uo6f6V+g7GD0ftyJ08/r+vc3OnZ+EZ3VQGpbhxvOjEnzEjqc2NLJ/3Teksh30f9tfK7q55T7NzC1jLwM7b9N9txF0S5CrbDUObHH/P7pHIV/82XZT4PG0+ZGuwg1Zt+1o46f6W/kn3Asoj7niRBCCCGEEEIIIcTfmXSeCCGEEEIIIYQQQlRDOk+EEEIIIYQQQgghqiGdJ0IIIYQQQgghhBDVkM4TIYQQQgghhBBCiGpI54kQQgghhBBCCCFENaTzRAghhBBCCCGEEKIammgXQAghhBBCCCGEEKePolKiXYR/HRl5IoQQQgghhBBCCFEN6TwRQgghhBBCCCGEqIZ0ngghhBBCCCGEEEJUQzpPhBBCCCGEEEIIIaohnSdCCCGEEEIIIYQQ1ZDOEyGEEEIIIYQQQohqSOeJEEIIIYQQQgghRDWk80QIIYQQQgghhBCiGtJ5IoQQQgghhBBCCFENTbQLIIQQQgghhBBCiNNHUSnRLsK/jow8EUIIIYQQQgghhKiGdJ4IIYQQQgghhBBCVEM6T4QQQgghhBBCCCGqIZ0nQgghhBBCCCGEENWQzhMhhBBCCCGEEEKIashqO38DhgRTtItQK6wHiqJdhBqn1v77YwSIMemjXYTaEQhEuwS1oiTn33/edrihXbSLUCs2Ttkc7SLUim4PWqJdhFpRmp0f7SLUCr/v31/XxsSao12EWnFkb2G0i1Ar0rq0iHYRakX+tgPRLoIQfysy8kQIIYQQQgghhBCiGtJ5IoQQQgghhBBCCFEN6TwRQgghhBBCCCGEqIZ0ngghhBBCCCGEEEJUQyaMFUIIIYQQQggh/kUUlYyTON3kPyqEEEIIIYQQQghRDek8EUIIIYQQQgghhKiGdJ4IIYQQQgghhBBCVEM6T4QQQgghhBBCCCGqIZ0nQgghhBBCCCGEENWQzhMhhBBCCCGEEEKIakjniRBCCCGEEEIIIUQ1pPNECCGEEEIIIYQQohrSeSKEEEIIIYQQQghRDek8EUIIIYQQQgghhKiGdJ4IIYQQQgghhBBCVEM6T4QQQgghhBBCCCGqoYl2AYQQQgghhBBCCHH6KCol2kX415GRJ0IIIYQQQgghhBDVkM4TIYQQQgghhBBCiGpI54kQQgghhBBCCCFENaTzRAghhBBCCCGEEKIa0nkihBBCCCGEEEIIUY1aWW1n/PjxzJgxI/iBGg2JiYl06NCBsWPHMn78eFSq8j6c5cuX88wzz7BixQocDgfNmzdnwoQJ3HXXXajVaj744AMmTJhQ7eft27ePRo0ahaUpisLXX3/NhRdeWKlsxcXFzJkzJ7TtY489xqJFizhy5AjJycl06dKF559/nlatWoX29Sej0UidOnXo06cPd9xxB126dDnF/9KpM/cbjmXoBahj43HnZFL8xVTcWbsj5k25+0n0LdpVSndsXkvBO/8FlZq4UWPRt+2MJjmNgMOOc8dGiud8hL+kqKZDqVbiuReQdOHlaBIScWbuIXfymzh2ba86//mjSRwxipjkVHylJViXLyFv5hQCHg8AyaPHEturL9p6DQi4XNi3byFv5hTcB7JrK6SIzANGEDfsItRxweN55NMpuDN3Rcybdt8z6FtWPp72TWvIf/MZAOLOH4Op29moE5IJeL249++heM5HuPdF3mdtMfU9B8vg81HHxuM5kEXRl9PwZO2JmDflzonomretlO7Yso7C9/4Xeh977mWYeg9GZTDh2red4s/fx5ufW2MxHI+p3zlYBo8qj3HWNDxVfTfveiJyjJvXUfjec6H3sSMvL49x73aKP58S1RgBks+/iNRLx6JJTMSxdw8H3n4N+45tVeZPuehSks67EG1qGl5rMcW/LebQ1EkEPO5KeVMvv5I6191M/uwvOPDemzUZxnGd1roWMHTqgbnvMGLqN0VttpD73/vw5GTWZAjVSjy7K03uu464zu3Q10llzehbyZv7a/Xb9OtOm5cextymOc7sQ+x+7l1yZn4dlqfhLVfQ5N7r0KWnYN24nS13P03J6k01GcpxGXoMxth3BCpzHN7c/ZR+9xHenH1V5lf0RkxDR6Nr2wWVwYSvuJCy7z/BvXMjAKZBF2IafGHYNt78Qxx57ZGaDOO4YgePJP7c0ajjEnBn76Pgw/dw7d0ZMW+dR57D0LpDpXTb+tXkvvJE6H1MnfokXTYBfat2KGo17gP7yXvzv3gL82sqjOOKG3oeCSOPxrl/H4dnvFtlnHUf+x/GNhHi/GMVB196AoDmH/8Qcdv8T6ZS/P1Xp63cJyumQx90XQeiGC34Cw7iWPg1/rz9kfO26YZh2NiwtIDXQ+lbD4Xe64eNQdume1geb+Z27HMmn/7Cn6C00ZeQceWVxCQmYd+9i8xXXsa2dWuV+dMvH0PqRRejS0/DU1zCkYULyH73HQLu4PVEZTRS78abSOzXn5jEBGw7d5L16ivYtlV9jaoNMR3PRtd1EIrJgj//II6FX+HPrepYdscw/IqwtIDXQ+kbD4SlqRLT0PU9H029pqBS4S/Mw/7tNAKlxTUVxnEljryQlIuPtt337eHgpDdw7Ky67Z40ajRJ544iJiUNr7UE67LF5M4ob7unXHoFsb36oqvXgIDbhW3bFnI/mBz1trs4c9TaUsXDhw9n+vTp+Hw+8vLy+Omnn7jrrrv48ssvmTt3LhqNhq+//prLLruMCRMmsHDhQuLj4/nll1948MEHWbFiBV988QWXX345w4cPD+334osvpl27djz11FOhtJSUlFMqo8fjYejQobRs2ZLZs2eTkZFBTk4OP/74I8XFxWF5p0+fzvDhw3E6nezcuZPJkyfTo0cPpk2bxjXXXHNKn38qDF16Ez96PEWfTsKVuQvLoPNIueP/OPTEHfjLrJXyF05+ETTlh11lspD+6MvY160AQNHq0NZvgvXHL/HkZKIymoi/9FpSbn6YvOcfqrS/2hJ79gDSrr2FQ+++hmPnNhLPH03DJ55n163j8JUUV8of128QadfcwME3X8C+fQvaOvWpe9eDBAIB8qa9C4CxXUeO/PANjl07QK0i7errafjEC+y+fQIBl7OWIwwydu1D4qXXUvjxu7j37cQyeBSpd03k4OO34S8tqZQ//93/hR1PtclCxuOvYV+zPJTmyTvIkU8n483PQ4nRYhkyirS7n+DAY7dEPEdqg6FzL+Ivuoaiz6fgztqFecBIUm59jNyn745YpoL3X0JRh5+3aQ+/iOOPFaE0y5ALMPcfwZGP3sZXeJjYkZeTfOtj5D57L3g9tRLXsQydexN/0TiKPp+MO3M35oEjSbntMXKfuityjFMqxmgm7ZGXIsf44VvBGM8bQ/Jt/yH3mXuiEiNAfP9B1LnpdnLeeBnb9q2kXHwpTf77MtuvuwJvhXoTIH7gEDKuu4n9L/8P+9bN6OrVp8H9j0IgwMFJb4XlNbRoRdLIUTj2RO6gqE2nu64FULR6XLu3Y1+7nMSrbq2VOKqjNhmxbtxB9gdf0fXLt4+b39CoHt3mTmL/5M9Yf839JA3qRftJz+A8lE/B/KUAZFw6gtYvPsLm2yZSvGoDje8cR4/vp7Ko7XDc+UdqOqSIdO27Yz53DKXfzMCTvRdjn2HEj7+fwlcfJmArrbyBWk38hPvx20qxfvIWPmsx6vgkAk57WDZvXg7F014MvQ/4fTUdSrVMPfqSfMUN5H/wFs49O4g/50IyHnia7AdvxBfhepL7xrMompjQe5XZQv1n3sK2amkoTZOaTt3/vIB18TyOfP0Rfocdbd2GoR+q0WDu2Y/kK28gf9pbOPdsJ374hdR9+Gmy7r8Rn7VynIdeeyYsTrXZQoPn3qb0mDj33npl2Damjl1JveEuylYtq7lAjkPTohP6fhfgXDALX+5+tGf1w3TRjZTN+B8BR1nEbQIuB2Uz/ndsSqU83sxtOOZ9Vp7D5z3dRT9hiYOH0ODOu9j3wvPYtmwh/fIxtHr1dTaMuQxvUeUbeEnDhlH/llvZ+99nKN24CUODBjT5z/9BIMD+N14HoMkjj2Jo0pQ9Tz2Bu6CA5HOG0+qNt9h4xRg8+dHp8NO0OAt9/wtx/voFvkNZaDv3x3TxzZRN/2/1x3L6f49NCfu7EpeE8fI78WxeiW35jwTcTtRJ6eCN3vGM6zuQjOtv4eDbr2LfsY3kCy6h8VMvsOOmayK33fsPJn38jeS8/gL2bZvR1a1PvbuDvz0Ovf8OAKZ2HSn8fg6OXTtQ1GrSrrmexk+/wM5botd2F2eWWus80el0pKenA1C3bl06d+5Mz549GTx4MB988AFjx47lhhtuYNSoUUyeXN7jff3115OWlsaoUaNCnScGgyH0d61Wi9FoDO37r9iyZQt79uzh119/pWHDhgA0bNiQPn36VMobHx8f+sxGjRoxbNgwxo0bx+233875559PQkLCXy7PibAMOp+yZb9gW7kQgKJPJ6Fv1xlT78GUzvu6Un6/PbxSNnbpQ8DtwrEu+GM74LST/+ZTYXmKv3iftIdeQJ2QjK+ooIYiqV7SBZdSNO8Hin/9CYBD776KpWtPEoaMoOCrTyvlN7Rqh33bZkqWLADAcziPkiULMLRoHcqz/8mHw7Y58PrztPrwawxNW2DfurEGo6la7NALKF06D9vyYLmPfPwuhvZdMPcZjPWn2ZXyVzyepm59Cbhd2NeWN/Dsq5aE5SmaNQ1L36Fo6zXCuT06cVoGnodtxa/Yf18EQPHnUzC07Yyp10BK539TKX/AbgtrJoTO2z9WhtLMA87F+vNsnJvWAHDkw7eo898pGDp0C53ftcky6Dxsy3/FvnIRAMWfTT4a4yBK58+plD9gL6sQY++jMZb/2DYPHIn156/KY5z5FnWem4KhYzcca2s/RoCU0ZdT+OO3HJkXvFOb8/pLxHbvReI5Izn8+ceV8pvatMO2ZTPFC38BwJ2XS9HCXzC2ahOWT6U30PDhx8l+9QXSrxhX84Ecx+muawHsqxYDoE48tQ7/0y3/5yXk/7zk+BmPanjjGBz7ctj24PMAlG3fS2LvLjS+a3yo86Tx3RPInvoFOTOC9demWyeSOmIA9cePZs+LU05/ECfA2OccHGsW41wXLGPpNzPQtuyIoUs/7Eu+r5Rf36UfKoOZoknPwtEOEX9x5WthwO/HX1b5x3q0xA+/COuinyj9Lfhdy//gLYwdu2LpP4zi72ZVyu+3hZ+z5p79CLhdlK36LZSWeMk12Des4cjn00Np3sPRHfmWMOIirAt/wrpkPgCHp72FqVM3YvsPo+jb48dp6dUPv9tF2e/lcfoqjLQ1demJY+vGqI7y03Xuj2fzSjxbVwPg/PVLNI3bENO2O+41C6rcLmCP0CF47N993uPmqS0ZY8dyeO43FHz/HQD7Xvgf8X16k3Le+Rz6cGal/Ob2HSjdtJHCefMAcOceonD+PMxtg6P+FJ2OxAED2fnQg5SuXw/Aganvk3B2X9IuupicyZNqJ7AKdF0G4Nm8As+WVQA4f5mFpkkbYtr1wL26itF+geqPpb7PSLz7tuL67dtQmrek8LSW+2QlX3gpRT9/T9Evwbb7gbdfwdKtB4lDR5D/ZeW2u6l122DbfXHwf+A5nEfxkgUYj2m7Z04Mv5Gb8+r/aPPJHAzNWmDfEp02rTizRHXOk0GDBtGxY0dmz57NvHnzKCws5P7776+U7/zzz6dFixZ8+mnlL9rplJKSgkql4ssvv8TnO/k7Rvfccw+lpaXMnz+/BkoXgVqDtkFTXDuOqSwCAVzbN6Jr3OKEdmHqPRj72mUE3K4q8yh6U7BR6LD91RKfEkWjwdC0BbYNa8sTAwFsG9ZiaNkm4jaO7ZsxNG2BoXnwUauYtAwsXXpQtvb3Kj9HbTQB4IvSaIw/j6dzW/jxdG7bgK5JyxPahfnsIdhWL636eKo1WPoOw2+34a5miHqNUquJqd8E545jhu0HAjh3bELb6ATP216DsK9bHopTnZSKOi4h7LsQcDpwZ+5Ge4LfhdNKrTkaY4VjuWPjCZfH1Htw5Bi3l//fAk57MMZGJ3Z+nG6KRoOxeQvK/gj/bpb9sQZT68qPIAHYtm7G2LwFxpbBxpA2PYPY7j2xrloZlq/eHfdgXbUifN/RUkt17T9NfM9OFCxYEZaWP38pCT07AaDExBDXuS0Fvx7TsRcIULBgOfE9z6rFkh5DrUZTpxHu3cc8BhAI4N69hZgGTSNuomvVCU/2biyjrib5kddJvPMZjP3Pg2Me4QXQJKWR9NCrJN33ArGX3oQqLrEmI6meWoOuUTPsW9aXpwUCOLauR9+s1QntwtJvGGUrl5Sfs4qCqWM3PLkHyHjgKRq99TF1J76CsXPP01/+E6XWoGvcDPvm9eVpgQD2zevRNz+xOGMHnEPZisUEXJG/m+rYeEydumFdPO80FPgUqdSoUuvhzT72UaQA3v07UWc0qnq7GC3ma/+D+br/w3D+tagS0ypl0dRrhvnGJzFd8zD6QaNR9MbTXvwToWg0mFq2wrp6VXliIEDJ6tVY2rWPuE3Zpo2YWrbC1CbYFtTVqUN8794UrwjeQFLUahSNBn+FetfvcmHp2LFmAjkelRpVWj28WRWOZdZxjqVWi/n6xzHfMBHDqOtQJR1701hB06QN/qJ8jBffjPnmpzGNvQdN08j/t9qgaDQYmrWgbH2F9sH6dRhbVdE+2LYl2HZvcUzbvWsPStdU03Y3RbntLs44tTbypCqtWrVi48aN7NwZrERat25dZb4/89SUunXr8sYbb/Dggw/y5JNP0rVrVwYOHMiVV15JkyZNjrv9n3OiZGZmVpnH5XLhqnCBdvl86NTqky6vymxBUavxWYvD0n2lJWjS6h53e23DZmjrNqToo3eqzqSJIf6iq7CvWUrA6TjpMp4O6tg4FLUab3H4nSBvcRHGeg0iblOyZAHq2DgaPfc6iqKgaDQc+XEuBV9+EvlDFIX062/DtnUTrv2ZpzmCE6Ou5njGZNQ77vbaRs3R1m1I4Yy3Kv3N0L4ryTfch6LV4SspIu/VifjLonOnSWWKRVGr8VeI019aTExaneNuH9OwKTF1GnDkk3dDaerYeIBKQ9F9pSWhv9WmP7+bFR+18ltLiDmB72ZMw2bBGD+OFGNxWF5faXFUYoQ/v5saPEXhj194iorQ1W8YcZvihb+giYuj2Stvh76bBd/O4fBnH4byxA8YjKFZC3befmONlv9E1Upd+w+kS0vGlRc+AsOVV0BMnAWVXkdMQhwqjQbX4cIKeQoxtTz+NbUmqIxHv5sVRoj4y6xoUjIibqNOTEUdn4xzwwqKZ7yCOikNy6hrQK3GviA4Us6TswfrV+/jzT+E2hKPadAFJNzwKEfe+A8Bd+0PJVdbYiOes96SYgwZ9Y+7va5JC3T1G5E/9fXyfcbGozIYiT/vUo58+SGFn3+AsUMX0u98jIPPPYJzx+bTHcZxheKsMFLEay3GWOfE48yb/FqVeWL7DcHvdFC2OnqP7CgGE4pKXWnkQcBeijoxNeI2/qLDOOd/jq/gIIrWgLbLAEyX30nZhy8QOHr+ezO34929CX/JEVTxSeh6n4vxwhuxff46BCo/4lOTNPHxKBoNniMVridHjmBoGPl6UjhvHpq4eNq8NxkUBZVGQ97srzh4dJ5Fv91O6aaN1J1wLY7MTDxHjpA0dBjmdu1w5uTUeEyRVH8sK3duwdFj+fNnwWOp06PtMhDTmLuCj2yVlaAYzShaPbrug3Et+wHvb9+iadQKw6gJ2Ge9jS8n8nxyNam6truuqrb74l/RxMbR5Pk3Qu2Dwh++IX9W5VGsACgKGTfcjm3LJlxZmac5AiEii/pqO4FAIGwC1sBfrKz/+9//YjabQ6/9+yNPvlSV2267jdzcXD7++GN69erFrFmzaNu27QmNJvmz7EqFu1HHeu6554iLiwt7vb1ux0mV8XQx9R6M+0BWlRMeolKTfP19gELRZ9GbPOxUGNt1JPmSKzk06XX23HsT+597HHPXHqRcdlXE/Bk33YWuQWNyXnq6lkt6+pjPHoI7JzPi5LLOHZs49PQ95D7/MM4tf5By0wOoLHFRKOVfZ+o5CPeBrConl/03MPX6M8boz/Vxupk7dCJtzNXkvPkKO269jn1PPkpsj16kXRl8NCcmJZW6t9xJ1v+ejjiB7D/Rceta8femKPhtVkrnTMd7MAvXplXYFn2LofvAUBb3zk24Nq/Gl5eDe/dmime+imIwomvfvZod/31Z+g3DtX9f+KSrR9s2tnUrKfl5Du79eyn+bhb29auJHXRulEr618QNiBBnBbH9h1K6bGFowsp/Ct+hLDzb1uDPP4jvwB4c300n4LChbd8rlMe7cz3evVvwFx7Cu2cz9m/eR53eAHW9ZlEs+YmznNWZOuPGk/niC2wefw07H36Q+N59qDPh2lCePU8+AYpC52+/p/vi30i/7DIK58+DgD96BT9JvkOZeLatxp9/AF/OHhzfTiPgKEPboXcww9HvpnfPZtzrFuPPP4B79a94925F26Hy1AN/V6b2HUm57EoOvvsau+66kaxn/w9L156kjrk6Yv46t9yFvmFj9r/wVMS/C1BUqn/U658g6qXctm0bjRs3pkWLFqH3VeX7M091br75ZtavXx961akTvJNtsVgoKan8LHJxcTFxceE/Ii0WC+effz7PPvssGzZsoG/fvjzzzDMnFAtA48aNq8zzyCOPUFJSEva6rfOpDbn3l5US8Pkq3XVWW+Iq3dWvSNHqMHbtg215Fc9WqtQkXX8f6sQU8t98MmqjTgB81hICPh+a+PB5ZDTxCXiLIk84mHrFBEoWzad4/g+4svZRunIphz+cSvIlV1Qaap1+451YuvUk8z/34i2MzpwuAL5qjmfFu2oVKVodpm5nU7b0l4h/D7hdePNzce/bSeHMtwj4fJj7DDldRT8pfpuVgM+HqkKcKkt8pbukFSlaHcYufbCvCH+++8/t1BU6hNSWuOPusyb8+d2s2EGlij1+eY4fY3xYuvoE/m81Jfjd9BKTEP54QkxCAt4jkZ+1Th93PUW/zuPIT9/hzNxLybLfODR9MmmXXwWKgrF5S2ISEmn5zvt0/HEhHX9ciLnjWSRfeAkdf1wIUbi41mhd+w/myitAl5YclqZLS8ZTUorf6cJdUITf60WXmlQhTxKu3OjUtX770e+mucJ30xxb5Xwl/tJifAW5YXfiffkHg9/FKkaNBpx2fAW5qJMijwqoab5Sa8RzVhMXf0LXE3PPfpQuCX9MxVdqDa7YdiD8ppT7YDaapOjM2xOKM65C+yA2Hm9J9RMSKzod5l79sS6q+nEcfcu2aOvUp2TRz6elvKcq4LAR8PtQjJawdMVowR9pkuNI/H58h3NQxSdXmSVgPYLfXlZtnpriLS4m4PUSk1jhepKYiKcw8rGsd+NNFPz0I/nfzsWxZw9FixeT/d671LlmXKit5zpwgG233sLqgf3548JRbLnuWhSNBueBgzUeUyTVH8sTfPTE78d3+ACq+JTyffp8+ArD5+TxH8lDqdBmqC2n0nZPu+paihfMo2hesO1uXbGUvJnvkxKh7V7n5juxdOvF3kfviWrbXZx5otp5smDBAjZt2sTo0aMZNmwYiYmJvPzyy5XyzZ07l127djF27NgIewmXmJhIs2bNQi/N0dUOWrZsydq14c/O+3w+NmzYUG2njKIotGrVCpvt+PN9vPbaa8TGxjJkSNU/SnU6HbGxsWGvU3lkBwBfcNlZXctjnmlUFHQtO+DaV/0jTobOvVE0MaEJC8Mc7TiJSc0g/40nK02uVtsCXi+OPTsxdehcnqgomDp0xrEj8vJ1Kp0e/OF3FQJ/vj+mAk6/8U5ie55N5n/uwxPlSe/+PJ76Vscsoago6Ft3wLW3+tFJxi59UDQx2H6PcDwjUalQYmKOn68m+Hx4sveGL+OqKOhatMOdeZzz9qyeKBoN9tW/haX7Cg/jKykK+y4oegPaRs1wH+e7UCN83mCMFb+bLdoftzyGs3odjTF84s7yGMv/b6EYM6Mzei3g9WLftRNzp2OWaFcUzJ26YNu2JeI2Kr2+/Lv4537+nGNKUSj9Yw3bb7yGHbdcG3rZd2yjaMF8dtxybaXvda2oqbr2H6545XqSBoXPd5E8uDdFK9cDEPB4KFm3heRB5Xe6URSSBvaieOUftVjSY/h8eA9mom16zHxZioK2aRs8+yOPZvNk7UKdlBZ27VAnpeOzFkEV86MpWh3qxFT80Voi1OfFlbkbY9tOxxRKwdCmE87dVS8TCmDu3hdFE0Pp8oWV97lvF9oKj5HGpNfBW3j4NBX8JPm8uPbtxtj2mPkrFAVDu044dx0nzh7BOK3Lqp5sNW7AMJx7d+HeH6U5wv7k9+E/nIOmfvNjEhU09ZvjO5R5YvtQFFTJGdX+QFfMcSgGI4ET/RF/GgW8Xmw7thPbtdsxBVKI69qN0s2RlzZX6yu39YjQ1gPwO514CgtRWyzE9ehJ0W8nPjn2aeX34c/LQdOgwrFs0OLUj6Xfhy9vP6qE8M5aVUIKgdLqO0trSsDrxbF7J6aO4W13c8fO2LdX0T7Q6Ss9Lhap7V7n5juJ7XU2+x67F09elNvu4oxTa3OeuFwucnNzw5Yqfu655zjvvPO45pprUKvVTJo0iTFjxnDjjTdy++23Exsby6+//soDDzzAJZdcwmWXXXbKn3/vvfdy3XXX0apVK4YOHYrNZuPNN9+kqKiI66+/HoD169czceJErr76atq0aYNWq2Xx4sVMmzaNhx4Kn925uLiY3NxcXC4XO3fuZNKkScyZM4eZM2cSHx//V/5VJ6V0wbckXXMH7qw9uLN2YRl4HiqdDtvRu9aJ4+7AV3yEkm/Cnxc09x6EY8Oqyh0jKjXJN9xPTIMmFLzzX1CpQiME/LYyiNISdoXfzKLuXQ/j2L0Dx67tJJ0/GpVeH5rBu+7dD+MpLODwh+8DULp6BUkXXIJj324cO7ahzahL6pUTKF29InRhzbjpLuL6DWb/f/+D32EP9Y777LaoLbtonf8NyRPuwp21G9e+XcQOOR9Fq6dsWfCuddKEu/AVF1L89Udh25nPHoJ9/e+V7kApWh1x516KfcMqfCVFqM2xWAaOQBOfiH1N9J7fLl34HYlX3YZ7/17cWbsxDzg3eN4eXZkm4erb8BUfwfpt+CTRpl6DcGxcXWklE4CyRT8Qe87FeA8fwlt4mLjzxuArKcKxcXVthFRJ6YLvSLz6Ntz794SWKg7GGPxBknD17fhKjmCdGz4PTyjGCJ2WZQu/J3b4aLz5ucEYR14ejHFDdGIEyP/qcxo88Cj2Xduxb99GysWXotIbOPJzcPWdBg88hqewgEPTgqsaWFcuI+Xiy3Hs2YV9+1a0deqSMe56SlYuA78fv8OBMzP8h4rf6cRnLamUXptOe10LqIxm1InJqI9OLKo5OuePz1p83BEtNUFtMmJqVv4surFxPWI7tsJ9pARn9iFaPnMv+rppbJgQvB5mTf6MhrdeSavnHiD7g69IHtiTjEtHsHrUTaF97HttOh2nPU/x2s2UrN5IozvHoTEZyJ5RefWw2mJf9jOxo2/Ae2Afnpy9GHsPQ9HqcKwNdspaLrkBv7UI27wvAXCsWoih5xDMI6/EsWI+6uR0TAPOw76ifKSfefjluLavx1dciCo2HvPgCyHgx7mh6okOa1rxT1+TesO9uPbtwrl3J3HDLkDR6Sk9uipN6o334i0q5MisGWHbWfoPxbZuRcR5sYp/+Iq02x7CsWMzjq0bMXbogumsHhx87uFKeWtL0Y9fk3bTvTj37cK5ZycJwy9ApdNhXRyMM+3m+/AWFVL4+Qdh28X1H4ZtbeQ4AVQGA+bufSn45P2aDuGEuNYtxjBsLL687OBSxZ37o8Ro8WwNTrCqHzaWgM2Ka1lwxShtj2H4DmXiLy5A0RnQdR2IKjYRz+aj52SMFl2Pc/Du3ojfbkUVl4z+7PPwFxfgzaq+46mmHPr0U5r+3+PYtm+jbMtW0seMQaXXk/9dcPWdJo9PxJOfT/a7wfmjipb+RsbYK7Dt3Ilty2Z09epT78YbKV76W6itF9ejBygKzqwsdPXq0+D2O3BmZVHw3bdVlqOmudYuwjD8isrHckvw2OiHX0mgrATX0mDc2p7nVDiWg1DFJuDZVD5ht3vNAgwjx+E7sAdv9m40jVqhadIW+xeV58GrLQVzZlHvnodx7NqJY+c2ki64JKztXu/eR/AU5pM3I/gds65aTvKFl+LYuwv7jm3oMuqSdtW1WFeVt93r3HI38f0Hk/XMf/Db/x5td3FmqbXOk59++omMjAw0Gg0JCQl07NiRN954g3HjxqE6Ogz7kksuYeHChTz77LP07dsXp9NJ8+bNeeyxx7j77rurnUvkeMaOHUsgEOCVV17h4Ycfxmg00qVLF5YsWUJaWnCCpnr16tGoUSOefPJJMjMzURQl9P6ee+4J29+ECRMA0Ov11K1bl7PPPptVq1bRuXPnSp9dkxxrl1NsjiPuvDGoY+Nx5+wj/61nQhNVqhOSwR/ei6tJrYOuWRsOv/Fkpf2p4xMxdAw+o53+2Cthfzv86uO4dkXuLa5p1qWL0MTGk3rFBDQJCTj37SHryYdCw49jklPD7mbnf/EhBAKkXnktMYnJeK3FlK1eQd5HU0N5Es+9AIDG/30t7LMOvP48xQuiM0TXvmYZRZY44keNRR2bgDtnH4ffeDJ0PDWJKZV65TVpddA3b0PeqxMr7S/g9xOTXpeUXg+hNsfis5XiztxF7guP4jmUXSsxReJYt4JicyyxIy9DbYnHcyCTgnf+Wx5nQnLlOFMz0DVtTf5bkeelKf3lGxStjoSxN6EyGHHt3R7sAPRG5zl1x7rlR2O8vDzGt5895lhGirEOumbHiVGnL49xz3YK3nk2ajECFC9egCYunoxrrkOTkIhj7272PnZ/aJI4bWpaWJy5H88kEAiQMe56YpJT8JYUU7JyGbnTo7Ns7Yk63XUtgL5DN5KuuT30Pvm6+wAo+f5zrN9/UUORVC2uSzt6/Vo+cW+blx4FIHvmbDZe9wi6jBQM9csnVXVk5rB61E20efkRGt1xDc6cXDbd9J/QMsUAh2b9iDYlkRYT70SXnoJ1wzZWnXc97sPRW0LTtWkVZSYLpsEXobLE4T20n+IPXg7dbVfHJYWds/6SIxR/8BKWc6/AcMcz+K1F2JfPD1vWWBWXSOzlN6MymvHbSvFk7aLovaejugSs7fffKLTEkXDxVWjiEnDt38uhFx8PPeanSUqpNM9cTHpdDC3bcfD5xyLvc+0K8j94m/jzLiX5qpvwHDpA7pv/xbkz8ijQ2lC2cglqSyxJl1yNOi4Bd9ZeDjwfHmfF+S1iMupiaNWOA89FjhPA3LM/KFC6fFENlv7EeXeux2kwo+s1HMUYi7/gAPY5kwkcvZmgik3Af8yC94rOgGHIZSjGWAIuO77DOdg+fwP/kbxgBn8AdUoGMW26ougMBGxWvFk7cK34scoRVTXtyK+/EJMQT73rbyQmKQn7rp1sv+fu0GMeurS0sJEmBz6YDoEA9W+6CW1KCp6iYoqXLSX7vWMmWzebqX/zrWhTU/FarRxZtJCc994tH/EYBd6df+A0mtD1HhE8lvkHsM+eVH4sLQn4AxWO5dDLy49lXja2T18vP5aAd/cmnL/MQtt9CPqBF+M/ko/j2+n4DkbvpkPJbwvRxMWRdtV4NAmJOPfuYd/jD4XaBzEpqWHH8/BnwbZ72lXXEZOUjLekmNJVK8j9sLwDM2lksO3e5H+vhX1W9qv/o/jX6D5eJ84MSuCvztAq/rLsW0dHuwi1wnogOkMHa5M5LTbaRagVap022kWoHWdI9Viw898/7DWpWXTmnqhtG6fU/oon0dDtwV7Hz/QvUJqdH+0i1Aq/799f16Z1O7Glk//ptn0evVGttan1pWdGHZS1YEO0i1Dj2n+38PiZ/qFybr802kU4KfXemhXtIhxX1CeMFUIIIYQQQgghhPg7k84TIYQQQgghhBBCiGpI54kQQgghhBBCCCFENaTzRAghhBBCCCGEEKIa0nkihBBCCCGEEEIIUQ3pPBFCCCGEEEIIIYSohnSeCCGEEEIIIYQQQlRDOk+EEEIIIYQQQgghqiGdJ0IIIYQQQgghxL+JovyzXifp7bffplGjRuj1enr06MGqVauqzDtgwAAURan0Gjly5El9pnSeCCGEEEIIIYQQ4h/h888/595772XixImsW7eOjh07cs4553D48OGI+WfPns2hQ4dCr82bN6NWq7n00ktP6nOl80QIIYQQQgghhBD/CK+88go33HADEyZMoE2bNrz33nsYjUamTZsWMX9iYiLp6emh1/z58zEajdJ5IoQQQgghhBBCiH8Ol8uF1WoNe7lcrkr53G43a9euZciQIaE0lUrFkCFDWLFixQl91tSpUxkzZgwmk+mkyiidJ0IIIYQQQgghhIia5557jri4uLDXc889VylfQUEBPp+PtLS0sPS0tDRyc3OP+zmrVq1i8+bNXH/99SddRs1JbyGEEEIIIYQQQghxmjzyyCPce++9YWk6ne60f87UqVNp37493bt3P+ltpfNECCGEEEIIIYQQUaPT6U6osyQ5ORm1Wk1eXl5Yel5eHunp6dVua7PZ+Oyzz3jqqadOqYzy2I4QQgghhBBCCCH+9rRaLV26dOHXX38Npfn9fn799Vd69epV7bazZs3C5XJx1VVXndJny8gTIYQQQgghhBBC/CPce++9jBs3jq5du9K9e3dee+01bDYbEyZMAOCaa66hbt26leZMmTp1KhdeeCFJSUmn9LnSeSKEEEIIIYQQQoh/hMsvv5z8/Hwef/xxcnNz6dSpEz/99FNoEtn9+/ejUoU/ZLNjxw6WLl3KvHnzTvlzpfNECCGEEEIIIYT4F1FUSrSLUKNuv/12br/99oh/W7RoUaW0li1bEggE/tJnypwnQgghhBBCCCGEENWQzhMhhBBCCCGEEEKIakjniRBCCCGEEEIIIUQ1pPNECCGEEEIIIYQQohoyYezfQFyz+tEuQq04E+L0udzRLkKtiIk1R7sItSLg/2uTSv1TmOunRbsINU4TZ4l2EWpFtwfPjDhXv7Ai2kWoFf1eOi/aRagVikYd7SLUOP8Z0j5oMrhNtItQKzzWsmgXoVbU69M62kUQ4m9FRp4IIYQQQgghhBBCVEM6T4QQQgghhBBCCCGqIZ0nQgghhBBCCCGEENWQzhMhhBBCCCGEEEKIakjniRBCCCGEEEIIIUQ1pPNECCGEEEIIIYQQohrSeSKEEEIIIYQQQghRDek8EUIIIYQQQgghhKiGJtoFEEIIIYQQQgghxOmjqGScxOkm/1EhhBBCCCGEEEKIakjniRBCCCGEEEIIIUQ1pPNECCGEEEIIIYQQohrSeSKEEEIIIYQQQghRDek8EUIIIYQQQgghhKiGdJ4IIYQQQgghhBBCVEM6T4QQQgghhBBCCCGqIZ0nQgghhBBCCCGEENWQzhMhhBBCCCGEEEKIamiiXQAhhBBCCCGEEEKcPopKiXYR/nVk5IkQQgghhBBCCCFENaTzRAghhBBCCCGEEKIa0nkihBBCCCGEEEIIUY2TmvNk/PjxzJgxg5tuuon33nsv7G+33XYb77zzDuPGjeODDz4Ipa9YsYKzzz6b4cOH8/3334ftpyoNGzYkMzOTAQMG0KlTJ1577bXQ33bv3s2zzz7L/Pnzyc/Pp06dOvTs2ZP77ruPrl27RtzfokWLGDhwIEVFRcTHx4f9rVGjRtx9993cfffdACxevJgnn3yS9evX43Q6qVu3Lr1792bKlClotdrQvgAURcFisdCkSROGDh3KPffcQ0ZGxgn+N0+fmI5no+s6CMVkwZ9/EMfCr/Dn7o+ct013DMOvCEsLeD2UvvFAWJoqMQ1d3/PR1GsKKhX+wjzs304jUFpcU2Ec15kSp65zP3Q9hqIyx+I7nIN93hf4DmVFzKtt3xPTedeEpQW8HopfvCv0XjFaMAy8kJjGrVH0RrzZu7DP+wJ/UX6NxnE8X2zYy8x1uym0u2ieHMuD/TvQLj0hYt65W/fz5C9/hKVp1SpW3HZ+6P2kldv5edcB8kodxKhVtE6N49ZerWmfnlijcVQnpn1vtJ37oxgt+AsO4VwyB39edsS8mlZdMQy9PCwt4PVQ9u6jEfPrBlyMtn0vnEu+wbNh6Wkv+8nQntUPfY/BKKZYfIcP4PhlVtXnbLseGEdeHZYW8Hooefme8oQYLYb+FxDTogOK3oS/pBDX2sW410c3zi/W72Hm2l0U2pw0T4njwYEdaVfF+TV3SxZPzlsblqZVq1hx54Wh9wt2HeDLjfvYfriYEqebT64cRMvU+BqM4MQYegzG2HcEKnMc3tz9lH73Ed6cfVXmV/RGTENHo2vbBZXBhK+4kLLvP8G9cyMApkEXYhp8Ydg23vxDHHntkZoMo0qJZ3elyX3XEde5Hfo6qawZfSt5c3+tfpt+3Wnz0sOY2zTHmX2I3c+9S87Mr8PyNLzlCprcex269BSsG7ez5e6nKVm9qSZDOa6YDn3QdhlwtA46iHPR11XXQa27YRg2Jiwt4PVQ9vbDEfPrBo1G2743zsVz8Kz/7bSX/WScCdcTOP3tIP05V6Bt2z0sjzdzG/bZk05/4U+QvscgjGeX1z9l332M90B19Y8B05DRaI+pf2w/fBqqf/TdB2LoPhBVfDIAvsMHsC+ci3tXdL+bum4DMfQ552ic2dh//PS4cRoHXYS2dWcUQ/C6aPvpczxH49CfPQJd686okzMIeN14s/dgm/8l/sK82gopojOlTSvOHCc9YWz9+vX57LPPePXVVzEYDAA4nU4++eQTGjRoUCn/1KlTueOOO5g6dSoHDx6kTp06vP766/zvf/8L5cnIyGD69OkMHz4cALVaHfGz16xZw+DBg2nXrh2TJk2iVatWlJaW8s0333DfffexePHikw0nzNatWxk+fDh33HEHb7zxBgaDgV27dvHVV1/h8/nC8u7YsYPY2FisVivr1q3jhRdeYOrUqSxatIj27dv/pXKcDE2Ls9D3vxDnr8HKSNu5P6aLb6Zs+n8JOMoibhNwOSib/t9jU8L+rsQlYbz8TjybV2Jb/iMBtxN1Ujp4vTUYSfXOlDhjWnfBMHg09p8+xXswE323QZgvvwPr5CcI2KuI0+mgZPKTxySEx2m+5CYCPh9lX00i4HKg7z4Y89g7sU55GjzumgynSvN2HuCV37bw6KAOtEtL4JP1e7n9mxXMvnowiUZdxG1MWg2zrx4ceq9UmAOrQYKZh/q3p26cCZfXx8d/7OG2OSv45pohJFSxz5qkad4RXd/zcR5t3MZ06otx1PXYPnqBgMMWcZuAy4HtoxePSQhEzKdp0g51ekP8ZSU1UfSTEtOqM4ZBF+GY9zneg5noug7EdNltlE55qupz1uXAOuWpYxLC/24YNBpNwxbYv52Jv6QQTePWGIZdhr+sBO/u6DR45+3I4ZUlm3h0cCfapSfyybrd3D57GbPHDyXRqI+4jUmrYfb4YaH3Fadtc3h8dKqbxNAWdXmmwo+5aNG174753DGUfjMDT/ZejH2GET/+fgpffZiArbTyBmo18RPux28rxfrJW/isxajjkwg47WHZvHk5FE8rP7cDfl/FPdUatcmIdeMOsj/4iq5fvn3c/IZG9eg2dxL7J3/G+mvuJ2lQL9pPegbnoXwK5gc79DIuHUHrFx9h820TKV61gcZ3jqPH91NZ1HY47vwjNR1SRJrmndD1HYVz4ZflddCFN2Kb+Xy1103bzOePTYm876Z/nzroTLieQM20gwC8+7bh+PmT8hy+6LWBdO26Yx4xhtK5M/Fm78XQeyhx4+/jyGuPVFn/xI1/AL/NivXTt/Fbi1DHJ+M/pv7xlxzBNu9LfEc7EXRn9SH2yjspemcivsMHayu0MNq23TCdcxm27z7Ce2Av+p5DsFx1N8Vv/afKOGOvvhe/rZTSL97DX1qEKi68no1p1BLn6oV4D2SCSoVx8MXEXn0vxW//X9TaemdKm1acWU76sZ3OnTtTv359Zs+eHUqbPXs2DRo04KyzzgrLW1ZWxueff84tt9zCyJEjQyNS4uLiSE9PD70A4uPjQ+9TUlIqfW4gEGD8+PE0b96c3377jZEjR9K0aVM6derExIkT+eabb042lErmzZtHeno6L7zwAu3ataNp06YMHz6cKVOmhDqK/pSamkp6ejotWrRgzJgxLFu2jJSUFG655Za/XI6ToesyAM/mFXi2rMJ/JA/nL7MIeN3EtOtR9UYBCNhLj3mFV2D6PiPx7tuK67dv8ecfIFBSiHfvliovzrXhTIlT330Qrg3LcG9aib8wF/tPn4LXjbZD7yq3CRAgYLOWv+zlF15VYiqauk2w//wZvkNZ+I8cxv7TZygaLdo2kUdq1YaP/tjNRe0aMqpNQ5okxfLooI7oNWq+2Rr5bgQEf3gmm/ShV1KFH6wjWtajR4NU6sWZaJoUy71922Fze9lVaK3haCLTduqHZ8vveLetwV90GNfC2QS8HmLadK92u7BzNsK5qJhi0fW/AOe8TyCKP0D/pOs2CPeG5aFz1vHzZ+Bxo23fq+qNAgECttLylz28saip2xj35t/xZu/Cbz2Ce8MyfIcPoMloWMPRVO2jdbu4qF0jRrVtFDxnh5wVPGc3V3POKkr4OWsKP2dHtmnAjT1b06NBak0X/4QZ+5yDY81inOuW4ss/SOk3Mwh43Bi69IuYX9+lHyqDmZKP3sCzfzf+4gI8mTvw5oaPbgj4/fjLSkKvqhrOtSH/5yXsnPgaed/8ckL5G944Bse+HLY9+Dxl2/eS9c7H5H71M43vGh/K0/juCWRP/YKcGbMp27aHTbdOxGd3Un/86BqK4vi0nfvh2bIS79bV+I/k4VrwVbAOansSdVCE4xSsgy7C+dPHf4s66Ey4nkDNtIMg2FlybB5cjhqMonqGPsNwrlmC62j9UzZ3JgGPG32XvhHz6zv3RWU0Yf34Tbz7d+MvLsSTuQPfMfWPe8cG3Ds34ivMw1eYh/2X2QTcTmLqN62tsCqXu9dQXOt+w7V+Gb78Q9i++wg8bnRnnR0xv+6ss1EMJko/extvdjBOb9ZOfHk5oTylH72Ga/1yfPkH8eXlUDZnGur4JDR1onfdPFPatOLMckpLFV977bVMnz6dK6+8EoBp06YxYcIEFi1aFJbviy++oFWrVrRs2ZKrrrqKu+++m0ceeQSlYhf/CVi/fj1btmzhk08+QaWq3OdT8XGcU5Gens6hQ4dYsmQJ/fpFbihWxWAwcPPNN3PPPfdw+PBhUlNroTGsUqNKq4dr1bENwADerJ2oMxpVvZ1Wi/n6x0FR8OXl4Fr2Pf7C3KN/VNA0aYNr9QKMF9+MKrUugZIjuFb9gndPlIY4nkFxqtMb4Fw+75jEAJ7M7WjqNsZVxWaKVkfsrU+jKCq8uftxLJ6Lv+BQ8I/qo19xrydsn/i8aOo1xb1heQ0EUj2Pz8/2wyVM6NoilKZSFLrXT2HToaIqt3N4fIycPo9AIECrlHhu692apkmxVX7G7C1ZmLUamidHzlOjVGpUqXVxr11wTGIAX/YuVOnVNGRitJjGPRo8Z/MP4F7xI/4jxw65VdAPHYt73eIK6VGiUqNOr49rZfg5683cUe05i1ZH7M1PHf1uZuNYMhd/QW7oz94D+4hp1h73xhUEykrQNGiOOiEVx76vajKaKnl8frbnFTOhW8tQmkpR6N4glU2Hqh5V4HB7Gfn+jwQC0Co1ntv6tKVpNM7HE6VWo6nTCNvi78vTAgHcu7cQ0yDyDw1dq054sndjGXU1utZn4beV4tywEvuS78PuGGqS0kh66FXwevDs30PZvFn4S6IzIuNkxffsRMGCFWFp+fOX0ubl4CN1SkwMcZ3bsuf5Yx51CAQoWLCc+J7hN5VqjUqNKrUe7tUV6qD9O49fB014DBQVvsM5uJf/ULkOOucK3OsW/S3qoDPiegI11A4K0tRrhvnmpwk4Hfiyd+Fa9n2lkWO14mj9Y18SXv949mwlpn4zInXpaFudhWf/HsznXxWqf1wbV2Jf8kPkkZuKgq5dNxStDs/+PTUWSrXUajR1GuJY+kN5WiCAe+82Yuo1wRlhE23LTnhz9mIaeQXalmfht5fi3vQ7jqU/VjlCVdEbg7uuYqRrjTtD2rTizHNKE8ZeddVVLF26lKysLLKysli2bBlXXXVVpXxTp04NpQ8fPpySkpJTfrRm165dALRq1eqUtj8Rl156KWPHjqV///5kZGRw0UUX8dZbb2G1ntidhj/LlpmZWWNlPJZiMKGo1JXu2gbspahMkS/w/qLDOH/+DPs3U3H8+BEoCqYxd6GY44L7NJpRtHp03QcHn3v96j08uzdiGDUBdb3o9NKfMXEazSgqNX57+PkWsJWiMkeO03ckD/v3H2H7chK2uR+AoiL26vtRLPEA+Atz8ZUUYhhwAYreACo1up5DUcUmoDr6v6htxQ4XvkCApApDn5OMOgrskZoN0CjBzONDOvHKeT14elgX/IEAE2b9Rl5peHNqyb5czn73O3q9/S2f/LGHdy7qTYKh9odY/3nO+ivc5QvYy1AZLRG38Rfn4/x1Fo7vP8A571MURcF4yW0opvLjpO0yAAL+qM9x8qfQOVthmLHfbkWp4rvpO3IY+w8fY5s9Cdt3M0BRsFx1X+icBXD8Mgt/QS5xtz1L3P2vY7r0Vuzzv8CXE53G7imfs8M688qoXjw9omvwnP18EXmlUfhRcoJURguKWl3pUQx/mbXK+kKdmIqubTdQVBTPeAXbwrkYzx6OceCoUB5Pzh6sX71P8QcvU/rNTNQJySTc8CiKNvLjTn83urRkXHkFYWmuvAJi4iyo9Dq0yQmoNBpchwsr5ClEl55cm0UNKa+DKl43y1CZqqiDig7jnP85jm+n4/z542AddNkdoesmgLbrQPD7oz7HyZ/OhOsJ1Ew7CILzmzh++gj7l+/g+u1b1PWaYrz4psrPMdWC8vonvA3kLyupsg2kTkxB17YrqFSUzHwV+8JvMfQZjnHAqPB8afVI/r93SX5iCuZR44KPGOZH55GdP6+bgbKKbT1r2LE5ljohGW2bLqCosH78Oo7F36HvNQxDv/Oq+BAF0/DL8ezfFbVHk86UNq0485xS50lKSkroMZzp06czcuRIkpPDGwg7duxg1apVjB07FgCNRsPll1/O1KlTT6mggSp6VisaMWIEZrMZs9lM27ZtT+oz1Go106dPJycnhxdeeIG6devy3//+l7Zt23Lo0KETLmN1I2tcLhdWqzXs5arFOTZ8hzLxbFuNP/8Avpw9OL6dRsBRVj6E7mjZvXs2B+9u5x/AvfpXvHu3ou3Qp9bK+VedMXEe2Id78+/4Dufgzd6FbfYk/I7S8qGffj+22ZNRJaYSf8/LxD/wGjENW+DZs7nKuxV/Rx0yEjmvdQNapsTRpV4yL47sToJBx1ebM8PydauXzKdjBzD90r70bpjKwz+u4Yi9yvEPfyv+3Cy829fiLziI7+BeHD/MIOCwEdOuJwCqlLrEdOyL85fPo1zSv8Z3cB+eLavwHT6AL3s3tq+n4LeXoetU/r3TdemPuk4jyr58j9IZz+NY+DXGoZehadiymj3/vXSok8R5bRrSMjWeLvVSePH8nsFzdlPVEwL+IykKfpuV0jnT8R7MwrVpFbZF32LoPjCUxb1zE67Nq/Hl5eDevZnima+iGIzo2lf/+IioXWF10IG9OL7/4GgdFHwET5Vaj5hOfXHO/yzKJf1rzoTrCZxAOwjw7vgD794t+AsO4d2zCfucKajTG6Ku1yyKJT8JR+ufsjkfBOufzauwL/oWffcBYdl8BYc48vZEiic9jXPVQiyjr0edUic6ZT4VR+O0fTsT36Es3FtW4/jte/Rd+0fMbjr3StSpdSn7cnItF/SvOVPatOKf7ZQe24Hgozu33347AG+/XXnCtalTp+L1eqlTp7xyCgQC6HQ63nrrLeLiTq6HsEWL4JDM7du3V5pb5Vjvv/8+Dkfw7kFMTAwAsbHBHs6SkpJKj/cUFxdXKkvdunW5+uqrufrqq3n66adp0aIF7733Hk8++STV2bZtGxBcwacqzz33XKX9PDysB4+c07PafUcScNgI+H0oFe5kK0YLftsJPpfr9+M7fABVfEr5Pn0+fBWGdfqP5KGu0/iky3g6nDFx2ssI+H2ojLEc+xS5YrJUuhNTJb8fX24O6oTyeYN8udmUTnsOdHoUlYaAowzLuAfwHoo8Q39NizfoUCsKhRUaoYV2F8lVTLxZUYxaRcuUOHJKwoejGmI01I83Uz8e2mckcuGMX5izJYtru7WIvKMa8uc5qzKa8R+TrhjNle4EV8nvx5d/AFV8EgDqOo1RjCZM48tX31FUanRnn4+2U19sM547jRGcmNA5a7KEnbMqYyyBk/lu5mWHvptoYtD3Ox/b7Cl4924BwJ1/EHVqveBIsawdpzeIE3DaztnUeHKKozSE+gT47aUEfL5Kd/BU5tgqJwb1lxaDzxfWcPXlH0RtiQe1Ovi3CgJOO76CXNRJf5+5XqrjyitAlxZ+g0iXloynpBS/04W7oAi/14suNalCniRcueEjVmpLeR1kqVwHRZqQMpJQHRSMPVgHmTFd+5/y/anU6PqOQntWP2zTnz2NEZyYM+F6AjXTDor4OSWF+O1lqOJT8GXv+itFPmnl9U/4qASVOa7KNpC/tDg4705Y/XOocv3j8+E/chg/4D2YhaZeIwy9h1L2TdUrf9aUP6+bSoU4FVMsgSrr2ZLgJNsV4lRFqGdN515BTIsOWKe/gN9a9aNrNe1MadOKM88pjTyB4GM4brcbj8fDOeecE/Y3r9fLzJkzefnll1m/fn3otWHDBurUqcOnn3560p/XqVMn2rRpw8svv4zf76/09+LiYiDY8dGsWTOaNWtGw4bB53qbN2+OSqVi7drwZSP37t1LSUlJqGMmkoSEBDIyMrDZqm/wOhwOJk+eTL9+/SJOePunRx55hJKSkrDXvYNPcZIjvw9/Xg6aBs2PSVTQNGiB71Dmie1DUVAlZ5RffP0+fHn7USWEN2pVCSkESqNUCZ9Bcfpy96NpdOzddYWYhi2rXb4ujKKgTq0T+cLkchJwlKFKSEGd3hDPro2npdgnK0atolVqHKuzy5eV8wcCrM7Op31G5KUlK/L5A+wutB63cewPBPD4KtcXNc7vw3/4QIW7dwrq+s3w51Y9iWGYo+fsnzPve3asw/7JK9g/fTX08peV4P5jEfZv3j/9MZwIvw9fbnaFESEKmkYtTu6cTalT/t1UqVHUGiqtChHwR2UoORw9Z9PiWZ19OJQWPGcP0z7jxJYu9fkD7C4oIdn0N35UxefDezATbdM25WmKgrZpmyrnB/Bk7UKdlBZ2bNRJ6fisRRE7TiD4TLs6MTX4w+cfoHjlepIGhd/gSB7cm6KV6wEIeDyUrNtC8qBjJklWFJIG9qJ4ZZRWUfL78B/OQV0//Lqprt/85OqgpIxQR6hn+1rsH78crIeOvvxlJbjXLcL+dXTucJ8R1xOomXZQpCzmOBSDkYAtCqso/Vn/NAmvf2KatMaTvTviJt79u1EnVqh/kquvf4L7VR29zkSBz4f3YBYxjVsfUx6FmCat8OTsjbiJJ3s36sTUCvVsWnnn9VGmc69A2+osrDNewl8cnY7bkDOkTSvOPKdcc6jV6tBIi4pLC3/33XcUFRVx3XXXVRrVMXr0aKZOncrNN998Up+nKArTp09nyJAh9O3bl8cee4xWrVpRVlbGt99+y7x586qcT8VisXD99ddz3333odFoaN++PdnZ2Tz00EP07NmT3r2DQxgnTZrE+vXrueiii2jatClOp5OZM2eyZcsW3nzzzbB9Hj58GKfTSWlpKWvXruWFF16goKAgbBWiSHQ6HTpd+DOzVs2pV+CutYswDL8CX142vtz9aDv3R4nR4tnyOwD64VcSKCvBtfQ7ALQ9z8F3KBN/cQGKzoCu6yBUsQl4NpVPhudeswDDyHH4DuzBm70bTaNWaJq0xf7FW6dczr/qTInTuWoBpvOuwZebhfdgFvpuAyFGh3tjsNzG88bhLy3GuTi4upS+zwi8BzPxFx1G0RnR9xyCKjYR1/ploX3GtDqLgL0Mv/UI6pS6GIZcimfnBrz7tkUlRoCrzmrGxPnraJ0Wf3RpyT04vD5GtQkud/74vLWkmAzc0SfYiJr8+w7apydQP95EqcvDh+t2k2u1c2HbYH6Hx8vU1Tvp3zidZJOeYqebLzbuI9/mZEjz6AzNda9fgn7I5fgO5+DPyyamU18UjRbP1tUA6IeOCf7wWPEjANpuQ/Dl7sdfEjxntZ37o7Ik4Dx6juO0hy2/CIDfF1ytpjifaHGtXoBx5NV4c/fjOxRcqpgYHe5NKwEwjrwaf2kJziVzAdD1Ho7vYCb+onwUvQFd9+A5G5roze3Eu38XhgEX4vB48FuPoKnfDG3b7jgWVF+/1qSrOjdn4s9raJ2aQLv0BD75YzcOj49RbYOd9I//tIYUs547zm4HwOSV22ifkUj9ODOlLjcfrt0VPGfbNQrts8TpJtdqJ98WnJshqyg4R07S0RVAosG+7GdiR9+A98A+PDl7MfYehqLV4VgbnOPCcskN+K1F2OZ9CYBj1UIMPYdgHnkljhXzUSenYxpwHvYV5RNbmodfjmv7enzFhahi4zEPvhACfpwbfo9GiKhNRkzNGoTeGxvXI7ZjK9xHSnBmH6LlM/eir5vGhgkPAZA1+TMa3nolrZ57gOwPviJ5YE8yLh3B6lE3hfax77XpdJz2PMVrN1OyeiON7hyHxmQge0b0zln3uiXoh43Bdzg7uFTxWf2C182tqwDQDxsbrIOWByeu1HYfii83K3Td1HYZiCr2ROoga1TroDPhegI10A6K0aLrNRzvrg34baWo4pLQ9xuFv7gAb9b2qMToWDYPy+jr8RzMxJuzF8PR+se5NjjPl2X09fitxdjml9c/+h6DMZ97BY6Vv6BOSsPYfySOY+of09BLcO/aiK+4EEVnQN+hJzGNWlIy4+WoxAjgXDEf80XX4juYhffAPvQ9h6DE6HD9EWy7mS+6Fr+1GPuvwfrDtXoR+u6DMA4fg3PVAtSJqRj6jsT5+6+hfZpGXom2fQ9KP32LgNsZGtkScDoqTLBae86UNq04s/ylbtc/H4epaOrUqQwZMiTiozmjR4/mhRdeYOPGjXTo0OGkPq979+6sWbOGZ599lhtuuIGCggIyMjLo3bs3r732WrXbvv766/zvf//joYceIisri/T0dIYOHcqzzz4bmqOke/fuLF26lJtvvpmDBw+G5k2ZM2cO/fuHP1fYsmVLFEXBbDbTpEkThg0bxr333htaerm2eHf+gdNoQtd7BIoxFn/+AeyzJ4WWo1NZEvAfM8xP0RkwDL0cxRhLwGXHl5eN7dPXw2bN9+7ehPOXWWi7D0E/8GL8R/JxfDsd38HoPat/psTp2bYWh9GMvu95qEyx+A7nUPbFW6FJ4lSxCcE78EcpeiPGEVegMsUGh8LnZlP64Uths+mrzHHoB19ydKhkCe7Nv+Nc+mOtx3asYS3qUuRw8d7K7RTaXLRIieXNC3qGlovMLXWEzR1U6nLzzIL1FNpcxOpjaJUaz7RL+9Lk6OoIKkUhs6iM77atptjhJs4QQ9vUBN6/5OwqV1Coad5dG3AZTOh6nBP83+cfxD73/dDyw4o5HlWFc1Y/KHicAk4H/vwc7LPewl90uKqP+FvwbF+Hw2jGcPZIFJMF3+ED2L54+5hzNjFsqLGiN2IcfkUoTl/efso+eiXsnLXNnYa+/wUYzx+Hojfitx7B+dt3uNdHb6LcYS3rBc/ZFVsptLtokRLHmxf1CS0/nFtqDxsYU+r08Mz8dRTaXcTqYmiVFs+0MQNC5yzA4j2HeHJe+YjIR34I/qi9sWcrbup1zN3XWuTatIoykwXT4ItQWeLwHtpP8Qcvh0YfqOOSwo6nv+QIxR+8hOXcKzDc8Qx+axH25fPDVsxQxSUSe/nNwcfYbKV4snZR9N7TlSa/rC1xXdrR69cPQ+/bvBR8FC575mw2XvcIuowUDPUzQn93ZOawetRNtHn5ERrdcQ3OnFw23fQfCuaXn4+HZv2INiWRFhPvRJeegnXDNladdz3uCpPI1ibvrvXBOqjnOcHrZsEB7HOmhK6biqVCHaQ3oB98aei66T+cg/2LN/8Wq+pU50y4nkANtIMCAdTJdYhp0w1FZyBQZsWbtR3X8h+qH7VRg1ybV6GYLJgGX4jKHKx/Sma8Eqp/VPGV65+SGS9jPncsCbc/jb+0CMeK+cHVdo5SzBYso29AZYkj4HTgzcumZMbLePZsrfX4/uTeshq7yYxh4AWozLF4c7Mp/ei18jjjksLmevRbiyj98FWMwy8n/pYn8FuLcP7+S3C1naP03YLzTMVNeDDss8rmTMO1Pjqr0JwpbVpxZlECJzoTq6gx1lfujnYRxGnic7mjXYRaERNrjnYRakXAf2ZUjz57pEUg/100cZFXGPm3sWcff3Lzf4PVL6w4fqZ/gX4vVbGaxr+MolEfP9M/nP8MaR+4jkThkZ8oUJ0B5yyASqeNdhFqXMIj70S7CDUm94HKq+H+naW/+FG0i3BcpzzniRBCCCGEEEIIIcSZQDpPhBBCCCGEEEIIIaohnSdCCCGEEEIIIYQQ1ZDOEyGEEEIIIYQQQohqSOeJEEIIIYQQQgghRDWk80QIIYQQQgghhBCiGtJ5IoQQQgghhBBCCFEN6TwRQgghhBBCCCGEqIZ0ngghhBBCCCGEEEJUQzpPhBBCCCGEEEIIIaqhiXYBhBBCCCGEEEIIcfooKiXaRfjXkZEnQgghhBBCCCGEENWQzhMhhBBCCCGEEEKIakjniRBCCCGEEEIIIUQ1pPNECCGEEEIIIYQQohrSeSKEEEIIIYQQQghRDek8EUIIIYQQQgghhKiGdJ4IIYQQQgghhBBCVEM6T4QQQgghhBBCCCGqIZ0nQgghhBBCCCGEENWQzhMhhBBCCCGEEEKIakjniRBCCCGEEEIIIUQ1pPNECCGEEEIIIYQQohqaaBdACCGEEEIIIYQQp4+iUqJdhH8d6Tz5G3AXl0a7CLXC63BFuwg1ThtninYRaoWrsDjaRagVuqT4aBehVpRl50W7CDXOHO0C1JLS7PxoF6FW9HvpvGgXoVYsuf+7aBehVvR+anC0i1DjtMmJ0S5CrbBvz4x2EWpFUqdW0S5CrSjdsz/aRRDib0Ue2xFCCCGEEEIIIYSohnSeCCGEEEIIIYQQQlRDOk+EEEIIIYQQQgghqiGdJ0IIIYQQQgghhBDVkM4TIYQQQgghhBBCiGpI54kQQgghhBBCCCFENaTzRAghhBBCCCGEEKIa0nkihBBCCCGEEEIIUQ3pPBFCCCGEEEIIIYSohibaBRBCCCGEEEIIIcRppJJxEqeb/EeFEEIIIYQQQgghqiGdJ0IIIYQQQgghhBDVkM4TIYQQQgghhBBCiGpI54kQQgghhBBCCCFENaTzRAghhBBCCCGEEKIa0nkihBBCCCGEEEIIUQ3pPBFCCCGEEEIIIYSohnSeCCGEEEIIIYQQQlRDOk+EEEIIIYQQQgghqqGJdgGEEEIIIYQQQghx+iiKEu0i/OvIyBMhhBBCCCGEEEKIakjniRBCCCGEEEIIIUQ1ovrYzvjx4ykuLmbOnDlkZmbSuHHjavNPnz6d8ePHs3DhQl588UV+//13HA4HjRo1YsSIEdx7773UrVs34rZPPPEEc+bMYf369WHpf37uH3/8QadOnQCYMmUKb731Fnv27EGj0dC4cWMuu+wyHnnkkdC+nnzySQDUajXx8fG0adOGiy++mFtuuQWdTvfX/jEnSd99IIY+w1GZ4/DmZWP7/hO8B/ZVmV/RGzAOvhhdm84oBhP+4kLKfvwMz65Nwf11G4C+2wBU8ckA+PIPYl80F8+uzbUST1WMvYdg6j8SlSUOz6H9lM6ZiSd7b5X5Fb0R84hL0bfrhspowldUgHXuR7i3bwjlUcUmYBk5Bl3LDihaHd6CPEq+mIw3p+r/X03TdRmAvtdQVOY4fHk52H7+DN/BzCrzKzoDhoEXom15ForBiL/kCPZ5X+DZs/mU91nTdF0HYOg97Og5m4P9x0/xHidG46AL0bbqHIrR9vPneHYHY9Q0aI6h9zA0GQ1RWeKxfv4Onh3rayeYanyxYS8z1+2m0O6ieXIsD/bvQLv0hIh5527dz5O//BGWplWrWHHb+aH3k1Zu5+ddB8grdRCjVtE6NY5be7WmfXpijcZxPKZ+52AZPAp1bDyeA1kUzZqGJ2t3xLwpdz2BrnnbSumOzesofO85APQdu2M+exgxDZqgNlnIe+4BPAcyazKEE6I9qx/6HoNRTLH4Dh/A8cssfIeyIudt1wPjyKvD0gJeDyUv31OeEKPF0P8CYlp0QNGb8JcU4lq7GPf6pTUZxnHFDh5J/LmjUccl4M7eR8GH7+HauzNi3jqPPIehdYdK6bb1q8l95YnQ+5g69Um6bAL6Vu1Q1GrcB/aT9+Z/8Rbm11QY1Yrp0AdtlwEoRgv+goM4F32NPy87Yl5N624Yho0JSwt4PZS9/XDE/LpBo9G2741z8Rw863877WU/UYlnd6XJfdcR17kd+jqprBl9K3lzf61+m37dafPSw5jbNMeZfYjdz71Lzsyvw/I0vOUKmtx7Hbr0FKwbt7Pl7qcpWb2pJkM5Ll3nfuh6DEVljsV3OAf7vC+q/m6274npvGvC0gJeD8Uv3hV6rxgtGAZeSEzj1ih6I97sXdjnfYG/KDrn658+/2M3M1fvoNDmpEVKPA8OPot2GZHr/7mbM3nip9VhaVq1ipX3jA69DwQCvLdsC19v2kepy03HOsk8OrQzDRIsNRrH8ZgHjCBu2EWo4+Jx52Ry5NMpuDN3Rcybdt8z6Fu2q5Ru37SG/DefASDu/DGYup2NOiGZgNeLe/8eiud8hHtf5H3Whi827GXm2l0U2p00T47jwQEdaFfFtXzu1iyenL8uLE2rVrHi9gsA8Pj8vLtiK0sz8zhQYsOsi6FH/RTu6NOWFLOhxmOpjrHPUEwDzkNticNzcD/Wr2fgyd5TZX5Fb8Ry7mXo23dDZTQH2+5zPsS1ff3RDArmcy7B0LkP6th4fCVFOFYvoeyXr6vcpxCn099mzpP69etz6NCh0PuXXnqJn376iV9++SWUFhcXx6RJk7j11lsZN24cX331FY0aNWL//v3MnDmTl19+mVdeeeUvlWPatGncfffdvPHGG/Tv3x+Xy8XGjRvZvDm846Bt27b88ssv+P1+CgsLWbRoEc888wwffvghixYtwmKpnQuPtl03TMMvp+zbD/Hm7MXQayix19xD0RuPEbCVVt5ArSZ23H0EbKVYP38Xv7UIVXwSAYc9lMVvLcI2/yt8hXmgKOg79SZ27B0Uv/skvvyDtRJXRfqOPbCcfyXWr6bj3r8bU9/hJFz/EAUvPIDfZq28gVpN4o0P4yuzUvzh6/hLilAlJIfFqRiMJN32OK492yia+iL+slLUKWkEHLZajCyctk1XjEMvwfZjsANM330wlrF3UvLuRAL2CMdTpcZy5d34baWUfTUJf2kxqrhEAk7Hqe+zhmnbdMU07FJs338cLE+PwViuvIvitx+vMsbYq+7Bby+l9Mv38FuLg+es85hjqdXhzcvB9ccyLJffWovRVG3ezgO88tsWHh3UgXZpCXyyfi+3f7OC2VcPJtEYuYPVpNUw++rBofcVH1VtkGDmof7tqRtnwuX18fEfe7htzgq+uWYICVXss6YZOvcm/qJxFH0+GXfmbswDR5Jy22PkPnUX/rLK382CKS+hqMsvPSqTmbRHXsLxx4ryNK0e157t2NctJ/HKW2oljuOJadUZw6CLcMz7HO/BTHRdB2K67DZKpzxFwF4WcZuAy4F1ylPHJIT/3TBoNJqGLbB/OxN/SSGaxq0xDLsMf1kJ3t3R+TFq6tGX5CtuIP+Dt3Du2UH8OReS8cDTZD94I77Skkr5c994FkUTE3qvMluo/8xb2FaVdwBpUtOp+58XsC6ex5GvP8LvsKOt25CA210rMVWkad4JXd9ROBd+iT93PzGd+mK88EZsM58n4Kj6WNpmPn9sSuR9N22HOr0h/rLK/6vapjYZsW7cQfYHX9H1y7ePm9/QqB7d5k5i/+TPWH/N/SQN6kX7Sc/gPJRPwfzg8cy4dAStX3yEzbdNpHjVBhrfOY4e309lUdvhuPOP1HRIEcW07oJh8GjsPwU74fXdBmG+/A6sk5+o+rvpdFAy+cljEsKPp/mSmwj4fJR9NYmAy4G++2DMY+/EOuVp8ETnvP15ezavLNrAo0M60z4jiY/X7eS2L5fw9bXDSTTpI25j1mqYfd2I0PuKsx/MWLWDT//YzVMjulEnzsS7S7dw25e/8eWEc9Bp1DUYTdWMXfuQeOm1FH78Lu59O7EMHkXqXRM5+Pht+CPUQfnv/g805dcUtclCxuOvYV+zPJTmyTvIkU8n483PQ4nRYhkyirS7n+DAY7dEvE7VtHk7c3jlt008OrAT7dIT+GT9Hm6fs5zZ1wytvn1wzdDQ+2OPpdPrY/vhYq7v3pIWKXGUOj28uHgj93y7ko/GDqzhaKqm79ST2FFXUfLlNDz7d2PqO4LEGx8m//n7Iv/f1WoSb3oEf5mVohmv4y85gjohGf8xbXfToFGYeg+h+NN38ebmEFO/CXGX34Tface+9OdajE6cqf42nSdqtZr09PTQe7PZjEajCUvLycnhzjvv5M477+TVV18NpTdq1Ih+/fpRXFz8l8sxd+5cLrvsMq677rpQWtu2le+SHlu2OnXq0L59e4YOHUrHjh15/vnneeaZZ/5yWU6EofcwnGuX4PpjGQBl335IQosO6DufjeO3Hyvl1591NiqDiaIpz4HfB4C/uDAsj3vHhrD39l+/Rt9tIJr6TaLWeWLsNwL77wtxrFkCgHX2dHStO2Ho3h/bwm8r5Td0649iNFH81pOhOH1FBWF5TAPOx1d8BOsXk0NpvijfVdL3GILrj6W4NwQv+vYfPkbbrB26Tr1xLq98UdB16oNiMFH2wfPg9wPgLyn8S/usafpeQ3GtW4rraHls33+Mtnl7dGf1wbnsp0r5dWcFYyyd/nz5OVshRs/uzaFRKH8XH/2xm4vaNWRUm4YAPDqoI0sz8/hmaxYTuraIuI0CJFfRCAYY0bJe2Pt7+7bjm6372VVopbsx5bSV/WRYBp2Hbfmv2FcuAqD4s8kY2nbG1GsQpfPnVMofsJeF/ew0dulNwO0K6zyxrw5+z9WJ0YkpEl23Qbg3LMe9aSUAjp8/I6ZpW7Tte+H6fX7kjQKByJ3YR2nqNsa9+Xe82cG7n+4Ny9B26oMmo2HUOk/ih1+EddFPlP4WvHGR/8FbGDt2xdJ/GMXfzaqU328L/3Fq7tmPgNtF2aryEReJl1yDfcMajnw+PZTmPZxbQxEcn7ZzPzxbVuLdGrwr71rwFZrGbYhp2x33mgVVbne8zmbFFIuu/0U45kzGcMH1p7XMpyL/5yXk/7zkhPM3vHEMjn05bHsw2ElUtn0vib270Piu8aHOk8Z3TyB76hfkzJgNwKZbJ5I6YgD1x49mz4tTTn8QJ0DffRCuDctC3037T58S16wd2g69ca2cF3GbAAECkW68AKrEVDR1m1Ay5Wn8BYeO7vMz4u78H9o2XUPX0tr28ZqdXNS+MRe0D47SfmxoF5buPcQ3mzOZ0KNV5I0UpcprSiAQ4JN1u7i+Z2sGNAuO2n7q3O4MfWcui3Yf4JxWDWokjuOJHXoBpUvnYVse/C4e+fhdDO27YO4zGOtPsyvl91foIDN160vA7cK+dlkozb4q/HtQNGsalr5D0dZrhHP7xhqIonofrdvNRW0bMartn+2DTizdl8s3WzKZ0K1lxG0Uqj6WFl0M71x8dljaQwM6cs3nizhktZMRazy9AZwgU79zsa9ciGP1YgBKvpqKrs3RtvuCym13Y/cBqIxmCt98osq2u7ZRc5yb1+Datj70d/1ZvdE2aIodIWre36bz5ETMmjULt9vNgw8+GPHv8fHxf/kz0tPTWbx4MVlZWTRs2PCktm3VqhUjRoxg9uzZtdN5olajyWiIY8kP5WmBAJ49W9HUaxpxE22rTniy92A+70q0rTrht5Xh2rQy2NESiHAnTVHQtu2GotXirWaYXY1Sq4mp2zi8og0EcO/aQkzDZhE30bfpjCdrN7EXjUPXtgt+mxXnHyuCHS1H49S37Yxrx0bir7qDmKat8JcUYV/+C45Vi2ohqAhUatQZDXAsO7bTK4Anczuauk0ibhLTogPenL0Yh1+BtkVH/PZS3FtW41z+UzDOU9hnjVKp0WQ0wLE0vDzufduIqdcEZ4RNtC064s3Zg2nEWLQtOwVj3LwKx7KfIp+zfwMen5/th0vCOklUikL3+ilsOlRU5XYOj4+R0+cRCARolRLPbb1b0zQptsrPmL0lC7NWQ/PkyHlqnFpDTP0mWOcdM1w2EMC5YyPaxpE7iCoy9R6Mfd1yAm5XDRXyNFCpUafXr/BDLIA3cweauo2psuRaHbE3PwWKgi8vG8eSufgLyjsNvAf2EdOsPe6NKwiUlaBp0Bx1QiqOfV/VZDRVU2vQNWpG0bdflKcFAji2rkffrIofZxVY+g2jbOWS8uOpKJg6dqP4h6/IeOApdA2b4snPo+jbL7CvW1kDQRyHSo0qtR7u1cd2kgTw7d+JKr2aa36MFtOEx0BR4Tucg3v5D/iP5B2TQUF/zhW41y2qkP7PEd+zEwULVoSl5c9fSpuXHwVAiYkhrnNb9jw/qTxDIEDBguXE9zyrNotaTqVGnd4A5/Lw72bwGlf1d1PR6oi99WkURYU3dz+OxXNDHSX8OTLO6wnbJz4vmnpNo9J54vH52ZZXFNZJolIUejRIY+PBwiq3c7i9nDvpewIEaJWawO1929E0OQ6AAyU2CmxOejRMC+W36GJol5HIxoOF0ek8UWvQNmhKyY/H1IGBAM5tG9A1idypUJH57CHYVi+t+pqi1mDpOwy/3YY7Co9oB9sHxUzoVqF90CCFTblVj95yeLyMnPYTgQC0So3jtt5tq2wfAJS5PSgEj2lUqNXE1GtM2YK55WmBAK6dm9E2bE6kMd66tl3wZO0i7uIJ6Np1wV9mxfHHcmwL5obae+7MXRh7DkKdnI6vIBdNRgO0jVtinftR7cQlznj/qM6TXbt2ERsbS0ZGRo19xsSJE7n44otp1KgRLVq0oFevXpx77rlccsklqFTHn1+3VatWzJsX+U4HgMvlwuUKr9BdXt8pDY9UGS0oanWlx1b8NisxKZH/R6qEFGIat8a1cSUlH76OOikV83lXgUqDY1F5BadOrUv8DY+CJoaA24X107fx5R+KuM+apjIdjbPCMGhfWQna1MhxqpNS0SYk4/hjOUVTX0STnEbsReNBrcY2P/hDT52YgrHXYGxLfqJswVxi6jch9sJrCPh8ONfW/nPqitGMolJXulPtL7MSk5QecRt1fAqqRkm4N/9O6Wdvok5MxTh8LKjUOH/77pT2WZPKyxN+zgZspSjJVRzLhBRUjVvh2vQ71k/fQJ2QiuncK0ClxrHku9oo9kkrdrjwBQIkVRh+m2TUkVkU+e51owQzjw/pRPPkOMpcHj5ct5sJs35j1pWDSLOUP7O8ZF8uj/60BqfHR7JJzzsX9SbBEJ1HdlTmo9/NCkOp/dYSYtIizz91rJiGzYip04AjH79bU0U8Lf48b/0Vv0d2K5qktIjb+I4cxv7Dx/jzD4DOEHxc7qr7sE59lkBpMQCOX2ZhPGcscbc9S8Dng4Af+0+f4suJTke12hKLolbjsxaHpXtLijFk1D/u9romLdDVb0T+1NfL9xkbj8pgJP68Szny5YcUfv4Bxg5dSL/zMQ4+9wjOHbU7YkwxmILHssIokoC9DHViasRt/EWHcc7/HH/BIRSdHm3nARgvuwPbRy8SOHpd0nYdCH5/VOc4+at0acm48sLv8rryCoiJs6DS64hJiEOl0eA6XFghTyGmllHojOeY76a98jVFXeV3Mw/79x/hO3wARWdA12MIsVffT8n7TxMoLcZfmIuvpBDDgAuw//QJAbcbXfdBqGITUJnjaiOsSv68plR8PCfRpCfzSORrSsNECxOHd6V5SjxlLg8zV+9gwicLmDXhHNIsRgptwdsVFR8TSTLqKbBFupVR89RHrykV6yBfaQkxGfUib3QMbaPmaOs2pHDGW5X+ZmjfleQb7kPR6vCVFJH36kT8ZbX/6HLV7QM9mUciP2bWKMHM40M70zw5ljKXlw/X7WLCF4uZddWQsPbBn1xeH28s28I5LethjlLnSajtXrF9UFaCJrVOxG00Samom7XBsW4ZR95/AU1yGnEXT0BRqymbFxx1ZFswF5XeQMpDL0HAD4qK0h+/wLluWcR9CnG6/aNW2wkEAie0XrXZbA69br755pP6jIyMDFasWMGmTZu466678Hq9jBs3juHDh+M/+ljEXynjc889R1xcXNjr9WUbqsx/uimKgt9mpWzuDHyHsnBvXo19yfcYuvUPy+crzKXo3ScpnvwsztULsVx8HeoqOmT+lhQFf5kV65dT8R7IxLnhd8oWzMXYc/AxeVR4DmRS9tMXeA9m4fh9IfbfF2LsNSh65T5ZioLfVort+4/w5e7HvXUNzmU/ou/cL9olO33+jPG7D/EdCsboWPoD+i79j7/tP0iHjETOa92AlilxdKmXzIsju5Ng0PHV5sywfN3qJfPp2AFMv7QvvRum8vCPazhi/xuP2qiGqdcg3Aeyqpxc9p/Md3Afni2r8B0+gC97N7avp+C3l6Hr1CeUR9elP+o6jSj78j1KZzyPY+HXGIdehqbhid1h/bux9BuGa/++8Mllj14PbetWUvLzHNz791L83Szs61cTO+jcKJX05Phzs/BuX4u/4CC+A3txfP8BAYeNmHa9AFCl1iOmU1+c8z+LcknFifAd2Id78+/4Dufgzd6FbfYk/I5SdGcdfezB78c2ezKqxFTi73mZ+AdeI6Zhi+Ak7H/T0Y6RdKyTxHltG9EyNZ4u9VN46YLexBt1fLWh6on2/+nMZw/BnZMZcXJZ545NHHr6HnKffxjnlj9IuekBVJbodIadrA4ZSUfbB/FH2wc9jrYPKo+c8fj8PPzDKgKBAI8M7FT7hf0rjrbdS2a9jzdnH871Kyn75Zv/Z+++45sq9weOf5K0TZqkSXcLZcveeyN7igguwIWIC70u7r0qoKhXXNeFC5WroDhxIoqKbFD23qvQ0kL3btLs/P5ISZs2DaC00Z/f9+vVl/bkOafPw3POc06+5xlo+1Q8u2s69Sa8az8KP3mL3FdmU/T5O+gHXUF49wFBzLj4O/lL9Txp2bIlRUVFZGRkBOx9UnlFHYPB4P1vUVH1iabOzZNiNPo2oO3bt6d9+/bcc8893H333QwYMID169czeHDgiZcOHz4ccNWgmTNnMmPGDJ9tJc/fH/CYNXGZS3A7nSh1vt32lDqD30m1wBPx9bzhrHgAcOacRRkRCSoVOJ3lG5248rMBMGekEpLUFE3vYZi+/+h35fWPcJnKy1nljY9Kb6y5nMWFuF2+5XRknUFliPSW01VSiCPLdw4XR/ZZNB16XPIyXAi3uRS3y4lC5zvZsFJvqHHyQVdpkWdcaOX6zM3wPBAoVb/rmLWpIj++56xCF+F9g1uV33M2N9NbxnPjYv9MIsPVqBQK8qoENfLMVmK1Nc9pUlmoSkmrOCPpRb6dW8NDQ2gYqadhJHSoF834D1ex9GAqt/W4sGEyl5KrtPzarPIAqjQYq705rEoRpkbbrR/Fy5fUYg4vjXPnrVIXQeWzTak11DhvQjUuF86sNJSR5fO4hISiufxKTN/8D8fJgwDYcs6iim+AuudQHKlHL20hLoCzpBi30+lpJysJMXpWNAhEEaZG3/tyCr7x7TrtLCn2rG5x5rTPdtvZNDQt216SfF8Md5nJU5faCCq/DlFo9dV6FtXI5cKZc8a7Ip2qflMUWj262x6rOJ5ShXrAOMK6XI5p0TOXsAS1x5qVizoh1mebOiEWe1EJLosVW24BLocDdXxMlTQxWDN9e6zUFe+1qTX4XJsKXcSFTwTqcuHMTEcVVTHHkjMzjZKFz4Fag0IZgruslIgp/8aRcTrAgWrPuXtKfpUeIfkmCzEB5smqLFSlpHV8FGmFnt4N5/bLN1t9VmTJM1toFR95aTJ+kZzl95SqbZAqwnhBbZCuR38Kv/vM7+dumxVHTibkZJJ36hj1n56Pvt8win+u22GSNT8fWIjVXVgvUu/zQaHv84Hd6eLRn7aRUWLmnav7B63XCVR6dq/6fKA34irvfVmVs7jQ8z2k8rN79hlUhijvs7vhyhsoXbMMyx7PEENHZhqqqFj0Q6+ibMdft+ef+Ov4S/U8ufbaawkLC+O///2v38/PBUKaN2/u/YmP93TDbdWqFenp6WRl+Y5F3rVrFxqNhkaNah7b2bat5wHPZAq8CsuRI0f4+eefueaaa2pMo1arMRgMPj+/e0ZzpxNHRiqhzdpUbFMoCG3WBkcN3b7tp094uiZX6h2jikmsaLBqolD4rKhQp5xO7GdOEda80sS9CgVhzdvV+MbalnLc052+UjlD4up5br7l5bSlHCOkSm+akNjEapNT1RmXE2fGaUKbVqpPFIQ2aY3jjP83RY70ZJRRcVSed10ZneC5Mbmcv+uYtcrlxJFxmtCmledPUBDatA32dP/5saedKJ84tNI5Gx1fUcY/Ic9DqpHtaRUTELvcbran5dChnv+liqtyutycyCs+b7DF5XZjd56/V1ytcDqwp51E06pDxTaFAnXLDthO+V/a9pzwLn1QhIR4J4f9U3M5cWamVekRoiCkScuAy8L7UChQxdWvGGapVJWvOlTlTbbbVX2ZpbridGBNOYG2XeeKbQoF4W07YzlxJOCu+p4DUISEUrJpbfVjnjpOWJUu96GJ9XHkZV+ijF8ElxNXdjqqhi0qbVSgatgCV6b/pW2rUShQxtTzBs7sR3Zi/uRlzJ++4v1xlRZh27UO87cLznOwP4/CLXuIGdLbZ1vs0L4UbNkDgNtup2jXQWKH9KlIoFAQM7gPhVt8l1mvMy4nzszThDTxvTZDG7e6uGszvr7/YIvVgrusFGVUHKrExtiP1/3kouC5p7RJiGLb6YprxuV2s+10Nh3rxwTYs4LT5eZEbpF30tEko45YnYZtqRXPxaVWOwcy8i/4mJec07OMsKZ1peXPFQo0bTpiPRk4oKzt1g9FSCimresv7G8plShC6/651vN8EOn/+aCGpYqr8j4fVAq2nAucpBWW8vaE/kQGaTivl9OJPf0U6ha+z+7qFu2wpfpfItp+6hiqWN9nd1WVZ3dFaBi4fO+bblcQ75vibyfoPU+Kiop8eooAxMT4b7QbNmzIq6++yj/+8Q+Ki4u55ZZbaNKkCenp6SxevBi9Xs/LL7/sd9+RI0fSqlUrJk+ezNy5c0lMTGTXrl089thjPPDAA6hUngDG9OnTqV+/PkOGDKFBgwZkZGQwd+5c4uLi6NOn4oHB4XCQmZlZbanizp078+9///vS/ONcgLJNvxAxYRqOsyk40k+h6TMMRZjaO/ZPf/U0XMUFmFd5xgpatq1F03MIutGTKdu6GlVMAtrLx1C2ZbX3mNphV2M7fgBXUR6KMA3qjr0IbdKK4o9e9ZuHumDe8BPGiXdhTz+FPS0Z3YBRKMLU3hm8jZPuwllUQOlPnokOzZtXoe03nIhxN2P+7RdCYhPRDRnns4yZacPPxPxjDroh47Ds3Upow2aE9x5M8VcLg1JGAMvWVejG3YojIwXHmRQ0vYZCaJh3ZRrduFtxlRRStnYpANad69F0H4R25EQs29egio4nvN9oLJUmQzzfMeuaZfNK9OOn4jybiuPsKTS9hqEIDcO6p/ycvWoqrpJCzGs8c9NYd6xH02Mw2lETsWxbgyomgfD+Y7BsqzThY6jaZ2UWVWQsroQGuMvMuIqDs3zmTV2a88TKXbRJiCxfqjiZMoeTcW09gdo5v+wkThfOff08wdkFW4/SITGKhpE6SsrnPMksNjO+nSd9md3B+9uPMbBpIrE6DYUWG1/sO0WOycKwFv7HD9eFkjU/EH3zvdhOJ3uXKlaq1Zi2eL5ER938D5xF+RQv+9RnP12fIZTt215ttRbw9AIIiYpFZfQEmkISPOVzFhfW+Maqtlm3r0F7xc04Mk/jzPAsVUyo2rvCh/aKm3GVFGHZ4Jk7St13FM6zKbgKclBowlH3HIbSEF0x2aTNguP0ccIHjafMbsdVnE9Iw+aEtetJ2ZrqK0rUlcKfvyX+jhlYTx3HcvIYxhFXoVBrKNngWVEo/s4ZOAryyP/yQ5/9IgYOx7Rrs985BAp//JqEex+h7OgByg7tQ9uxG7ouvTj73KN1UqaqbLs2oBkxCWd2mmep4i6XowgNw35oGwCaEZM9wY9NnsnYw3oOx5mZiqswF4U6nLBug1EaorAc3Oo5oMWMy1JlnQeXE7epGHdh8FZwU+m06JpXvBjSNm2AoVNrbPlFWNIyaDV3BpqkBPZOfQSA1AWf0/ieG2n93L9J++BrYgf3pt51o9k+7i7vMU7NW0SnhS9QuPMARdv30eT+KYTowkn7MHjnrGXbGnRjb8GZmYrjbCqaHuXX5j7Pm2nt2Cm4SgqxrP8OAE2/0TjOpuAqyEah1qLp7bk2z92DAEJbd8FtLsVVnI8qLonwYddhP7YXx6nDQSkjwI3dW/LET9tomxBFu3rRfLrzOGV2B+PaNwHg8R+3Ea8P577LPcHsBZsO0aF+NA0j9ZSUz3mSUWxiQgfP/DQKhYIburbgvS2HaRQV4Vmq+LcDxOnDvavvBEPxyu+InfoAttQTWE8dxzDsShRhGkp/8zynxkx9AGdhHoXf+vZy0/cfhnnP1mo9yBRhaoxjrsO8dxvOogJUegMRg0cTEhmNeUdw5sm4qWtznvhlJ23iIz1LFe9Opszu9K7ON2fFDuL04dzXzxN4WLD1SPnzgacuP9p5vPz5oAngCZw88uNWjmQXMW9cH5xut3feGqMmjFBVcN6Vmzb8SOSku7GnncR+Ohnt5aNRhGko21b+7D55Oq6ifEp+9PRANW1eibb/cAzjb8G0cQUhcYnoh16FeWPFSoyWQ7vQD7sKZ2Eujsx0QpKaoBs4JniLPYi/naAHT9atW0eXLr6ztE+bNo0GDfxPDHXPPffQsmVLXnrpJSZMmEBZWRlNmjRh7Nix1YbDVBYSEsIvv/zCrFmzmDx5Mjk5OTRt2pQHHnjAZ79hw4axcOFC3n77bfLy8oiNjaVPnz6sXr3aJ6hz8OBB6tWrh0qlwmg00rZtW2bOnMn06dNRq+su2ms7sB2TNgLtkPEo9QYcmWkUf/Sq942Yyhjt0/3NVVxA8Uevohs1kah7nsJVUkDZllU+yxordQYirp6GMsKI21KGIyud4o9exZ58qM7KVZVl71ZPvkZegzLCiP1sKgXv/df7pkgVGetbzqJ8Ct57gYgrbyJ2xrM4iwsw/7rCZ1ljR/pJCj+ch370RPTDxuPMz6Hku4+x7A5OUAHAdmgHCq2e8IHjUOoMOLPSKfnsde+Er0o/9Vny6etoh1+H8c45ngfE7Ws8q+1c4DHrmu3QDsy6CMIHjfOcs1nplHzqW0Z31TJ+8hraEdcTefcTuIoLsWxb7Vltp1xI/cYYp/zL+7tu5PUAWPZswrTsg7opWBUjWiZRUGblnS1HyDNZaRln4I2rehNT3pMks6TMZ36kEquNuWv2kGeyYtCE0jo+koXXDaBZ+Wz6SoWClIJSfji8ncIyG8bwUNrFR/Hetf0Dzrhf28p2baJQb8BwxURUEZHYz6SQ+9Yz3iF1IdGx1eYJCImvj7p5G3LefNrvMcM7dCf65nu9v8fc9hAAxT9+QfGP1ZfLrQv2I7so0+oJ738FCl0EzuwzmL54y7t8rdLge20qNFq0o27wDEmzlOHMOk3px6/gyqtYbce0bCGagVehvXIKCo0WV3E+lo0/YNvza52Xz5unrRvJizASdfVNhBijsJ4+ScaLc7zDsEJi4nyuT4DQxCTCW7Xn7Auz/R9z52ZyPniLyLHXEXvTXdgzzpD5xrNYjgXnnuI4vgdruA5175EotAZcuWcwL/0f7vIlTxURkSh96jIczdDrUGgNuK1mXNnpmL9440+/qo6xW3v6rK4Yatv2Jc+qOWmLv2HftJmo68UR3rCi92VZSjrbx91F25dn0uS+W7CkZ7L/rse8yxQDZHz5E2Fx0bR84n7UiXEU7z3MtrG3Y8uuecWX2mY/vJMyrR7NgLGee1x2OqVfvFnp2ozy9Ogqp9Bo0Y6+AaXOgNti9gzR+egln2tTqTeiGXpt+fCfImwHtmLxWSWu7o1s3ZACs5W3fzvoGVoTF8mb1w7wDr/JLDajrPTyvdhq4+kVO8kzWzCoQ2mTEMWiyUNoVml1tik9W1FmdzD3lx2UWO10TorlzWsG/P4e0ZeAecdvFEQYiRw3GZUhClv6KbJff6rSPSWu+j0loT6aFm3JevWJasdzu1yEJiYR1+cRVHoDTlMJtpTjZP53FvaMtDopU1UjWjYofz44TJ7ZSstYI2+M71tRl1WfDyw25q7eTZ7ZikFd/nxw/UDv80GOqYz1Jz3n7+RPfZdbf/ea/nRvEEcwWPZsoVhnQD/yWlSGSOxnUsn/3/OVnt1jfK5NV2E++QtewHDVTcT963mcRQWYNv7sWW2nXPG3HxIx6joMV0/1Ducyb15N6crgBXDF34vCXfUpSNS53DnTgp2FOuEo+2tOankxwoy6YGehTrhdf49mQx0TGews1InCw3W/XGNd0zf0v/LG/zd5B///1yVAfLcLWzr5r27Dv/6cK4pdan3/M/T8if7iwmIvbEjGX13u9rpdQStYYjr/PdqgkuTgzPNTl+q9/On5E/1F5Tw2NdhZuChxcxcFOwvnFfSeJ0IIIYQQQgghhLh0FMq/1PSmfwnyLyqEEEIIIYQQQggRgARPhBBCCCGEEEIIIQKQ4IkQQgghhBBCCCFEABI8EUIIIYQQQgghhAhAgidCCCGEEEIIIYQQAUjwRAghhBBCCCGEECIACZ4IIYQQQgghhBBCBCDBEyGEEEIIIYQQQogAJHgihBBCCCGEEEIIEYAET4QQQgghhBBCCCECCAl2BoQQQgghhBBCCHHpKJSKYGfh/x3peSKEEEIIIYQQQggRgARPhBBCCCGEEEIIIQKQ4IkQQgghhBBCCCFEABI8EUIIIYQQQgghhAhAgidCCCGEEEIIIYQQAUjwRAghhBBCCCGEECIACZ4IIYQQQgghhBBCBCDBEyGEEEIIIYQQQogAJHgihBBCCCGEEEIIEYAET4QQQgghhBBCCCECkOCJEEIIIYQQQgghRAAhwc6A+PtwlFmDnYVaF6rTBDsLdSJErwt2FuqE2+EMdhbqhCmnONhZqHXh8VHBzkKdcDndwc5CnVCEqIKdhTrR9z9Dg52FOrFpzupgZ6HWDf7fDcHOQp1wOVzBzkKdUGrUwc6CECIIJHgihBBCCCGEEEL8f6KUQSaXmvyLCiGEEEIIIYQQQgQgwRMhhBBCCCGEEEKIACR4IoQQQgghhBBCCBGABE+EEEIIIYQQQgghApDgiRBCCCGEEEIIIUQAEjwRQgghhBBCCCGECECCJ0IIIYQQQgghhBABSPBECCGEEEIIIYQQIgAJngghhBBCCCGEEEIEIMETIYQQQgghhBBCiABCgp0BIYQQQgghhBBCXDoKpSLYWfh/R3qeCCGEEEIIIYQQQgQgwRMhhBBCCCGEEEKIACR4IoQQQgghhBBCCBGABE+EEEIIIYQQQgghApDgiRBCCCGEEEIIIUQAEjwRQgghhBBCCCGECECCJ0IIIYQQQgghhBABSPBECCGEEEIIIYQQIgAJngghhBBCCCGEEEIEIMETIYQQQgghhBBCiAAkeCKEEEIIIYQQQggRQEhtHTgnJ4c5c+awfPlysrKyiIqKolOnTsyZM4d+/frRpEkTHnzwQR588EGf/Z588kmWLl3Knj17avz9qaee8qY3GAx07NiRuXPnMnDgwBrzk5KSQtOmTdm9ezedO3f2+WzQoEF07tyZefPmAbB3714ef/xxtmzZQnFxMYmJifTq1Ys33niD+Ph477HO0ev1NGrUiEGDBvHggw/SokWL3/3v9ntoeg4mvN8olHojjqw0TMs/xXHmVI3pFZpwtEOvRt22K4pwHa7CPEp/+hz78f2e4/UYhKbHIJSRsQA4c85iXrcM+/EDdVKemuguH0nE0HGoDJHYz6RS8OVC7Kkn/KaNe+BJ1C3aVdtedmAXee885/3dcMVEdH2HogzXYT15hMIl/8ORk1lrZbgQ6h6DCe830lOfmWmYf/rs/PU5ZAJhbcrrsygP089LKuqz/2jUbbqiiq2H22HDkZaMaeVXuPKy6qpIfoV17o+6xxAUOgPOnDNYVn+NM/O037Sh7XqiHX2jzza3w07xvH/5bFNGJ6C5/EpCGjYHpRJnXhbm7xbiLimotXIEEtqxH2HdBqHQRuDKPYtl3be4stL8pg1p04PwEZN8trkddkrfetT7u2b4JELb9vBJ40g5Qtl3/7v0mb8IkSOuJPrKa1FFRmNNPUn2ovlYko/6Tdtwzn/RtutUbXvprq2ceWEOAAq1hrgbpqHv0QdVhAF7diYFP31H0arltVqO81F3H0R43xHlbW2659o8m1JjeoU6HO2Q8YS17ooiXIurKB/TiiXYT3ja0pBGLQjvO4KQeo1RRkRSvGQ+9qN76qYwARiHjyXqimtQGaOwnT5F9odvYz15zG/apNnPo23bsdp20+5tnH3pSQBafPKj331zPn2fwuVfX7J8X4wv9p5k8a4T5JmttIg18PDAjrRPjPKbdtmh0zy1arfPtjCVks33Xun9/d0tR1hx/AxZJWWEqpS0iTdyT582dEiMrtVynI+66+Woew1HqTfgzE7H/MsXODNS/aYN69Ab3dhbfLa5HXYKX3zA+7tCG0H44PGENm2DQqPFkXYc8y9f4CrIqdVyBBLdvzvN/jkNY9f2aOrHs+Oae8hatjrwPpf3pO1Lj6Jv2wJLWgYnnnub9MXf+qRpPP0Gms2YhjoxjuJ9Rzj44NMUbd9fm0U5ryU7j/Hh1sPklZbRMj6KR0Z0o3392PPu9/OhFGZ+t4lBLRrw6rWXe7d3ee5Tv+kfHNyZKb3bXrJ8X6yIIWMwjprgaYPSTpH3yQJsp477TZv48DOEt+5Qbbt573ayXnsagNjbHiCi/1Dfz/fvIuvVJy953i/Ukl3HPXVpstAyPpJHhnWjff2Y8+7386FUZn6/mUEtknj16gHe7WabndfX72PtsXSKLDbqG3VM7taS67o0r81inJe233B0g8aiijBiP3ua4m8/xJ6WXGN6hUZLxJjr0XTogVKrx1mQS/HSj7Ae2QNA3OzXCImOq7af6bdfKP7mg1oqhfizeuutt3jxxRfJzMykU6dOvPHGG/Ts2bPG9IWFhcyePZtvvvmG/Px8GjduzLx58xgzZswF/81aC55cc8012Gw2PvzwQ5o1a0ZWVharV68mLy/vDx+7Xbt2rFq1CoD8/Hxeeuklxo4dS3p6Okaj8Q8dOycnh6FDhzJ27FhWrFhBZGQkKSkpLFu2DJPJ5JN21apVtGvXDrPZzP79+3nttdfo1KkT33//PUOHDq3hL1xaYe17oBs1kdLvP8KRfpLwPsMx3PIQBa/Pxm0qqb6DSoVhyj9xm0ooXvI2ruIClJExuMvM3iSu4gJMK7/GmZcFCgWazn0xTL6Pwrefwplztk7KVVV4175ETphCwZIF2FJOoB98BXH3zibzPw/gKi2ulj73fy+hUFWc3kqdnoSZL1G2e7N3W8Swq9APHE3+R2/izMvGMHYSsfc+Rubch8Bhr5NyVRXWrge6kddj+uFjHGdOouk9jIibHqTwzcdqrs+bZ+AylVDyxTu4SgpQGmNwWyrqM7RJKyzb1+I4kwJKJdqhV2O4eQaFbz0OdlvdFa6S0FZd0AyaQNmqL3BmpKDuOgjdtdMpWfgMbnOp333c1jJK3n+mxmMqjTHoJj+Aff8WSjf9BFYLyth64AxOXYa06Ix6wDgsa7/ClXma0M4D0I6/E9PiF3CX1VxG0+IXKm+plsaRchjLyiUVKZyOS531ixLRZyBxt9xJ1ntvYDl+hKgxE2gw6xlOPTQNZ3FRtfRnXn4aRUjFtamKMNDkv29TsmWjd1v8LXehbd+ZjDf/iz0nC13HriRMuw9HQR6mnVvqpFxVhbXtjm7EdZiWf4LjzCk0vYYSceMDFL41B7fZz7WpVGG46SFc5hJKvnoHV3Ghp62tdG0qwtQ4stKx7v6NiIn31GFpaqbvfTmxN95BzsI3sSQfIXLUeJIefZrUf93ptz4z5s1FERLq/V2lj6DRc29Rsu1X77aT9/gGPnWduhN/xwOUbvut9goSwC/HzvDKxoPMGtKR9glRfLrnJP/4bjPf3DyUaK3a7z66sBC+ubnivq5Q+H7eKErPIwM7kGTUYXU4+WR3Mvcu3cx3twwjqoZj1rbQNt0IH3oN5p89QT5NjyHoJ95H8YIna25nLWUULXiq0gbfNkh/7V24nU5Kv34Xt7UMTc+h6CffT/H/ng7a/USl01K87yhpH3xN96/eOm/68CYN6LHsXU4v+Jw9t/yLmCF96PDuXCwZOeSu9Jy39a4bTZsXZ3Lg3ico3LaXpvdPodfy91nXbhS2nPzaLpJfKw6l8vLqXcwe1YP29WP5dPsR7lmylqV3Xkm0TlPjfmcLS3l1zW66NKz+hXPlfRN8fv/t5FmeWr6Voa0aXfL8Xyhdj/7ETJxG7kfzsZ48hmH4OBJnPEX6rOm4Sqq3QdlvPef7vKePIOmp1zHt8G1fzPt3kvv+a97f3UF6zgNYcfg0L6/ZzewR3WlfP4ZPdxzlni/WsfSOKwLXZVEpr67dQ5cG1evy5TW72Z6azTNX9qa+UcfmU5k898tO4vThDGqRVJvFqZGmc28M426i6KuF2E+fQDdgNNF3PkrOC//0++yOSkX0XTNxlRZT8OFruIryUUXF4qr0HSVv3mOgrBg4EZLYkJi7Z2HZu7UuiiT+RJYsWcKMGTN455136NWrF/PmzWPkyJEcPXqU+Pj4aultNhvDhw8nPj6er776iqSkJFJTU4mMjLyov1srw3YKCwvZuHEjL7zwAoMHD6Zx48b07NmTmTNnMm7cuD98/JCQEBITE0lMTKRt27b85z//obS0lGPH/L8Zuxi//fYbRUVFvPfee3Tp0oWmTZsyePBgXn31VZ/eJgAxMTEkJibSrFkzrrrqKlatWkWvXr2YNm0aTqfzD+flQoT3HYFl5wasu3/DmZNB6fcf4bbb0HTt7ze9pkt/lOE6ij99E8fpE7gK83CkHMOZle5NYzu6F/vx/bjys3HlZWFe/S1um5WQhs3qpEz+RAwZi2nTasxb1uHITKfw8wW4bTZ0fYb4Te82l+IqKfT+aFp3xG2z+gRP9IOvoHjF11j278B+9jT5i99EZYwivFMPv8esC5o+w7Hu2oh1j6c+TT98DHYb6i7+61PdpT+KcB0ln7+FI628PlN967Pk43lY92zCmXMWZ1Y6pUsXooqMIaR+47oqVjVh3Qdh278J+4GtuPKyKFv5BW67jbD2vWveye3GbS7x+alMPWAsjpOHsGxYhiv7DK6iPBzJB2r8klDbwrpejv3gFhyHtuPKz8K65mvcDjuh7WqOiANVylg9726n0/ffwFpWW0W4IFFXXE3R6p8pXvcLtjOnyXrvdVw2K8bBI/2md5lKcBYVeH90Hbvisloo2bLBmya8VVuK16+k7NA+HDlZFK3+CWvqScKbt6qrYlXjuTZ/xbp3E87cDEzLPym/Nvv5Ta/u0s9zbS6ZjyMt2XM+Vrk27ScOULb2O2x/gt4m50SNnkDx2p8p3rAS25k0she+idtqxTBwhN/0LlOpT31qO3TBZbNSurUiGFb5c2dRAbpuvcvrNji9/D7efYIJ7Rszrm1jmsUYmDWkE5oQFd8d8t8jA0ABxOo03p8Yre8XnNGtGtCrUTwNjDouizEwY0B7TDYHx/P8fEGoI5qeQ7Du/Q3b/i248jIx//wZOGyEdexb4z5u3LhNxRU/ldpZZXQ8IUnNMK/4HGdGKq78bMw/f44iJIywtt3rokh+5azYwLEn5pH13aoLSt/4zkmUnUrn8MMvUHrkJKnzPyHz6xU0feBWb5qmD04l7f0vSP/wG0oPJ7P/nidwmi00vPWaWirF+X287QhXd7qMqzpexmWxRmaP6okmJISl+2p+i+90uZi1bBN3D+hIg0h9tc9j9eE+P+uOnaFH4wQaRFVPW1cMI6+iZMMvlP66GvvZNPIWz8dtsxIxYJjf9C5TKc7iQu9PeLsuuG1WTNt9gyduu90nncts8nu8uvDx9nN12cxTlyN7oAkNYen+kzXu43S5mPX9Fu7u354Gkbpqn+89k8fY9k3o3iiB+kY913RuTsv4SA5m/PGX1r+X7vIxmLespWz7ehxZZyj6+n3cdivhPf2PFND2HIRSq6dg0SvYU47hLMjFdvIIjoyKXskuUwmukiLvj6ZtFxy5mdiSD9dVsf5SFArlX+rnYrzyyivccccdTJ06lbZt2/LOO++g1WpZuHCh3/QLFy4kPz+fpUuXekfBDBw4kE6dqveGDqRWgid6vR69Xs/SpUuxWq218Se8rFYrixYtIjIyklat/viDdWJiIg6Hg2+//Ra3u/pb30CUSiUPPPAAqamp7Ny58w/n5bxUKkLqNcZeucFwu7EnHyKkwWV+dwlr3Rl7WjL6sTcS/fArRN77H8IvH1P9Ndo5CgVh7XuiCAvDEaCbXa1ShRDasBmWo/sqtrndWI7uI6xpyws6hK7vUMy7NuG2ec5HVUw8KmMU1iMVXXDdFjO2lBOENQnSFzSVipD6jbGdPFSxze3GdvIwoQ38B67CWnXGkX4S3RU3EPWvVzDe8xThAwLUJ54ukQDusiA9OChVqBIa4kitHOx04zh9DFX9JjXvF6Ym4s4niLjzSbTjb0cZk1jpQwWhzdriKshGe83dRNwzF92NDxHSvHpX3jqhVKGMb4DzdOVuxm6cp4+hTAwQtAoNQzd1NrrbHkczdirK6IRqSUIaXIbujifR3fII6sHXQHl9BoUqBE2zFpj376rY5nZj3r8bTYsL6/JtHDySkk3rcVe6V5QdPYSue29CojxdmMPbdSKsXhKmfXXQrvqjVBFSrxG2U5UfztzYTgW4Nlt2wpGejG70ZKJmvITx7icI7z864LUZdKoQ1E2bYz6wp2Kb2435wB40LVpf0CEMg0ZSutm3Pn3+hCESXeceFK//5RJk+OLZnS6OZBfRs9JbeKVCQc+GcezPqHl4X5ndyRWLfmHMwhXM+H4ryQGCInani28OpqIPC6FFrOGS5v+CKVWoEhvhOFV5+Jwbe8oRQpKa1ribIkyN4Z6nMd77DLpr7vL03jvn3Nt9nzf2bnA6anzm+DOK7N2Z3DWbfbblrPyVqN6dAVCEhmLs2o7c1ZsqErjd5K7ZRGTvLnWY0wp2p5PDmfn0alpx31MqFPRqksi+M7k17rfg1wNE6zRM6HT++skzlfFr8hnGX0DaWqMKQd24OWWH9lRsc7spO7QX9WUX1gZFDBhG6baN3ue9czSt29No3mKSnp1PzM3TUeoiLmHGL5ynLgvo1bji/u6pywT2nak50LHgt4NEa9U11mWnpBjWnzhLdokZt9vN9tQsUgtK6N000W/6WqdSEdqgKdbKQ/7dbqzHDhDW2P/0Bup23bCnHsd49VTin3yb2H+9gG7oVTXfN1Uqwrv1x7xtfS0UQASD1WqluLjY58dfLMFms7Fz506GDasIqiqVSoYNG8bmzZurpQdYtmwZffr04d577yUhIYH27dvz7LPPXnSHh1oJnoSEhPDBBx/w4YcfEhkZSb9+/Zg1axb79u3zSffII494Ay3nfp599tnzHn///v3e9OHh4bz00kt89tlnGAx//CGld+/ezJo1ixtuuIHY2FhGjx7Niy++SFbWhc0P0bq1p3FPSUnx+7nfk8Lx+3qpKLURKFQqXCbfhziXqRhlhP/hS8qoONRtu4NCSdFHr2Fe/z3hfUcSPvBKn3Sq+CRiZr9FzJx30V95M8WfvYUzJ+N35fOPUurLy1mlu6aruAiVIfK8+4c2bk5o/UaYNlWMgT63n7Ok0Cets6Twgo5ZGxRaPQqlCneVroxuUzEKvf/6VEXFEta2GyiUFH/yGmXrf0DTZwThl4+t4Y8o0I2aiP30cZzZwRmCpQjXecpZZRiS21SCooaHGVd+NmU/f4bp2/cw//gRKBTob3jQ+++i0OpRhGlQ9xqGI+UIpi/fxnF8P9qrbkMVhIf6c2V0Vekd4zaX1vjA5irIxrJyCWXfL8Ky4hMUCgXa6+/zqXtH6hHKVnxG2TfvYP11OaqkZmivuiNoX8hVBgMKlQpHUaHPdmdRASGR/uePqExzWSvUjZpStOZnn+3Zi+ZjSz/NZe98SstPltNg5lyyFr5F2eHgzLvkvTZNVa/NkgDXZpzn2lQqKf7sdco2LEfTezjhA66oiyz/LqoIT306i3yDCI7iQkKM55+7Q92sJeqGTShau6LGNIbLh+GylFG6PThDdgrLrDjdbmKqDKWJ0arJNVv87tMkSs+cYZ15ZWwvnh7RDZfbzdQvN5JV4tvra8OpTPq//QN93vqeT3cnM39CX6LCgzNk59w56zJXP2eVev/PSs78LMzLP8b01buYln0ACiWGm/+FIiISAFdeJs6iPMIHXYVCEw5KFerew1EaolDWcB38GakTYrFm+QYcrFm5hBojUGrUhMVGoQwJwZqdVyVNHurE888vUhsKzJ7zNrpKj6cYnYa8Uv/n7e60bJbuS+bx0YF7O57z/f5TaMNCGdKq4R/O7+/lbYOKC322O4sLURkjz7t/WNMWhDVoQskG3+Bs2YFd5L43j4wXH6fgyw/RtGpH4kNPwEW+6b4UCsw2T11WGZ4To9WQZ/Lfk3R3eg5L953k8VE11+Ujw7rRLNbAyPnL6PnSF9z75XoeHd6Nbg2rD1+oC0pdDc/upUUoy9uUqkJi4tF07AlKBfnv/ZfSVd+iHzgG/fAJftNr2ndHodFStl2CJ/9fPPfccxiNRp+f5557rlq63NxcnE4nCQm+LxkTEhLIzPTfq/XkyZN89dVXOJ1OfvzxRx5//HFefvll5s6de1F5rLVW45prruHs2bMsW7aMUaNGsW7dOrp27coHH3zgTfPvf/+bPXv2+Pzcfffd5z12q1atvOl37tzJ9OnTue6669ixYwcAd999t09A5mI988wzZGZm8s4779CuXTveeecdWrduzf79558o7FxvFUUNX2b8nRSv/bb3ovP4eykUClymYkqXfYgzIxXbge2YNywnvIdvFzpnXiYFbz9F4YJnsGxfS8TV01DF1avhqH9uuj5DsJ1JrXFy2b+08vo0fb/YU58Ht1O2cTma7v67ROrG3IgqPonSrxbUcUb/GGdGCvZD23HlnMGZnoz5u/dxmUsJ61Q+ZKL8erOfOIBt5zpcOWewbluFI/lgRZo/OVdmKo4jO3HlnsV55iRlyz/AXWYitH0fbxrHsT04Tx3ElZeJ4+QBypa9jyqxEaoGwZ0Q7vcyDhmJNfVktcllI0ddRXiL1qS/MIfUmf8g56P/kXDbvWg7BOet7++iUOAylWD64SOcGaexHdpB2a8/oulW88Tmf3XGQSOwnj5V4+SyAIaBwyn5bS1ue/DmG7hYHetFM7ZNI1rFGenWIJYXr+hJVLiarw+k+KTr0SCWzyYPYtF1A+jbOJ5Hf9pBvrl2e99eSs4zp7Ad2IozOx1H2nFM37yLq6ykYtioy4XpmwUoo+OJfOhlIv89j9DGLbEnH6g2N4oILpPVzmPfb+bx0b2I0tY8h0Zl3+09yeh2TVCHqGo5d7UnYsBwbGkp1SaXNW3biHnPNuxnUjHv3krWa0+jbtYSTev2QcrphTNZ7Tz2wxYeH9Uj4PxJn+88zv6zecy7ZgCfTBnJjMGdeX7lTrakBHcRhIuiUOAqLaboy/dwpJ/CsmcLpau+Q9vH/zyS2l6DsR7Zi6tKsE38dc2cOZOioiKfn5kzZ16SY7tcLuLj41mwYAHdunVj4sSJzJ49m3feeeeijlNrE8YCaDQahg8fzvDhw3n88ce5/fbbeeKJJ7j11lsBiI2NpXlz34f+6Ojzv90KCwvz2a9Lly4sXbqUefPm8fHHH/Of//yHf/3LdxWOc71SioqqTzZVWFhYbaLZmJgYrrvuOq677jqeffZZunTpwksvvcSHH34YMG+HD3u6dVedH+WcmTNnMmPGDJ9tJc/fH/CYNXGZS3A7nSh1vm+RlDqD30m1wBPxdTudPg86zpyzniiwSgXnui45nbjyswEwZ6QSktQUTe9hmL7/6Hfl9Y9wlZaXs0pvGqXBWO3tRFWKMDXabv0oXr7EZ/u5/VQRkT6NrioiElt6yiXI9cVzm0txu5woqrwVVOgMuEtrqM+SItyuqvWZUb0+Ad2YGwht2ZHiRf/FVRyc1WfAM1zI7XJW62Wi0EX4nxTXH5cLV3a6d0Uod5kJt9OJK8/3IcGVn4Uqqe7n6jlXRqU2Alel7QqtHtdFlNGZc8ZbRr9/pzgfl7kUpTEGZ5r/lQhqk7O4GLfTSUiVN4IqYxSOwsDnmEKtJqLvIHK/WOy7PTSMuMm3cual/2DavQ0A6+lTqJs0I3rstZj37/Z3uFrlvTZ1Va/NiJqvTX9tbW6mpx1TqsBVN/NiXQxniac+VUbfXkMhhkgcRYEnyVSo1ej7DCT/q49rTKNp1Y6w+g3JeOP5S5Lf3yMyXI1KoSCvSlAjz2wl9gK/ZIaqlLSKM5Je5Dv0MTw0hIaRehpGQod60Yz/cBVLD6ZyW48LG156KZ07Z5VaA5XPNIUuwv9Ejf64XDgz01FFVQxxcmamUbLwOVBrUChDcJeVEjHl3z5zEvzZWbNyUSf4tqvqhFjsRSW4LFZsuQW4HA7U8TFV0sRgzax5iExtitJ6ztv8Kr2j8kwWYvTVz9v0wlLOFpl48MuKN/Ku8rao+/Of8e1dY2kYVXEP3pWWTUp+Mc+PD+7LBm8bVKUHsMoQibNKD8eqFGFq9D0HULDU/wpClTlysnCWFBEaXw/L4X3nTX8pRWnDPHVpqlKXZgsxuvBq6b11+XXFPFLeuvzvEr69Ywxx+nDe2LCPV67uz4DL6gPQMj6So9mFfLTtCL2b1P3QHZephmd3vRFXlV7f5ziLCz3PrZXum47sM6gMUdWeaVVRsYS1aE/BB6/WRvZFkKjVatTq8/fYjI2NRaVSVRsZkpWVRWKi//O9Xr16hIaGolJVBIjbtGlDZmYmNpuNsLCwC8pjnfZXa9u2bbUVay4VlUpFWZmnu1t8fDzNmzf3/oAnKBMbG1ttLpLi4mJOnDhBy5Y1P9yEhYVx2WWXnTfvLpeL119/naZNm9Kli/83pGq1GoPB4PPzu6P8TieOjFRCm7Wp2KZQENqsDY50//OT2E+fQBUd79PNXxWTWNFg1USh8FlRoU45HdjTTqJpVWn+CoUCdcsO2E4FniQ4vEsfFCEhmLdv8NnuzMvGWVSAulXFWweFJpywJs2xpfhfYrXWOZ04zqYS2rRqfbbGnu5/EjF7mr/6TPDcmKoETsJad6H4w5dwFQbn4c/L5cSZlUZIo8rXnIKQRi1xBlj21YdCgTK2fsUwCpcTZ+ZplFG+3VOVUfHBCRS5nLiy01E1rDyuV4GqYQtcmTVPSulDoUAZU6/aUBGfJHqjZwncCw3IXGpOB5aTx317hCgUaNt3xnL8UM37ARG9L0cREkrxRt8lRRUhIZ62xu3y3cHlCt58IS4njozThDatPOZeQWjTNue5NuPwTDXqoYqO91ybf8LACQBOB9ZTJ3yXklYoCG/fGcvxIwF31fca4KnP39bUmMY4aASWk8exna556fXaFqpS0jreyPa0iqV1XW4329Ny6FDv/EPNAJwuNyfyis8bbHG53didroBpak15mxjiM4eXgtDGrXCcucB/f4UCVXx9/8EWqwV3WSnKqDhUiY2xH6/bL6B/ROGWPcQM8Z2cPHZoXwq27AE8E4sW7TpI7JCKXn8oFMQM7kPhlroP3gKEqlS0SYxma0rFFwWX28221Ew6JlUPsDeJMfDl7WP4fNpo78/AFg3o0TiBz6eNJtHgO1fW0r3JtEmMplXChV0DtcbpwJp6Ak2bKm1Qm45YkwO3Qboe/SA0lNLN6877Z1RRMSh1EdWGKNYFT11GsTW1Sl2mZNExqfpSxU1iDHx52yg+nzrS+zOwRRI9Gsfz+dSRJBq0OFxuHC4XVe+QKoXCG2ipc04n9vRTqFu0q9imUKBu0Q5bqv+XPfZTx1DFJvg+08bV89RTle8o4T0G4iotwno4ONekCK6wsDC6devG6tUVz5Aul4vVq1fTp08fv/v069ePEydO4HJV3JePHTtGvXr1LjhwArXU8yQvL4/rrruO2267jY4dOxIREcGOHTv473//y1VXXfWHj+9wOLzjmUpKSliyZAmHDh3ikUceCbjfjBkzePbZZ0lISKB3797k5eXx9NNPExcXx9VXXw3ADz/8wOeff86kSZNo2bIlbreb77//nh9//JFFixZVK2dmZiZms5kDBw4wb948tm3bxvLly32iWrWpbNMvREyYhuNsCo70U2j6DEMRpsayyzOeXH/1NFzFBZhXfQOAZdtaND2HoBs9mbKtq1HFJKC9fAxlWypOPu2wq7EdP4CrKM8zj0THXoQ2aUXxR8GL7pas+YHom+/FdjrZu1SxUq3GtGUtAFE3/wNnUT7Fy3zfOOj6DKFs33ZcpuqrlpSuXY5h1DU4cjJx5GVjvGIizqICyvZur5My+WPZvBL9hNtwnk31LIfaexiKUDXW3eX1OeE2XMWFmFd76tO6fR2ankPQjpqEZdsaVNHxhA+4AsvWivrUXXEjYR16UfLZm7htFm/PFrelLGhLMtt2rCN89I04s07jzDhNWLeBKELDsB3wLDUXPvpGz01x4w8AqPuMxHk2BWdhLgp1OOoeQ1AaorDtr5gUyrp9Ddorp+BIT8aZdpyQpm0IuawdpiVvBqeMuzagGTEJZ3aaZ6niLpejCA3DfsjTm0IzYjKu0iJsm34EIKzncJyZqbjKyxjWbTBKQxSWg+XL74WGoe41AvuJfZ55CyJjUfe7AndhHs7TgR8qa1PB8m9IvOdfWJKPYUk+StSYCSjVGorWecacJ977bxz5ueR+5tt+GgePonTHJlylvoEfV5kZ88G9xN10By6bDUdOFuFtO2K4fBg5i4M33MyyeSX68VM91+bZU2h6DUMRGoZ1T/m1edVUXCWFmNd8C4B1x3o0PQajHTXRc23GJBDefwyWbZWCC6Hq8gCLhyoyFldCA9xlZlzFwVkOteCnb0m4awaWU8exJB8jatRVKNVqitevBCDh7n/iKMgjb8kHPvsZB47AtHNztfo8Rxkejr7nAHI/fa+2i3BeN3VpzhMrd9EmIbJ8qeJkyhxOxrX1LM8655edxOnCua+fZ9LjBVuP0iExioaROkqsdj7adYLMYjPj23nSl9kdvL/9GAObJhKr01BosfHFvlPkmCwMa1E/aOW0bFuDbuwtODNTcZxNRdNjMISqse3ztJvasVNwlRRiWf8dAJp+o3GcTcFVkI1CrUXTexhKQ7T3HAcIbd3Fs5pdcT6quCTCh12H/dheHKeCt9KFSqdF17xiaV1t0wYYOrXGll+EJS2DVnNnoElKYO9UzzNi6oLPaXzPjbR+7t+kffA1sYN7U++60Wwfd5f3GKfmLaLTwhco3HmAou37aHL/FEJ04aR9+E2dl++cm3q2Zs4Pm2mbGO1Z3nb7UcrsDq7q6Old+dj3m4iP0HL/oM6oQ1Q0j4v02T9C43kBVnV7qdXOyiOnmTGka10U47yKV3xH7O0PYks5gfWUZ6lihVpDya+e55rY2x/EWZBPwde+vRYjBgzHvGtLtZcJCrWGyHGTMO/c7JmPKz6R6OtuxZGdgfnALoLhph6tmbN8i6cu60Xz6Y5jnrrsUF6XP2whPiKc+wd28l+Xat+6DFWp6NYwjnnr9qIJVVHPoGNnWjY/HExhxpDOdVgyX6YNPxI56W7saSexn05Ge/loFGEaysoneDVOno6rKJ+SHz29w02bV6LtPxzD+FswbVxBSFwi+qFXYd7oOy8aCgXhPS6nbMdGz4sV8bc0Y8YMpkyZQvfu3enZsyfz5s3DZDIxdepUAG655RaSkpK8c6ZMnz6dN998kwceeID77ruP48eP8+yzz3L//Rc3AqRWgid6vZ5evXrx6quvkpycjN1up2HDhtxxxx3MmjXrDx//4MGD1KvnmX9Dq9Vy2WWX8fbbb3PLLbcE3O/hhx9Gr9fzwgsvkJycTHR0NP369WPt2rWEh3u6yrVt2xatVss///lP0tLSUKvVtGjRgvfee4+bb77Z53jnZvjVarU0btyYwYMHs2DBgmpDkWqT7cB2TNoItEPGo9QbcGSmUfzRq9631SpjtE/3N1dxAcUfvYpu1ESi7nkKV0kBZVtWUbbxJ28apc5AxNXTUEYYcVvKcGSlU/zRq9iTA79Jrk1luzZRqDdguGIiqohI7GdSyH3rGe/wpJDo2GpjrkPi66Nu3oacN5/2e8ySVd+hUGuImnwXynAt1uQj5M5/JmgBBQDbwe2YdXrCB1/lrc+Sj+d561NpjPFZBcpVXEDJR6+iHTWRyOlP4iouwLJ1FWW/VtSnpsdgAIxTH/b5W6VLF2Lds4lgsB/djUKrR9NvDAqtAWdOOqav3vEui6k0RPnUp0KtJXzkJBRaA26rGWdWGqWfzcOVV/HmxnFiH2Urv0DdazjKIVfjKsjG/N1CnGdqXvqvNjmO78EarkPdeyQKrQFX7hnMS//nXX5YERGJsnIZNeFohl7nLaMrOx3zF2/gyi8vo8uFMrY+4W26o1CH4zYV40g9im3Lz4F7jdWyks3rURmMxF5/C6rIKKwpJ0l/bra3i3VoTFy1h5vQeg3QtmlP2lz/41jPvvYccTfcRr37HkGlj8Cek03u5x9QuPKH2i5OjWyHdmDWRRA+aJzn2sxKp+TT171DzZTG6OrX5ievoR1xPZF3P4GruBDLttWU/VbxEBhSvzHGKRVDTHUjrwfAsmeTZ8LOICjdsgFVhIGYa29GZYzClnqSMy/M8Q51DImJq9YrKLReEuGt23Pmudk1HlffeyAooGTTulrM/YUZ0TKJgjIr72w5Qp7JSss4A29c1du7/HBmSZnPvGUlVhtz1+whz2TFoAmldXwkC68bQLMYTyBaqVCQUlDKD4e3U1hmwxgeSrv4KN67tj+XxQRptR3AfngnZVo9mgFjUeoMOLPTKf3izSrtbEVdKjRatKNvQKkz4LaYPUN0PnrJZzikUm9EM/Ta8uE/RdgObMVS6X4TDMZu7emzumJIcduXPM+ZaYu/Yd+0majrxRHesGLOtrKUdLaPu4u2L8+kyX23YEnPZP9dj5G78ldvmowvfyIsLpqWT9yPOjGO4r2H2Tb2dmxVJpGtSyPbNqbAbOHtjfvIM1loFR/FW9cP9g71yCw2o/wdvfNWHEoFN4xqG2AluDpk2v4ryggjUeNv8KyKmHaSrFef9A6xDomOA5fv815oYhKalu3IeGlO9QO6XIQ1bEJEvyEotTochfmUHdxDwbefgMNRByWqbmSbRp66/HV/eV1G8tb1g4gpn0Q2s9iE8iKr8vlxfXlj/T5mfb+FYouNegYt9w7owHWdgzcnmmXPFop1BvQjr0VliMR+JpX8/z3v7c2miozxaYNchfnkL3gBw1U3Efev53EWFWDa+DOmNct8jhvWoj0h0XGYt66ry+KIP5mJEyeSk5PDnDlzyMzMpHPnzvz888/eSWRPnz6NUlkxyKZhw4asWLGChx56iI4dO5KUlMQDDzxw3s4XVSncF7ser7jkcudMC3YW6oQl/wLHWf+Fhcf+dVYc+CNC9LpgZ6FOKENrdVqoP42zm4Kzik1dim335/hiUNvyj6YHOwt1ol7fP/9Ej5eCvbh6r8n/jzbNWX3+RH9xg/93Q7CzUCeyNgRpSfk6ltD/LzSB+R9QdLDu51Ora/VePv88OX9VBc9MD3YWLkrU7LeDnYXzqvs1uoQQQgghhBBCCCH+Qv4er1WFEEIIIYQQQoi/i4sd/yXOS3qeCCGEEEIIIYQQQgQgwRMhhBBCCCGEEEKIACR4IoQQQgghhBBCCBGABE+EEEIIIYQQQgghApDgiRBCCCGEEEIIIUQAEjwRQgghhBBCCCGECECCJ0IIIYQQQgghhBABSPBECCGEEEIIIYQQIgAJngghhBBCCCGEEEIEIMETIYQQQgghhBBCiAAkeCKEEEIIIYQQQggRgARPhBBCCCGEEEIIIQKQ4IkQQgghhBBCCCFEACHBzoAQQgghhBBCCCEuHYVS+klcavIvKoQQQgghhBBCCBGABE+EEEIIIYQQQgghApDgiRBCCCGEEEIIIUQAEjwRQgghhBBCCCGECECCJ0IIIYQQQgghhBABSPBECCGEEEIIIYQQIgAJngghhBBCCCGEEEIEEBLsDAjQtWga7CzUiXCLJdhZqHV/l/XUFWpNsLNQJxQqVbCzUCcajuwd7CzUOqVOF+ws1IlQgz7YWagTLqst2FmoE2Gx0cHOQp0Y/L8bgp2FWrf2jk+DnYU6MXDeVcHOQp34u9xTIlo0DnYWhPhT+Xt80xNCCCGEEEIIIYT4naTniRBCCCGEEEII8f+IQqkIdhb+35GeJ0IIIYQQQgghhBABSPBECCGEEEIIIYQQIgAJngghhBBCCCGEEEIEIMETIYQQQgghhBBCiAAkeCKEEEIIIYQQQggRgARPhBBCCCGEEEIIIQKQ4IkQQgghhBBCCCFEABI8EUIIIYQQQgghhAhAgidCCCGEEEIIIYQQAUjwRAghhBBCCCGEECIACZ4IIYQQQgghhBBCBCDBEyGEEEIIIYQQQogAJHgihBBCCCGEEEIIEUBIsDMghBBCCCGEEEKIS0gh/SQuNfkXFUIIIYQQQgghhAhAgidCCCGEEEIIIYQQAUjwRAghhBBCCCGEECIACZ4IIYQQQgghhBBCBCDBEyGEEEIIIYQQQogAJHgihBBCCCGEEEIIEYAET4QQQgghhBBCCCECCKmrP6RQKAJ+/sQTT3DrrbfStGlT77aoqCg6dOjA3LlzGTBggHf7xIkTOXXqFJs3b0alUgFgt9vp3bs3rVu35pNPPqkxD99++y3jx4/32X7rrbdSWFjI0qVLATh16hSzZ89m3bp15OfnExsbS7du3XjhhRdo3bp1tfJotVrq169Pv379uO++++jWrdsF/7tcCp/vOMqHmw+SV1pGy4QoHhnZkw5Jsefd7+eDp3j0218Z1LIB864f7PPZydwiXlu9i52ns3C4XDSLjeTlawdSz6irrWKc15LdJ1i8/Sh5Jgst4yJ5eGgX2teL9pt22YEUnvx5u8+2MJWSLQ9d4/3d7Xbzzm8H+Xb/KUqsNjrVj2XW8K40ioqo1XKcz5Jdx/lw2xFPOeMjeWRYV9rXiznvfj8fPs3M7zczqHkSr17d37s9z2ThtfV72Xwqk1Krna4N43h4aFcaRwe3nJ9vP8KHmw+Un7fRPDKqJx2S4s67388HTvHotxsY1LIh8yYO8W5//Ltf+X5fsk/avpfVZ/4Nwy953i/U59sO8eFvB8gtLaNlYhSPju5DhwbnL+NP+0/y6NfrGNyqEfMmD/Nuf3vtLn4+cIrMYhOhKiVt68Xwj6Hd6NggvjaLcV5Ldh3nw62HK52z3Whf/wLO2UOpnnO2RRKvXl3Rxpttdl5fv4+1x9Ipstiob9QxuVtLruvSvDaLcV6fbz3Eh7/t99RnQjSPXnGh9ZnMo1+uY3DrRswrPx/tThdvrt7Br8fSSS8oIUITRq9m9XlgeHfiDcFrZwFCO/ZD3X0wCm0ErtyzlK39FlfWaf9p2/YgfMRkn21uh52SNx/x/q4ZMYmwtj190jhSjmBeuuDSZ/4ChXbqj7r7EBS6CFw5Zylb+zWuzJrK2JPwUTf4bHM77JS8/m/v75qRNxDWrmoZD2P+5t1Ln/mL8Le5b+485mmDSstoGR/FIyO60b7+BTwHHUph5nebGNSiAa9ee7l3e5fnPvWb/sHBnZnSu+0ly/eFiu7fnWb/nIaxa3s09ePZcc09ZC1bHXify3vS9qVH0bdtgSUtgxPPvU364m990jSefgPNZkxDnRhH8b4jHHzwaYq276/NolyQL/aeZPGuE+SZrbSINfDwwI60T4zym3bZodM8tWq3z7YwlZLN917p/f3dLUdYcfwMWSVlhKqUtIk3ck+fNnRI9H8t1IVLeT8BeHvNLn4+cJLMovLng/qxnueDhsF9PvhiTzKLdx4nz2ShRZyRhwd3on0N/+7LDqby1C87fbaFqZRsvn884Llvvr3pEL+eyuRMkQm9OpRejeK5r3874vThtV0UIYA6DJ5kZGR4/3/JkiXMmTOHo0ePerfp9Xpyc3MBWLVqFe3atSM3N5dnnnmGsWPHcuzYMRISEgCYP38+7dq14/nnn2f27NkAPP3002RkZLBq1ao/lE+73c7w4cNp1aoV33zzDfXq1SM9PZ2ffvqJwsJCn7SLFi1i1KhRWCwWjh07xoIFC+jVqxcLFy7klltu+UP5uFArDqbw8sodzB7diw5JsXyy7TD3fLaa76aPI1pXc0NyprCUV1btoqufRjUtv4SpH/7M+M7NmT6wE7qwUJJzC1GHBK+j0oojabyybi+zhnWlQ70YPtl1jHu/2sC3t40iWqfxu48+LIRvpo32/l41fPfhtqN8tvsE/xndg/pGHW//epB7v9rIV1NHog5R1WJparbi8GleXruH2SO60b5eDJ/uOMY9X6xn6e1jaiwnwNkiE6+u3UOXKjdet9vNQ9/+SohSybyr+6MLC+XjHUe5+4t1fHPbaMLD6qwJ8LHi4CleXrmd2WN60yEpjk+2HuKeT1fx3T3jL+C83UHXRv4fBvpdlsRT4/p5fw9TBe+c/fnASV5asY3Hxvb1lHHLQaZ/vILv/nENMQFu8mcKSnjll210bZRQ7bPGMUZmjulNg6gILA4nH28+yPSPVvD9/dcG/HerTSsOn+blNbuZPaI77evH8OmOo9zzxTqW3nHFec7ZUr/nLMDLa3azPTWbZ67sTX2jjs2nMnnul53E6cMZ1CKpNotTo5/3n+Sln7fy2JX96NAgjk82H2T64p/57v5rz1+fK7bRtbFvfVrsDo6czePOQZ1plRhNcZmNF37cwgOfruKzu6+q7eLUKKRlZzSXX4VlzZc4M08T1uVydBPupPTD53GXlfrdx20to/TD5ytvqZbGkXKYsl8+r0jhdFzqrF+wkJZd0Awcj2X1FzgzUgnrOhDd1XdTuujZwGVc9GzlLdXSOE4dpmxFxZfuYJYR/kb3zUOpvLx6F7NH9aB9/Vg+3X6Ee5asZemdVwZugwpLeXXNbro0rN4Grbxvgs/vv508y1PLtzK0VaNLnv8LodJpKd53lLQPvqb7V2+dN314kwb0WPYupxd8zp5b/kXMkD50eHculowcclf+CkC960bT5sWZHLj3CQq37aXp/VPotfx91rUbhS0nv7aLVKNfjp3hlY0HmTWkI+0Tovh0z0n+8d1mvrl5KNFatd99dGEhfHPzUO/vVd/XNorS88jADiQZdVgdTj7Zncy9Szfz3S3DiKrhmLXpUt9PABrHGpl5RZ+K54NNB5i++Ge+f/C6oD0f/HI0nVc27GfW0M60T4zm010n+Mc3v/HNrcOJ1vq/NnVhIXxz6wjv75Wr0uJwciS7kNt7taZlnJESq50X1+3loe828/GNQ6ofTIhaUGffLBITE70/RqMRhULhs02v13vTxsTEkJiYSPv27Zk1axbFxcVs3brV5/MFCxbwn//8h3379rFjxw6ee+453nvvPaKi/EemL9TBgwdJTk5m/vz59O7dm8aNG9OvXz/mzp1L7969fdJGRkaSmJhIkyZNGDFiBF999RU33ngj//jHPygoKPhD+bhQH209xNVdWjC+c3Mui4vksTG90YSqWLonucZ9nC4Xs5b+yvTLO5IUpa/2+ZvrdtP/siQeGtqN1onRNIyOYFDLhkFrfAE+2XGMCR2aclWHpjSLNTB7eDc0oSq+O5BS804KBbE6jfcnptJDlNvt5tNdx7m9dxsGNU+iZVwk/xnTk5zSMtadOFP7BarBxzuOcnXHZlzVoRmXxRqZPbI7mtAQlu4/VeM+TpeLWT9s5u7+7WkQ6fvG+nRBKfvP5jF7RDfa1YuhSYyBWSO6Y3U4+elwam0Xp0YfbTl33rbwnLdX9Ck/b0/UuI/T5WLWtxuYPrAzSZH+33KGqpTE6sO9P4bwun8oOuejzQe4umsrxndpyWXxUTw2tp+nLncfq3Efp8vFrG/WM31wVxr4eZM7puNl9L4siQbRBprHR/GvkT0ptdo5nlU37Y0/H28/wtWdLuOqjufO2R7l5+zJGvdxulzM+n6L33MWYO+ZPMa2b0L3RgnUN+q5pnNzWsZHcjAjrzaLEtBHmw5wdbdWjO9aXp9XltfnrvPU51fryuvT4PNZhCaMd28dzcj2zWgSG0nHhvHMHNuHQ2dzySj0/wW+Lqi7DsR+YAv2Q9tx5WdhWf0Vboed0Cq9Kqpym0sq/VTPv9vp8EmDtay2inBe6m6DsB/YjP3gNk8ZV32J22EjtH2vmndy/7XKCH+j++a2c23QZZ42aFRPNCEhLN13nuegZZu4e0BHGkRWfw6qfB+J1Yez7tgZejROoIGfZ6a6kLNiA8eemEfWdxf2grDxnZMoO5XO4YdfoPTISVLnf0Lm1yto+sCt3jRNH5xK2vtfkP7hN5QeTmb/PU/gNFtoeOs1NR+4Dny8+wQT2jdmXNvGNIsxMGtIJzQhKr47VPMziwJ8z9sqX8xHt2pAr0bxNDDquCzGwIwB7THZHBzPK67l0vh3qe8n4Of5YFQvz/NBZhCfD3YdZ0L7Joxr18RTl8O6eOryQIC6DNAGRahDmX9Nf0a0akCT6Ag61IvmkcGdOJxdSEaxuS6KJMSfe86TsrIyFi9eDEBYWJjPZ+PGjWPSpEnccsstTJkyhSlTpjBmzJg//Dfj4uJQKpV89dVXOJ3Oi97/oYceoqSkhJUrV/7hvJyP3enkcEY+vZomercpFQp6NanHvjM5Ne737sb9ROs0TOjSotpnLrebjSfO0DjGwPRPVzH4lS+4aeGPrDnqvztzXbA7XRzOKqBXpUi7UqGgV6ME9p2t+ctUmc3BmHeXM/rdH3jo299Izi3yfnamyESuyeJzzAh1KO3rRQc8Zm2yO50cziygV5Mq5WycwL6zuTXut2DTIaK1GiZ0bFbtM1v5ORymqngjqFQoCFMp2XOm5mPWJs95m0evpvV98tSraX32pQc4bzfsq/G8PWdHaiaDX17CVW99yzM/bqbQbLmkeb9QdoeTw2fz6N2sUhmVCno3O08Z1+8hSqfh6q4tL+hvfL3zKBHqMFomBKfrsfecrXptNklg35mar6MFvx0kWqtmQqfL/H7eKSmG9SfOkl1ixu12sz01i9SCEnpXauvqkt3h5HBGLr0vq1Kfl9VnX3p2jfu9u24PUfpwru7W6oL+TqnFhkLhCawEhVKFMr4BjrTKD/BuHKePoarXpOb9QsPQ3/YY+mmPE37lbSijq78VDWnQHP2dT6G75VE0Q65BodFe8uxfEKUKZUIDHKlVyph6njKGhaG/fQ76O54gfNw0lDHVz8WQBs3R3/00ultnoRl6XfDKyN/tvunvOSiRfQHucQt+PeC5n9TQBlWWZyrj1+QzjL+AtH8Wkb07k7tms8+2nJW/EtW7MwCK0FCMXduRu3pTRQK3m9w1m4js3aUOc+rL7nRxJLuInpV6AykVCno2jGN/Rs1BgDK7kysW/cKYhSuY8f1WkgMERexOF98cTEUfFkKL2OpBiNpWF/cTu8PJ1zuOEqEJo2WQhibZnS6OZBXSs1JPYaVCQc9G8ezPqLlnU5nNwRXv/cSY//3EjO82k5wbOMBVanWgwNMWieoUSsVf6uevIDh99s+jb9++KJVKzGbPg3O3bt0YOnRotXTz5s0jKSkJg8HAK6+8ckn+dlJSEq+//joPP/wwTz31FN27d2fw4MHceOONNGtW/ctpVefmRElJSfH7udVqxWq1+mxz2R2oQy++KgrMVpxuNzFVeoTE6DWk5BX53Wf36WyW7jnBkjuu8Pt5vsmC2eZg4aYD3DuoMw8M6cqm5LP888v1/O/mEXT301WwthWWecpZtftttE5DSn6J330aR0fwxKjutIiLpNRqZ/H2o0z9dA1fTh1JQoSWPJPnS3XVLqAxWg25puB84S4w2zzlrPLGJEanISXf/81jd3oOS/ed5PNbR/r9vEm0gUSDljc27OOxkd0JD1Xx8Y5jZJWUkVsarHKWn7d6P+XMrem8zWLpnuMsufNKv5+DZ8jO0NaNSIqMIK2ghDfX7uLez1axeOoYVMq6jRNXlLHKtakL51Ruod99dqVm8u2uY3xx9/iAx15/9DSPfLUOi91BbISWd24ZSVSArum1yXvOVvn7MVoNKTU8vHrP2amjajzuI8O68fSK7Yycv4wQpQKFQsHjo3rQLUhjtwvMFpwuP22tLpxTOf7PWU99HuWL6RP8fl6V1e5g3i/bGd3hMvRBCp4ownUolCpPr4lK3OYSVNH+/+1dBdlYVi7BmXsWRVg4Yd0GoZt4P6Uf/Rd3qeffxpFyBMeJ/biK8lFGxqDuOwbt+DsxLXkN3NWHv9SmwGX0f39zFWRjWfG5p4xqDWHdBqOb9IBnKJO3jIdxHN+LqzgfpTEWdf8r0F59F6bP5tV5GeHvdN+01nzfrKkNSstm6b5kPr9ttN/Pq/p+/ym0YaEMadXwD+e3rqgTYrFm+QaPrFm5hBojUGrUhEYZUYaEYM3Oq5ImD12r8z/r1pZz521MtXNMTUqB//O2SZSeOcM60yLWSKnVzke7TjD1y418eeMQEiIq2uwNpzKZ9fMOLHYnsToN8yf0JSoIvVNr836y/uhpHvlyref5QK/lnSmjgvZ88LvrckRXT13a7Hy04zhTl6zjy1uGkRBRPRhtdTh5/dcDjGzdEL0ET0Qd+VP2PFmyZAm7d+/m66+/pnnz5nzwwQeEhla/KD777DMUCgW5ubkcOXLEu/3ZZ59Fr9d7f06fvrheE/feey+ZmZl88skn9OnThy+//JJ27dpdUG8Sd/lDUk0T5D733HMYjUafnxe/33BR+fu9TFY7s7/7lTlX9CaqhrGGrvL8D2rZkJt7taV1YjS39WvP5S0a8NXOmrsT/tl0qh/D2HZNaBUfSbeGcbx0VV8itWq+3lvzUIK/GpPVzmPLt/L4qB41jtkNVSl5eXw/UgtKGPj6t/R55Wt2nM6mX7N61cYE/1l5z9uxfWo8bwFGtW/KoFaNaJEQxZDWjXh90lAOns1jR2pWHeb29zFZ7cz+dgNPjOt33gedHk3r8cXd41k8bSz9mifx7y/Xklca3OEBF8pktfPYD1sCnrMAn+88zv6zecy7ZgCfTBnJjMGdeX7lTrakZNZhbn8/k9XG7K/X88S4/hf04Gp3uvj3F2txA7PH9q39DF5CzoxU7Id34Mo5i/NMMmU/LMJdZiKsQx9vGsexPThOHsSVl4Ej+QDm795DldgIVYPgTgB8oZwZKdgPb8eVcwZnejJl3y/EXVZKWMeKunIc3e0pY24GjuT9mJf+D1Vi479MGeFvdN/8fjOPj+4V8H5S2Xd7TzK6XZOgzekiAutYL5qxbRrRKs5ItwaxvHhFT6LC1XxdZXhajwaxfDZ5EIuuG0DfxvE8+tMO8s1W/wf9E7mY+0mPpvX4YvoEFt9+Jf1aNODfS9b8ZZ4PADrWj2Fs28aeNqhBHC9e2dtTl36GrtudLh5dvhU3bmYO6Vz3mRV/W3/KnicNGzakRYsWtGjRAofDwYQJEzhw4ABqdcXD9smTJ3n44Yd5++23Wbt2Lbfeeiu7d+9GrVZz9913c/3113vT1q/v6RoXERFBUVH1qG5hYSFGo9FnW0REBFdeeSVXXnklc+fOZeTIkcydO5fhwwOv3HH48GEAn1WDKps5cyYzZszw2eb66vf1monSqlEpFOSZfBvGvFILsX4mnEorKOFskYkHlqyt+NvlwZJuz3zM0ulXkWjUEqJUcFms779H01gju9Nq7k5YmyLDPeXMr/JmK99k8RkLGUioSknr+CjSyucSOLdfvtnqM0N3ntlCq/jIS5PxixSlDfOUs8pQk7waypleWMrZIhMPfr3Ru+1cfXZ/8Qu+vX0MDaP0tE2MZsmtIymx2rA7XURrNdz80UraBqkrp/e8La1ezhrP28JSHvh8jXeb97ydu5il94ynYXT1rrcNoiKI0qpJyy+mV9N6l7gUgVWUscq1aSojVl/97UlafjFnC0u5/9OK8eznytj1qUV8d9813jJqw0JpFBNKoxgDHRvGc+XrX7F09zGmDehUiyXyz3vOVrk288yWam/V4Dzn7H+X8O0dY4jTh/PGhn28cnV/BpR3a24ZH8nR7EI+2naE3k3qfuhOlFaDSumnrTWVERvh55zNLymvz4qAu7c+n1zId/df661PT+BkDRmFpfxv6uig9ToBcJeZcLucKLS+8+0otBG4TP7fFFbjcuHMTkcZWfNKJ+7ifFzmUpSRsTjTjv+RLF+0wGW8wPkPXC6c2WdQRta8Moa7KK+8jHF1Xkb4O9031TXfN/UB7ptfrvdu87ZBz3/Gt3eNpWGl+aZ2pWWTkl/M8+P7VTvWn5k1Kxd1gu81qE6IxV5UgstixZZbgMvhQB0fUyVNDNbM4AzphYrzNq9KUCPPbCX2AoNdoSolreKMpBeZfLaHh4bQMFJPw0joUC+a8R+uYunBVG7rcf5hspdSbd5Pqj0fzPuSpbuOMe3yun8+uGR1GR9JeqFvXZ4LnGQUl/HOtf2l14moU3/K4Ell1157LXPmzGH+/Pk89NBDALhcLm699VaGDh3KLbfcwlVXXUX79u2ZM2cOL7zwAtHR0URHV/9i2KpVK3bu3MmUKVO825xOJ3v37uX222+vMQ8KhYLWrVuzadOmGtOcM2/ePAwGA8OGDfP7uVqt9gkCAZT9jiE7AKEqFW3qRbPtVCZDymeAd7ndbEvJZFL36mMim8Ya+erOsT7b3ly3B7PNwcMjupNo1BKqUtG2fmy17q6p+cVBW6Y4VKWkTUIU205nM7h8pQ2X282209lMvMClS50uNydyi+hXPi46yagjVqdhW2qW96Gv1GrnQEY+13UOzrjmUJWKNolRbE3NYnCLBkB5OVOzmNi1+jwfTWIMfDnVd7jOWxsPYLbZ+ffQLiQafG/CEWrPl7LU/BIOZRZwT/8OtVSSwDznbQzbUjIY0rrSeXsqg0k9WldL3zTWyFd3jfPZ9uba3Zhtdh4e2ZPEGs7LrGIThWar34BMbQsNUdGmfgxbT51lSJvGALhcbraePMuknm2qpW8aa+SrKt1x31qzE5PNzsOjepMYYOlal9uNzXHx8zNdCj7nbMtK52xKFhO71XDO3uY7XOetjfvLz9muJBq0WB0uHC5XtVU+VAqF94GxroWGqGhTL5atJzMY0qYJULk+qy9b2jTWyFf3VqnP1TsxWe08PKaiPs8FTk7nFfHe1DFEXuADZa1xOXFlpxPSsAWO5APlGxWENGyBbe+vF3YMhQJlbD0cKYdrTqI3ogjX4r7QYMWl5HLiykonpFELHMnnlmRVENKoJbY9GwPu6nWujKcupIz+u+HXtr/XfTOarSlZDG7pGVbjuW9mMrFb9S/FTWIMfHm77/x4b63f52mDhncj0eAb3F66N5k2idG0SvhjixHUtcIte4gbfbnPttihfSnYsgcAt91O0a6DxA7pU7HksUJBzOA+pM7/uI5zW8ETsDOyPS2HwZd5Xnq43G62p+VwfSf/LyWrcrrcnMgrpv95hpm73G7sTtcfzvPFqq37iT/BfT5Q0johku1p2QxuXt+bn+1p2Vx/gfMHnWuD+lea0+hc4CSt0MS71w4gMogLA4i/pz998EShUHD//ffz5JNPctddd6HVannttdc4ePAgBw8eBMBoNPLee+8xduxYrrnmGnr29L8qwIwZM5g2bRqtW7dm+PDhmEwm3njjDQoKCrzBkz179vDEE09w880307ZtW8LCwli/fj0LFy7kkUce8TleYWEhmZmZWK1Wjh07xrvvvsvSpUtZvHgxkZGRtfrvcs7Nvdry+LLfaFsvhvZJsXyy9TBldgdXlTdMj333G/ER4dw/pCvqEBXN430fAM5NTFh5+6292/LwNxvp2iiBHk0S2JR8lg3H0nnv5hEEy43dW/LET9tomxBFu3rRfLrzOGV2B+PaNwHg8R+3Ea8P577LPQGBBZsO0aF+NA0j9ZSUj93OKDYxoYNnLK9CoeCGri14b8thGkVFeJZc/O2AZynU5sFZChXgpu6tmPPjVtomRpcvVXzUU58dPA8Njy3fQrxey/0DO3rqMy7SZ/8IjSf6Xnn7yiNpRGnVJBq0HM8p4sXVuxjUIok+QZp8E+Dm3m15/LtfPedtfc8S257z1vNQ/9jSjcRHaLl/aLcLOm/NNjvvbNjLsNaNidGHk15QwrxVO2gYbaDvZcGpz5v7tOfxbzfSrn4s7ZPi+HjLQcrsDsZ38TzQz/5mPfEGHQ8M6446NIQWCf7LeG672WbnvQ17GdSqEbERWgrNFj7fdpjsYjPD213YQ2VtuKlHa+Ys31J+zkbz6Y5j5ees51p77IctnjZoYCf/56za95wNVano1jCOeev2oglVUc+gY2daNj8cTGFGELvm3ty3PY9/u8FTnw3i+HjzAcpsDsaXT+47++v1xBu0PDC8R3l9+gbwIzSeB7xz2+1OF/9asprDZ/N446bhuFxucks8qwUYw9WEBmmIgHXXesJHTMaZleZZqrjrQBShYdgPbQNAM2IyblMx1t+WAxDWawTOjBRchbko1OGouw9GaYjGfqB8hbzQMNS9RuI4sQ+XuRilMRZN/7G4CnNxpB6pKRu1W8ad6wgfdUP1Mh705Fkz6kbcpUVYf/3BU8beI6uUcQhKQxT2/ZsrythnlGfOE1MJSmMMmsvHBbWM8De6b/ZszZwfNnvaoPoxfLq9/L5ZPon6Y99v8txPBnW+4PsmeAJDK4+cZsaQrnVRjIBUOi265hXLJGubNsDQqTW2/CIsaRm0mjsDTVICe6d6nlNTF3xO43tupPVz/ybtg6+JHdybeteNZvu4u7zHODVvEZ0WvkDhzgMUbd9Hk/unEKILJ+3Db+q8fJXd1KU5T6zcRZuEyPKlipMpczgZ19ZT/jm/7CROF859/TyBhgVbj9IhMYqGkTpKyuc8ySw2M76dJ32Z3cH7248xsGkisToNhRYbX+w7RY7JwrAW9WvMR2261PcTs83Oe+v3Mqh1I2Ijwik0W/l86yGyS8wMbx/E54OuLXhixQ7axEfRPjGKT3efoMzuZFw7z0ulOT/vIE6v4b7+7QFYsOUwHepF09Cop8Rq46Odxz11Wd5m2Z0uHvlhK0eyC5k3vg9Ot9s735JRE0ao6k85G4X4f+ZPHzwBmDJlCrNnz+bNN99k/PjxzJ49m/fee4/ExIovfyNHjmTq1Kk+w3eqmjx5Mm63m1deeYVHH30UrVZLt27d2LBhAwkJngh1gwYNaNKkCU899RQpKSkoFArv7+d6vpwzdepUADQaDUlJSfTv359t27bRtWvd3WhHtmtCgdnC2+v3kmsqo1VCFPMnD/FOVJlRZLrouS2GtG7EY2N68f5vB/jvL9tpHGPgpWsH0qVRcCZrBBjZuiEFZitv/3bQ00U4LpI3rx3g7UacWWym8iTNxVYbT6/YSZ7ZgkEdSpuEKBZNHkKzSjOrT+nZijK7g7m/7KDEaqdzUixvXjMgqOOaR7ZpREGZlbd/PUCeydMV+q3rBlYp58VVaI6pjJfX7ibPZCVWr2Fsuybc2bf62426NLJd0/Lzdg+5pWW0Sohm/g3DKs7bYlON8wb5o1QoOJ5VwPd7kymx2IiLCKdPs/rcO6gLYUGqz1Htm1FgsjB/7S5PGROjmX/TCG8ZM4tMF1WXKoWCU7lFLNu7hkKzhchwNe2S4lh025hqwaW6NLJNI09d/rq/4py9flClc9bExU6g/vy4vryxfh+zvt9CscVGPYOWewd04LrOwZs/YlSHZhSYLcxfs7O8PmOYf/PISvVZelH1mV1sYt0Rz3xc189f6vPZe1PH0KOOh5qd4zi2B0u4HnWfUSi0Bly5ZzAvXeBdmldpiMJFRQ8ghTqc8GHXo9AacFvNOLPTMS15HVd++VxDLjequHqEtu2OQh2O21SMI/Uo1s0/we9Y0e5ScBzbjUWrQ913tKeMOWcwf/NuRRkjonx6OSnU4YQPn1hRxqw0TJ+9VlFGtxtVbH1C2/bwlLG0GEfqEaybfgxaGeFvdN9s29jTBm3cV94GRfHW9YO9Qwd/z30TYMWhVHDDqLaNL3WWL5qxW3v6rP7I+3vbl2YBkLb4G/ZNm4m6XhzhDSvajLKUdLaPu4u2L8+kyX23YEnPZP9dj5G7sqIHWcaXPxEWF03LJ+5HnRhH8d7DbBt7O7bs4C0JDzCiZRIFZVbe2XKEPJOVlnEG3riqt3f54cySMp/ngxKrjblr9pBnsmLQhNI6PpKF1w2gWYznvFUqFKQUlPLD4e0UltkwhofSLj6K967tz2Uxdb/aDlz6+4nn+aCQZZ8f9zwfaDW0S4pl0bQrgvp8MKJVA09dbj5EntlKyzgjb0zoV9EGlZh9vqOUWOzMXbmLPLMVgzqU1gmRLJw0yFuXOaVlrD+ZAcDkj9f4/K13rx1A94Y1D6UU4lJRuN1B6gctvMo+mhvsLNQJlyU4s/HXJUUdr+oSLAp1kIcX1BGF6u8xQaCrzBzsLNQ6pS44ww7rmi3jrzGp7h/mqvvu9sGgitAHOwt1QuFnUYD/b9be8Wmws1AnBs67KthZqBMhsTXP6/T/iaOg5iWi/7/Q3/1csLNQa4pfeTDYWbgohhnzgp2F8/p7fNMTQgghhBBCCCGE+J0keCKEEEIIIYQQQggRgARPhBBCCCGEEEIIIQKQ4IkQQgghhBBCCCFEABI8EUIIIYQQQgghhAjgL7FUsRBCCCGEEEIIIS7Q32QV0Lok/6JCCCGEEEIIIYQQAUjwRAghhBBCCCGEECIACZ4IIYQQQgghhBBCBCDBEyGEEEIIIYQQQogAJHgihBBCCCGEEEIIEYAET4QQQgghhBBCCCECkOCJEEIIIYQQQgghRAASPBFCCCGEEEIIIYQIQIInQgghhBBCCCGEEAFI8EQIIYQQQgghhBAigJBgZ0AIIYQQQgghhBCXjkKhCHYW/t+RnidCCCGEEEIIIYQQAUjwRAghhBBCCCGEECIACZ4IIYQQQgghhBBCBCDBEyGEEEIIIYQQQogAJHgihBBCCCGEEEIIEYAET4QQQgghhBBCCCECkKWK/wTSfvw12FmoE+Y8U7CzUOuim8UFOwt1QqH8eyx95na5g52FOpF7PDvYWah1EYmGYGehTuSfzAt2FupEs6Ftg52FOmE+khLsLNQJl8MV7CzUuoHzrgp2FurE+ge/C3YW6kTv2QOCnYU6cXLVgWBnodb1uDvYORB/JdLzRAghhBBCCCGEECIACZ4IIYQQQgghhBBCBCDDdoQQQgghhBBCiP9PlNJP4lKTf1EhhBBCCCGEEEKIACR4IoQQQgghhBBCCBGABE+EEEIIIYQQQgghApDgiRBCCCGEEEIIIUQAEjwRQgghhBBCCCGECECCJ0IIIYQQQgghhBABSPBECCGEEEIIIYQQIgAJngghhBBCCCGEEEIEIMETIYQQQgghhBBCiAAkeCKEEEIIIYQQQggRgARPhBBCCCGEEEIIIQKQ4IkQQgghhBBCCCFEABI8EUIIIYQQQgghhAggJNgZEEIIIYQQQgghxKWjUCqCnYX/d6TniRBCCCGEEEIIIUQAEjwRQgghhBBCCCGECECCJ0IIIYQQQgghhBABSPBECCGEEEIIIYQQIgAJngghhBBCCCGEEEIEcMlX29m8eTP9+/dn1KhRLF++nKysLBo0aMBHH33EpEmTqqWfNm0au3fvZteuXQCUlZWRlJSEUqnkzJkzqNVqb9qzZ8/Srl07nnrqKe6//37v9q1bt9K/f3+WL1/OiBEjqv2NDz74gAcffJDCwsJqnykUCr799lvGjx8PwLfffssLL7zA4cOHcblcNGrUiOHDhzNv3jzvsaZOnQqAUqnEYDDQsmVLrrjiCh544AGMRuPv/af73YzDryT6ymtRGaOwnj5JzgfzsSQf85u2weP/Rdu2Y7Xtpbu3cfa/cwBo+dnPfvfN+eQ9Cn746tJl/CLFXjmB+OsmExIdTdnJZM68NQ/z0cM1po+bcB0xY8cTFp+Ao7iQwo3ryXj/Xdx2W7W08RNvpP60u8n55gvOvPNGbRbjvPQDR2EYMR6VIRJbegoFS97DlnLCb9r4Gf9B07J9te1l+3eS89YzABjHTkTbvR+qqFhwOLCdTqbwu0+xpRyv1XKcj/7yUUQMv8pbzsIv3seW6r+ccQ8+5b+cB3aSO/9ZUKowjpuMpl1XQmITcJeZsRzdR+HSj3EVFdR2UWr0d6nL2KuuJuH6yYRGR1OWnEzaG68Gvjavvo64cRM812ZRIQUb1nH2Pd9rMzQ2lqQ7pmPo2RulWoP1TDqpLz6L+djRuiiSX8bhY4m64hpUxihsp0+R/eHbWE/6b2uTZj/vt6017d7G2ZeeBKDFJz/63Tfn0/cpXP71Jcv3xUq45lrq3XgjodExmE8cJ+WVlzEdOlRj+sSJk4ifcDXqxATshUXkr11D2tvzcds89anUamlw511EXz6Q0OgoTMeOkfrqK5gO13yO1DZNryFo+49GqTfiyDxN6Q+f4Dhzqsb0Ck04umHXENauG8pwHc7CPEw/fobt2D7P8XoOJrznYJSRsQA4s89gXrsM2/H9dVKemugHjcY4YgIqo6cNyv/sfzW2Fwn/nIumVfU2yLx/BzlvzAXAeOUkdD36o4qKxX2uDVr6MbZTwW2DIoaMwThqgufaTDtF3icLasxT4sPPEN66Q7Xt5r3byXrtaQBib3uAiP5DfT/fv4usV5+85Hm/GF/sPcniXSfIM1tpEWvg4YEdaZ8Y5TftskOneWrVbp9tYSolm++90vv7u1uOsOL4GbJKyghVKWkTb+SePm3okBhdq+WoSXT/7jT75zSMXdujqR/PjmvuIWvZ6sD7XN6Tti89ir5tCyxpGZx47m3SF3/rk6bx9BtoNmMa6sQ4ivcd4eCDT1O0PbjXprrHYML7jSxvg9Iw//TZedsg7ZAJhLXpiiJch6soD9PPS7CXtzGa/qNRt+mKKrYebocNR1oyppVf4crLqqsi+RV/9TUkTr6J0OhozMknOP3qy5gO13w/SbhuInETrkadkICjsIj8dWtIf/dt7/0EpZKk224nZsQoQmOiseXmkvvjcjI+XFRHJRJ/d5c8ePL+++9z33338f7773P27Fnq16/PFVdcwcKFC6sFT0wmE1988QXPP/+8d9vXX39Nu3btcLvdLF26lIkTJ3o/q1+/Pm+88QZ33XUXo0ePpkWLFpSVlTFlyhRuv/12v4GTi7F69WomTpzIM888w7hx41AoFBw6dIiVK1f6pDMYDBw9ehS3201hYSGbNm3iueeeY9GiRfz222/Ur1//D+XjYuh7X07czXeQ/f4bWE4cJXL0eJIefYaUf96Os7ioWvqzr/wHRUio93dVhIHGz8+ndMtG77bkuyf77KPr3J2EOx+idNuvtVeQ84gcOIT6d/2D9NdfxnTkEHFXX0ezZ1/myLQbcPgJikUOHka9aXdx+uXnMR86gLpBQxr9axa43Zx9902ftOEtWxNzxTjKkv1/qa1L2m79iLp2Kvmfvos15RiGIWOJv28OZ5+8D1dJ9frMfee/EFJxGat0ESQ+9grmXZu82+xZZ8n//D0cuVkoQ8OIGHol8Q/M4ezj9+IqLa6TclUV3q0vkdfcSsFn72JNOU7EkLHE3fc4GU/e5zdPeQte9CmnUhdB4qyXMe/aDIAiTE1Yw2YU//QV9vQUlFodkdfdRtzdj5L1wiN1Vq7K/i51GTVoCA3u/gen572E+cgh4q++nuYvvMKhWyf7vTajhgwn6Y67SX3xeUwH96Nu0JDGD88G3Jx523NtqvQRtHztbUr37OLEo//CUVSIOqkBjpKSui1cJfrelxN74x3kLHwTS/IRIkeNJ+nRp0n9151+29qMeXN921p9BI2ee4uSSu3oyXtu9NlH16k78Xc8QOm232qvIOcRPXQYje5/gFP/fQHTwYMkTpxE61dfY++k63EUVA9ExowYQcPp93Dy2bmU7NtPeKNGNHvscXC7Of36awA0mzmL8GaXkfyfJ7Hl5hI7chStX3+TfTdMwp6TU8clBHX7nuhHT6Jk2WIcaScJ7zsc463/JH/eTNwmP+eYSoXx1n/jMhVT/NlbuIoLUEXG4rKYvUlcRfmYfvkKZ/kXFXWXfhhuvJ+C+U/gzD5bV0Xzoe3ej+jrbiPvk7exnTpGxNBxxD/wBGfn3Ou3Dcp5+/lqbVC9OfMw76jSBn22AEdOForQMCKGjSPhwSc5M3t60NogXY/+xEycRu5H87GePIZh+DgSZzxF+qzpfsuZ/dZzKFSV7if6CJKeeh3TDt/rzrx/J7nvv+b93e2w114hLsAvx87wysaDzBrSkfYJUXy65yT/+G4z39w8lGit2u8+urAQvrm5IgikqLJqaaMoPY8M7ECSUYfV4eST3cncu3Qz390yjKgajlmbVDotxfuOkvbB13T/6q3zpg9v0oAey97l9ILP2XPLv4gZ0ocO787FkpFD7kpPW1vvutG0eXEmB+59gsJte2l6/xR6LX+fde1GYcvJr+0i+RXWrge6kddj+uFjHGdOouk9jIibHqTwzcdqbIMMN8/AZSqh5It3cJUUoDTG4K7UBoU2aYVl+1ocZ1JAqUQ79GoMN8+g8K3Hwc9Lw7oQPWQYDf/xAKkvvUDpoYMkXD+Jlq/MY//kiTgKq99PooePoMHd93Dq+Wco3b8fTcOGNJ39OLgh7U3PtVjvxpuJG381p575D2WnTqFr3Zqmsx7DaTKR/dUXdV1E8Td0SYftlJaWsmTJEqZPn84VV1zBBx98AHh6l6xevZrTp0/7pP/yyy9xOBzceGPFA+T777/PTTfdxE033cT7779f7W/cdNNNjBw5kltvvRWXy8XMmTOx2+28+OKLfzj/33//Pf369ePf//43rVq1omXLlowfP5633vJtwBUKBYmJidSrV482bdowbdo0Nm3aRGlpKQ8//PAfzsfFiLriaorX/Ezx+pXYzpwm+/03cNusGAaN9JveZSrFWVTg/dF26ILLaqFk6wZvmsqfO4sK0HfrQ9mhvdizM+uqWNXEXTORvJ++J/+XH7GeTiH9tZdwWS1Ej7zCb3pd2/aYDh6gcO0qbFmZlOzcTsHaVWhbtfFJp9SE0/jROaS9+l+cpcH7YnZOxLArKf1tJabNa3BkpJP/6bu47Fb0fYf4Te8yl+IqLvT+aNp0wm2zYt5Z8bBr3r4R65F9OHOzsGekUfDVIpThOkKTGtdVsaqJGHIlpb+twrRlLY7MdAo+exeXzYqu71C/6auVs3VH3DYrZeWBBbfFTM4b/6Fs1yYc2WexpRyn8Iv3CGvc3NNLIwj+LnUZf+0kcn/8nvwVP2JJTeH0vBdxWS3EjBrrN72uXXtKD+ynYM1Kn2tT16qtN03CpBux52ST+uJzmI8expaZQcnO7dgygvMlFCBq9ASK1/5M8YaV2M6kkb3wTdxWK4aB/oP2fttam5XSrRWB6qptra5bb8oO7cORE7y2tt7kyWQv+47c5T9QlnKKU/99HpfVQtzYK/2m13foSMn+feT98gu2zAyKtm0lb+Uv6Nu2A0ChVhM9aDBpb71JyZ49WNPTOfP+e1jT00mYcHVdFs0rvN8ILDs2YN31K86cs5QuW4zbbkPTbYDf9JquA1BqdRR/8gaO0ydwFeZhTzmKMzPNm8Z2dC+2Y/tw5mXhzMvCvOob3DYLoQ0vq6tiVWMYfhUlv/6CadMa7Bnp5H/yNm6bFX2/C2xn23Yub4MqggrmbRuwHN6H41wb9OVClOE6who0qaNSVWcYeRUlG36h9NfV2M+mkbd4Pm6blYgBw/ymd5lKcRYXen/C23XBbbNi2u4bPHHb7T7pXGZTXRSnRh/vPsGE9o0Z17YxzWIMzBrSCU2Iiu8Opda4jwKI1Wm8PzFajc/no1s1oFejeBoYdVwWY2DGgPaYbA6O5wUnEJazYgPHnphH1nerLih94zsnUXYqncMPv0DpkZOkzv+EzK9X0PSBW71pmj44lbT3vyD9w28oPZzM/nuewGm20PDWa2qpFOen6TMc666NWPf8hjMnA9MPH4PdhrpLf7/p1V36owjXUfL5WzjSPG2QI/UYzqx0b5qSj+dh3bMJZ85ZnFnplC5diCoyhpD6wXs+SJg0mZzvvyP3x+VYUlJIffEFXBYLsWP9Px/o23egdP8+8ld67ifF27eRv2olurZtfdIU/rqBos2bsGVmULBuLUXbtqFv09bvMYW41C5p8OSLL76gdevWtGrViptuuomFCxfidrsZM2YMCQkJ3mDKOYsWLeLqq68mMjISgOTkZDZv3sz111/P9ddfz8aNG0lNrX5TeOeddzh+/Dg33ngjb775JosWLUKv1//h/CcmJnLw4EEOHDhw0fvGx8dz4403smzZMpxO5x/OywVRhaBp2gLTgUrdMt1uTAd2E96iTc37VWIcNJKSzetxW63+/4QxEl2XnhStXXEpcvy7KEJC0LZoSenunRUb3W5Kd+9A16ad331Mhw6gbdHSGywJS6yHoWdvirdt8UnX4L6HKN622ffYwaIKIazRZVgO76vY5nZjObyPsGatLugQun5DMe/4FbfNf32iCkE/YAQuswl7esofz/PvUV5O61HfclqP7EPdtOUFHULXdyjmnb/VXE5AodHhdrlwlQXhgfdvUpeKkBC0LVtSsmtHxUa3m5JdO9C1reHaPHgAbctWFddmvfoYe/amaNtmbxpj336Yjh6h6Zyn6fDV97R+ZyExY/x/ea8TqhDUTZtjPrCnYpvbjfnAHjQtWl/QIQyDRlIaqK01RKLr3IPi9b9cggz/PoqQEHStWlO8fVvFRrebou3biWhffZgDQOn+fehatfY+3Krr1yeyb18KN3u+iCpUKhQhIbiqnMcuq5WITp1qpyCBqFSE1G+CLflgxTa3G3vyIUIbNve7S1jrLthPJ6O/8iZiHp1H1H1Pox14RfXX+OcoFKg79EQRpsZ+OrkWCnEBamyD9qK+wDZI338Ypu2B26CI8jbIll7zcINapQpB3bg5ZYf2VGxzuyk7tBf1ZRd2bUYMGEbpto3Vyqlp3Z5G8xaT9Ox8Ym6ejlIXcQkzfnHsThdHsovo2TDOu02pUNCzYRz7M2oemlpmd3LFol8Ys3AFM77fSnKAoIjd6eKbg6now0JoEWu4pPmvLZG9O5O7ZrPPtpyVvxLVuzMAitBQjF3bkbu64iUEbje5azYR2btLHea0EpWKkPqNsZ2sNHTF7cZ28jChDZr53SWsVWcc6SfRXXEDUf96BeM9TxE+YEzNbRCg0Gg9hw7GMxDl95OWrSjesb1io9tN8Y7t6NvVcD85sB9tq9bo2lTcT4y9+1K0eZNPGkO3HqgbNgQgvHlzIjp2onDLZr/HFOJSu6TDds71GgEYNWoURUVFrF+/nkGDBjFlyhQ++OADHn/8cRQKBcnJyWzcuNFnSMzChQsZPXo0UVGe8ZsjR45k0aJFPPnkkz5/Jz4+nqeffpq7776b6dOnc/nll1+S/N93331s3LiRDh060LhxY3r37s2IESO48cYbfeZeqUnr1q0pKSkhLy+P+Pj4S5KnQFQGAwqVCmdRoc92Z1HCQeMTAACld0lEQVQhYfUbnnd/zWUtUTdqStaCV2tMY7h8GC5LGaXbg9eNXGUwolCFYC/w7V5pLyhA3dB/RL1w7SpCjEaav/IWCoUCRUgIud8vJfvzj7xpIgcNJbx5S479485azf+FUukjPPVZXOiz3VVSSGhi0nn3D2vSnLCkxuR/VL2rq6ZDN2KnzUARpsZZXED2a0/h8tc1tA4oayins6SIkIQLKGdjTzkLPp5fc6KQUCIn3OQJPljK/mCOL97fpS5DjJ5r01Hl2nQU5KOp4dosWLOSEKORlq/N916bOcu+JevTimtTXa8+cePGk/3VEjI/XYy2VRsa/uNB3A47+b/4n5OpNqkizrW1vl9SHMWFaC+grVU3a4m6YROyFsyrMc2foa0NiYxEERKCPb9KW5ufT3hj//WZ98svhBgjafvOAlAoUIaEkPXN15z98EMAXGYzJfv3kTT1NspSUrDn5xMzfAT69u2xpKf7PWZtUmo912bVISau0iJCYxP97qOKjkMV2QbLvs0ULX4VVXQC+nE3gzIE89rvKtIlNCDqztkQEorbZqX40zdx5gSnt1RNbZCzpIjQeg3Ou39YkxaEJTUm78M3q30W3qE7sXf809MGFRWQ9eoTuILUc9N7bVYtZ3EhofUuoK1t2oKwBk3IWeQ711nZgV2Yd23GnpNFaHwiUdfcTOJDT3D2mYfB7bqURbgghWVWnG43MVWG0sRo1aQU+P+3bxKlZ86wzrSINVJqtfPRrhNM/XIjX944hISIcG+6DacymfXzDix2J7E6DfMn9CUqvO6H7Pwe6oRYrFm5PtusWbmEGiNQatSERhlRhoRgzc6rkiYPXSv/gYraptDqUShVuKu0QW5TMYqa2qCoWJRNW2Pdt4XiT15DFR2P7oobQamibP33fv6IAt2oidhPHw/asMEQY033kwI0jZv43Sd/ped+0nr+u977Sfa335Dx0YfeNBkfL0al09HhkyW4XS4USiVnFrxD/srgveT9U1PI2jCX2iX7Fz169Cjbtm1j8mTPfBkhISFMnDjRO/Tmtttu49SpU6xduxbw9Dpp0qQJQ4Z4urA7nU4+/PBDb/AFPEN0PvjgA1wu3xuV0+nkgw8+QKvVsmXLFhwOh/ezdu3aodfr0ev1jB49+qLKoNPpWL58OSdOnOCxxx5Dr9fzz3/+k549e2I2m8+7v9vtBjzDempitVopLi72+bE56/5GDGAYNArr6VM1Ti4LYBw4kuLf1uC2B3es78XSd+xMwqSbSX/jFY7eM41TT83C0KsPCTdOASA0Lp6k6feT+vzTfieQ/SvS9R2GLT3F74Sk1qMHyHzmn2S9OAvLwd3E3vFPlBF1P7nxpaDrOxTbmdQaJ5dFqSL29n8CCgo+X1CnebtU/j/Xpb5TFxJvuJm011/m8N23kTxnFsZefUm8aUpFIoUS8/FjnH1/AWUnjpO3fBm5y5cRe+X4oOX7jzAOGoH19KkaJ5cFMAwcTslva/9ybW1El67Un3IrKS/+lwO33sKxRx8msm8/6k+9zZsm+aknQaGg6/fL6bl+I4nXX0/eyl+C8iX0d1EocJmKKV36AY6zqVgPbMO87ns0PQf5JHPmZpD/1hMUvvs0lm1ribjmdlRxdTcH2qWk73+uDao+6arl6H4ynn6IzBcexXJwN3F3/fsv1QZVFjFgOLa0lGqTy5q2bcS8Zxv2M6mYd28l67WnUTdriaZ19Ql1/6w61otmbJtGtIoz0q1BLC9e0ZOocDVfH0jxSdejQSyfTR7EousG0LdxPI/+tIN8c829OkUQlLdBpu8X48xIxXZwO2Ubl6PpPtBvct2YG1HFJ1H61V/rGSiiS1fq3zyF1Jdf5NBtUzg+6xGMfftSb8pUb5roIUOJGT6Sk0/N4dBtUzj1zH9InHwjMaPGBDHn4u/kkgVP3n//fRwOB/Xr1yckJISQkBDefvttvv76a4qKimjRogUDBgxg0aJFuFwuFi9ezNSpU72BhhUrVnDmzBkmTpzo3X/SpEmkpqayerXvTNsvvfQSJ0+eZMeOHaSnp/Pss896P/vxxx/Zs2cPe/bs4b333gM8E7yaTKZqQZhzq+9UXSHnsssu4/bbb+e9995j165dHDp0iCVLlpz33+Dw4cMYDAZiYmJqTPPcc89hNBp9ft49dPK8x/bHWVyM2+lEZYz02a4yRuL0MxFTZQq1moi+AylaW/Nb3PBW7QhLakjRmrp/01uZs7gIt9NBaJTv7O+hUVE48vP87pM45XYKVv9C/s8/YEk5SdFvG8lYtICEiTeBQoG2RStCo6JpNf89Ov20lk4/rUXfqQux46+l009rQVn3kVpnaYmnPg2RPtuVEZHV3qpVpQhTo+vRD9Mm/7PSu21WHDmZ2E4dI/+j+bhdTvQ1zC9S21w1lFMVYcR1AeXUdq+5nChVxNz+T1TRceS88VRQep3A36cuHUWeazOkyrUZEhWNvYZrs/7U28lfuYK8H3/AcuokRb9t4OzCd0mcfLO3C7I9Pw9LaorPfpbTqYTFJ9RKOc7HWXKurfVd1SLEEImjKPCEgwq1Gn2fgRSvq3k4jqZVO8LqN6RoXXDfnDkKC3E7HIRGV2lro6Ox5/kvZ4M77yL355/I+X4ZZcnJFKxfT9o7b1P/line+rSeOcPhe6azffBAdo8fx8Fpt6EICcFypu7fiLrMnmtTqfcdlqDUG2uc8NRVUogzLxPKX5AAOHMyUEVEgkpVkdDpxJWfjeNsKqaVX+HIPE143+G1UYzzqqkNUkUYq/WgqsrTBvWn9Ff/805UboPyFr+J2+lE38///CK1zXttVi2nIbJar9yqFGFq9D0HULJxZcB0AI6cLE+vnfh6fyC3v19kuBqVQkFelaBGntlKbJV5TGoSqlLSKs5IepHvMI7w0BAaRurpUC+aOcO6oFIoWHqw5nlU/kysWbmoE3znNVMnxGIvKsFlsWLLLcDlcKCOj6mSJgZrpm+PlbriNpfidjlRVGmDFDoD7tLqExwDuEqKPJNRV2mDlFXbIEA35gZCW3ak+IOXcBUHb7VBR1FN95Mo7Hn+nw+Sbr+T3BU/kfvDMspOJlO4YT1n3n2HejdX3E8a3nMfGZ8sJn/1KspOJpO34mcyv/icejffUutlEgIuUfDE4XCwePFiXn75ZW/gYs+ePezdu5f69evz2WefAZ6JY7/++mu+/vprzpw5w6233uo9xvvvv8+kSZN89t+zZw+TJk3ymTj24MGDPPHEE7z99tu0adOGt99+m7lz57Jvn2dcb+PGjWnevDnNmzcnKcnTZbNVq1Y4HA727Nnjk+9zyyO3bFnzPAtNmjRBq9ViMgUeM5idnc2nn37K+PHjUQb44j1z5kyKiop8fu5q+zu7DjodWE4dR9u+c8U2hQJtu86UHQ+8BGREr8tRhIRS/OuaGtMYBo/CcvIYttNBGstczu1wYD5+DH3nbhUbFQr0nbthOnzQ7z5KjQZ3lWCZ+9xcNAoFJbt3cOTOWzg6/Tbvj/noYQrWrOTo9NvAFYQ3ok7Pso+a1pWWN1Uo0LTuiO1k4OVZtd36oggJxbR1/YX9LYUSRWjo+dPVhvJyqltVGvOqUKBu1RHrqZrfzAOEd/WU07zNTznLAyeh8fXIef0pXKbSS5zxi/A3qUu3w4H52DEiuvhemxFdumE6VMO1qdZ4e+l5j3Ou9135w5HpwH40DRv5pFE3aIgtK0gTqTodWE+dQNuu0hwdCgXh7TtjOX4k4K76XgM8be1vNbe1xkEjsJw8/qdoa01Hj2Do3qNio0KBsXsPSg74X9ZTpdFUby9dvvXp3WyxYM/LQxURgbFXbwo2bqDOOZ04zqYQ1qzS5IIKBaHN2mBP89+bzXH6BKroBJ/yqGITcRYXQKA5zhRKn1Vd6lRNbVCbjljP2wb1u7g2SBnc+4k19QSaNlWuzTYdsSYHvjZ1PfpBaCilm9ed98+oomJQ6iLOG3iqLaEqJa3jjWxPq1idyuV2sz0thw71/C9VXJXT5eZEXvF5gy0utxt7kHpEX6zCLXuIGdLbZ1vs0L4UbNkDeCb9Ldp1kNghfSoSKBTEDO5D4RbfZZzrjNOJ42wqoU0rzU2oUBDarDX2dP8vU+1pJ1BFx/u2QTEJuEoKfdog3ZgbCGvdheIPX8JV+H/s3Xd8E/UbB/DPJWmzk+5By4ZS9hIoIHvIlilLlixRQEQEUQEREUQFRFDkxxREcCCCKHvvvUfLaGmhu03SJk2acb8/QtOGpgG1ydnkeb9e/SN330uep0m+d3nue9/jpjhUgDWZoI29A0Vj+/2JonET5N5wvD/hiUR2BSIAYC2Fx+4FbViLfRuYzWA4OOlJvFOp7NX/+OMPZGdnY/To0cVGcfTr1w9r1qzB66+/jgEDBmDy5MkYP348OnfujPJPJvtJT0/Hzp07sWPHDtSpYz8kcvjw4ejTpw+ysrKgUCgwYsQI9O3bF3379rU9f79+/TBy5EicPXsWAkHxlGrXro3OnTvjtddew5dffokqVargzp07mDJlCgYOHGgrsnz00UfQ6XTo1q0bKlasCJVKhWXLlsFoNKJTp8KzRyzLIiUlxXar4lOnTuHTTz+FUqm0u+2yI0KhsNj8Kb78f/6Fz961DWETpsFwP+7JrYr7gCcU2SYdDJswDabsTGRssb//uaLdS8g9f7LE65R5YgnkzVoh/Yf/xpC/9F+3osK770MXdxu627cQ3HcAeCIxsvb8CQCo8O4HMGZmIHntdwAAzekTCO47EHn34qC7fRO+5SIQPmIM1KdPABYLLHl50Mfb/1Cx6PUwa9TFlrtTzv6dCBw5CfkJd5/cwrcneL5C5J60/vAKHDkZJlUm1Nt/sNtO2qIDdJfPFisYML5CKLr2R97VczCrs8GTySFv0xUCvwC7u7i4W87BnQgcPgn5CfeQnxAHebse4AmF0J6y5hkwYhLMqiyof7fPU9aiPfKuFM8TPD6Cxk6DT4UqyPjmU4DHA+/JmUiLNhcwm+Bu3vJepv2yBRVnfABd7JPvZr9XwBOJkblnFwCg4owPYcxIx+M11u+m+tQJhPQfiLy7sdDeuglhRATCR42B+tQJ24/utF+3osaylQgdMgyqwwchia6FoO698HDJIs7yzP7rN4SOnwr9gzjo78XCv8vL4AmF0ByxnrUOff0dmLIzkbl1vd12yjadob1wyklfK4asaStkbF7t6hSeS/KPP6LqrNnQ3r6F3Bs3ETZoEHgiEdL/+AMAUGX2HBjT05H4rXXOoezjxxA+eAi0sbHQ3rDeFj5y3Diojh+zvZ/KZs0AhoE+IcF62/iJk6BPSEDGHw6u1XeDvBN7Ie83BsbH8TAl3Ye4RWcwvkLoL1hvbSrvNwYWjQrafb9Y2589BFGzDpB1G4K80/vBDwyFpE135J0qHJkh7dQf+XFXYVZlghGKIaoXA59KNaDe8CUnOQKAZt/vCBr1lrUPehAHRceeYHxFyD1hHdUWOOotmFWZUP22yW472Ysdobt8pthcSoyvEMpuA6C7chZmdTb4MgXk7Z70Qee5m6tHs+d3BI2Zgvz4uzA8sN6qmBGKkHPcmmfQmCkwZ2ch+9fv7baTt+oE3cXTxfMUiuDXaxB0F07BrM6GICQMAQNGwpSWDN31i27L62mvNqyGOfsuomao35NbFd9DnsmMXrWshebZey8gWCrGpJbWwuCqM3dQN8wf5f2kyHky50mKRofeta3t84wmrDkXizaVwxAkFUGlz8dPVx8gXatHx+rcXG7Gl0ogrVZYOJdUjoSifjTys9TQJyajxidTIYoIxZVRMwAACau2oOIbQxG94F0krv8VQe1iED6gK871Gm97jgdL16H+2s+gunAd6nNXUWnyCAikYiRu2Ob2/AroT+2DrM9rMD9OgOnRA4hiOoLxEcJwyfo9kvV5DRaNCroD1hgN5w5D1LQ9JF0GQX/2IPgBIRC36g79mcIRqtLuQ+FbtxlyflwONl9vG9nC6vMAjm6znbrlR1T+YBa0t29Be+smQl8ZCJ5YhIxd1uODyh/OhjE9HUnffQsAUJ04jrCBg6GLvYPcmzcgiiiPiDHjoD5x3LY/UZ04jnLDRyI/NQV5Dx5AEhWF0IGDkfHnH5zkSLxPqRRP1qxZg44dOxYrnADW4saiRYtw9epV1KtXD4MGDcKqVavw2muF10N///33kEql6NCh+NDzDh06QCwWY9OmTVCpVHj06BH27rUf/rxixQrUrl0bn376KWbPnu0wxq1bt2LOnDkYP348Hj9+jMjISPTp0wezZs2ytWnTpg1WrFiB4cOHIzU1Ff7+/mjYsCH27t2LGjUKZ6fXaDQIDw8HwzBQKBSoUaMGRowYgbfeegsKhXtnKM89fRQZCiUC+w8D388fhoT7eLTwQ9twVUFQSLGzvD7hkZBE10HSpzNLfF558zYAA+ScOOzC6J+f6shBCJR+CB8+GgL/AOTdv4v7H0yz3SfeNyTUrlqd8sP3YFkW4SPGwCcoGCa1CurTJ5Cy7n9cpfBcdBdOgCdXQNlzMPgKP+QnPUDa1/NgybEO5eQHBIF9ap4AQWg5iKrXQtpXc4s9H2uxwCcsAtLmbcGXKmDW5iA/4S5Sv/gQxuTEYu3dJe/CSahkSih7DLLlmb78k8I8/YOAp84sCELKQVitFtKWFc+T7xcAcf2mAICwDxbbrUtbMhuGOMejIFzJW97L7MNPvpsjx8DHPwB59+7i7nvvwJRd9LtZmGfypg3W7+aosfANCoZJZf1uPl5TWKjV3bmNe3PeR8To8QgfNhL5yclI+mYZsg88e3i9q+SePgq+XGHta5X+yE+4j0efzbZdhiUIDC42h4dPeATE0XXwaMEHJT6vLOZJX3vysAujf35ZB/bDx98PkWPGwScwELq4WNx+e4ptUmBhaKjdSJNH69cBLIvy48fDNzgYxmwVVCeOI3Hlt7Y2fJkM5V9/A74hITBpNMg6fAhJK78tHA3oZobrZ8FI5ZB26A2eTAlT8kOoNywGq7VetsPzC7Tbn1jUWVBv+BKyboPhP3EeLDnZyDu1D7qjf9raMDI55P3GgidXgtXnwZSaCPWGL2G8d7PY67uL7vwJZMuV8Os1GHyFv7UPWjbX1gcJAoKLneUt6INSl8wp9nwFfVBw8xngy570QfFxSFn0Pqd9kPbccfDkSvj3HgK+0h+GxPtIXfKR7TJQQUBwsf2JT1gERFG1kfyFg2NGiwW+5StB3rI9eBIpTKos5N24jOzffgBM7i/EF+gcFYHsPANWnr6NTK0BUcEKfP1yjO32wyk5eXZz7uUY8vHJwcvI1BqgEPkgOsQPawe0QpVA63Eqj2EQn52LP26dgyovH0qxD2qH+GN1/xdRNZCbu+0oG9dB8wOFk4fX+uJ9AEDi99twdfRMCMODIS5feOlUXnwSzvUaj1pfzkSlScOhT0rBtfEfImPfcVub5J//gm9wAKLmTIYwLBiaK7dwtscY5Kc5vnTEHfJvnINOKoO43cvgyRQwpSQiZ9PSwj5IGWh37G7RZCNn4xJIugyE34SPYNFkQ39mP/KO/2VrI2rSDgCgHDXd7rVyt6+F4TI3J1iyDu6HwM8PEWPGwicgELq7cYh9523b/sQ3NMzuu/l4g3V/EjH2yf5EZd2fPFq10tYmYcmXiBg7DhXfeRc+/v7Iz8hA+o7teLxuTbHXJ8QVGPbpX9bE7WIHd+E6BLfQZXJzuzR3CqgS/OxGHoDhlTwpsicpNjTUQ2XEpXEdgsvJw8rGrTf/raz73P0gcKcqHWo9u5EH0KVxN2eBO1lMZeMykX8juPHz3Tq5rDsy5fdnN/IAMR+04joEt7i//zrXIbhck+OnuQ7BZXK/eY/rEP4W2RvOr+D4L6ALxAghhBBCCCGEEEKcoOIJIYQQQgghhBBCiBNUPCGEEEIIIYQQQghxgoonhBBCCCGEEEIIIU5Q8YQQQgghhBBCCCHECSqeEEIIIYQQQgghhDhBxRNCCCGEEEIIIYQQJwRcB0AIIYQQQgghhJBSxGO4jsDj0MgTQgghhBBCCCGEECeoeEIIIYQQQgghhBDiBBVPCCGEEEIIIYQQQpyg4gkhhBBCCCGEEEKIE1Q8IYQQQgghhBBCCHGCiieEEEIIIYQQQgghTlDxhBBCCCGEEEIIIcQJKp4QQgghhBBCCCGEOEHFE0IIIYQQQgghhBAnqHhCCCGEEEIIIYQQ4oSA6wAIIYQQQgghhBBSehiGxkmUNvqPEkIIIYQQQgghhDhBxRNCCCGEEEIIIYQQJ6h4QgghhBBCCCGEEOIEFU8IIYQQQgghhBBCnKDiCSGEEEIIIYQQQogTdLed/wBdppbrENwiMiaK6xBcThgcwHUIbpEb/4jrENyCL/LlOgS3KB+k5DoElzMbjFyH4BahjT2/nwUAoyaX6xDcIrBBNNchuAVPJOQ6BJfjSaVch+AWMR+04joEtzg9/xjXIbhF0xktuA6BkP8UGnlCCCGEEEIIIYQQ4gQVTwghhBBCCCGEEEKcoOIJIYQQQgghhBBCiBNUPCGEEEIIIYQQQkiZsWLFClSqVAkikQjNmjXD2bNnS2y7fv16MAxj9ycSif72a1LxhBBCCCGEEEIIIWXC1q1bMXXqVMyZMwcXL15E/fr18dJLLyEtLa3EbRQKBZKTk21/CQkJf/t1qXhCCCGEEEIIIYSQMmHx4sUYO3YsRo0ahVq1amHlypWQSCRYu3ZtidswDIOwsDDbX2ho6N9+XSqeEEIIIYQQQgghhDMGgwEajcbuz2AwFGuXn5+PCxcuoGPHjrZlPB4PHTt2xKlTp0p8/tzcXFSsWBHly5fHyy+/jBs3bvztGKl4QgghhBBCCCGEeBIeU6b+FixYAKVSafe3YMGCYmllZGTAbDYXGzkSGhqKlJQUh/+KGjVqYO3atfj999+xadMmWCwWtGjRAklJSX/rXyr4W60JIYQQQgghhBBCStHMmTMxdepUu2VCobBUnrt58+Zo3ry57XGLFi1Qs2ZNfPfdd5g3b95zPw8VTwghhBBCCCGEEMIZoVD4XMWSoKAg8Pl8pKam2i1PTU1FWFjYc72Wj48PGjZsiLt37/6tGOmyHUIIIYQQQgghhPzn+fr6onHjxjhw4IBtmcViwYEDB+xGlzhjNptx7do1hIeH/63XppEnhBBCCCGEEEIIKROmTp2KESNG4IUXXkDTpk2xdOlSaLVajBo1CgAwfPhwRERE2OZM+fjjjxETE4Nq1apBpVLh888/R0JCAsaMGfO3XpeKJ4QQQgghhBBCCCkTBg4ciPT0dMyePRspKSlo0KABdu/ebZtE9uHDh+DxCi+yyc7OxtixY5GSkgJ/f380btwYJ0+eRK1atf7W61LxhBBCCCGEEEIIIWXGxIkTMXHiRIfrDh8+bPd4yZIlWLJkyb9+TZrzhBBCCCGEEEIIIcQJKp4QQgghhBBCCCGEOEHFE0IIIYQQQgghhBAnaM4TQgghhBBCCCHEgzA8GidR2ug/SgghhBBCCCGEEOIEFU8IIYQQQgghhBBCnKDiCSGEEEIIIYQQQogTVDwhhBBCCCGEEEIIcYKTCWPbtm2LBg0aYOnSpXbL169fjylTpkClUuGjjz7C3LlzMX78eKxcudLW5vLly2jYsCEePHiASpUqIT4+HpUrV8alS5fQoEEDh69X9HmfxjAMfvvtN/Tu3RsA8Ntvv+Gzzz7DrVu3YLFYUKFCBXTq1MkW6/r16zFq1CgAAI/Hg0KhQFRUFLp374633noLSqXy3/57/ragnn0QMmAwBAEByLt/D49WLIXuzq0S2wf3GYDAHr3hGxIKk0YF1bEjSF7zHVhjPgAgbNgohA17zW4bfWICbo9+1aV5PIuoaTuIW3YBT6aEKTUR2l2bYXr0oMT2jEgMSYe+ENZqBEYshUWVidy/tsAYd836fE3aQtSkLXh+QQAAc/pj6A7vgDHuulvyKYlP3RbwbdQGjEQOS0Yy9Ee3w5Ka6LCtIPoFiDsNtFvGmozI/fZ9h+2FbfvCt25z6I/+DuOV46Ue+/OStOwEadse4MuVMD5+CM1vG2BMvFdie0YkgbzbKxDVbQKeRAZzdgY02zfCcPvykwYMZC/1h7hRS/AVfjCrs5F37ihy9//mnoRKIG7WAZJWXa2f2ZSHyPljE0xJzj6zEkg79YOwdmPwxFKYVZnI3bUZ+bFXAQDS9r0h7dDbbhtTejKyls50ZRrPJGrWHpIXC/PM/eOHZ343pR37wbdInto/f7TlKWraDuKm7Qq/m2mPoDu0A/lPvrtckbToCGmb7uDJlTAmP0TO9u9hTLxfYntGJIGs6wCI6jQBTyK1fm53bEL+7SsAgOCZS8APCC62nfbkPuT8tsFleTyLT/0XIXyhPRipHJb0x8g79CssKQ8dt63VFOIuQ+yWsSYjcpa9a7eMFxAKYaueEERWBXg8WDJTodu5FmyOylVpOCVs0g7ili89+cwmQvfXj8/en7TvA9+aT/Yn6kxod28t3J+82BXCmo3ADwoHa8qHKfEetPt+gSUz1V0pOfTTlfv4/kIcMnV6VA9SYnrbeqgTFuCw7Y6bCZi776LdMl8+D6cmvgwAMJot+PbUTRyPT8UjtRYyoQ+alQ/GpJa1ESwTuzwXZ7ZejMOGM7eQqdUjKsQPMzo2Rp1ygc/cbvfNBMzceQptq0dgSd9WtuW6fCOWHbmKQ7FJUOvzUU4pxeDGURjQsJor03imLWduYsOJa8jIzUNUaADe694cdSOL9yFP++vaPbz382G0i66ApUM62ZZ/e/Aidl+/jxS1Fj58HmqVC8LEDo1Rr3yIK9Nwyhu+mwEvvoAq74yGslEdiMqF4Hy/N5C644DzbVo3Ra0v3oOsVnXoE5Nxd8G3SPre/hin4oQhqDJ1NIRhwdBcvY0bU+ZBfY7b/WZpHx8UJW7dDbLOA6A7uRfaP390ZRqE2Pyn77YjEomwZs0avPPOO6hevbrLX+/AgQMYOHAg5s+fj169eoFhGNy8eRP79u2za6dQKHDnzh2wLAuVSoWTJ09iwYIFWLduHU6cOIFy5cq5PNYCfm3ao9z4iUha9iW0t28iuO8AVPn0S9wePQQmB8Uiv3YdET56PB5+uRC6m9chjCyPCtPeB1gWj79bbmuXF38f92a8bXvMms3uSKdEvnWaQNplIHJ3boQp6T7EzTtBMfxtZC/7AKw2p/gGfD4UI94Bq82BZuu3sGiywfMLBJunszWxaLKh3fcrzJmpAMNA1KAFFIMnQfXtXJjTH7sxu0KC6vUhbNUT+ic/VnwatIKk1xhoNy0Cm6d1uA1ryIN20+dFFrCOn7tKHfDDKsKSq3ZF6M9N1CAGil6vQv3LWhgf3oW0VVcEjHsP6Z+9A0uupvgGfD4Cxs+EJVeD7A1fwaLOAt8/CJYi76W0fS9IW3SE6sdvYUpJgk/5KlAOHA+LXgfd8T1uzK6QsG5TyLoNQs7vG2BMvA9Jy87wGzkNmUveK/Ez6zdqGizaHGg2L4dZowLfLxCsXmfXzJSaBNXawvebtXD73RTWaQpZ10HI2fE9TIn3IW7RCcqR7yBr6cwS81SOfBcWrQaaH1fAoskG3y8IliJ5WtRZ0O79xfrdBCBs2BKKoZOR/c0cmNO4+W6K6jeDvOdQaH5dh/yHdyFt1QX+Y2YgY5E1l2L4fASMew/mXA1UG7+CRZ0Nnn+QXR+UsWy23Uz4grBIBIybCcOVs+5IySFBVEOI2vSG/sBPMCcnwLdRG0j7vo7cdZ+Czct1uA1ryEPuuk+LLrFbzygDIRk4Gcbrp6E9+RfYfD34gWGAyeTCTErmW7sJpC+9Au0fm2B6dB+imI6QvzoFquUflrw/GTYVFm0Ocn5aCUtONnhK+++mT6Ua0J87BNOjeIDHg6RDXyiGTYVqxSzgyYkJd9sbm4TFx67h/XYNUCfMH5sv38PE7SexbXgnBEiEDreR+gqwbXjhj2umyDq9yYzbaSqMaVoDUcFK5OiN+PzIVby98zQ2DW7n4mxKtufWQ3x58BI+6PwC6pQLxObzd/DGT4exfWx3BEhFJW73WJ2LJYcuo6GD4sOXBy/hXEIa5veMQTmlFKcepGDB3gsIlonRtnqEK9Mp0e5r9/HF7jP4sGdL1I0Mxg+nbmDC97vx++T+CHRSvHqUnYPFe86iUcXQYusqBikxs3tzRPrLoTeZsenkdUz4fjd2ThmAAKn7C2Le8t3kSyXQXL2DxPW/4oVfVjyzvbhSJJrs+A4PV23B5eHTENi+Oep+9wn0yenI2Gc9ERY+oCtqfj4T19+cA9XZK6g8eQSa7VqDw7W7ID89y9UpOeSK44MCgojKEDdpC1Oy48I+Ia7yn75sp0aNGmjXrh0++OADt7zezp070bJlS7z77ruoUaMGoqKi0Lt3b6xYYd+xMQyDsLAwhIeHo2bNmhg9ejROnjyJ3NxcTJ8+3S2xFgjuNxCZf+1E1t4/YXgYj6SvvoDFoEfAS90dtpfWqgPtjetQHdqP/NQU5Fw4h+xD+yGpUdO+odkMU3aW7c+s4fYHt7hFZ+gvHIXh0gmY05ORu3MjWGM+RI1edNhe1PBF8MRSaDYvh+nhXVhUmTDFx8KcmmRrk3/nCoxx12DJSrOeBT3wG9h8AwTlq7grrWJ8G7SG8cYZmG6dhyU7DYZD28CajPCp1dTpdqwup/DPwQ8cRqqAsM3L0O/dDHD8Y1vauht0pw8h79wRmFIfQf3rGrBGA8RN2zhsL2naFjyJDNnrFsMYHwtzdgby79+222H6VqoO/fXzMNy6DHN2BvRXz8IQew2+Faq6K63icbd8CXnnj0B/8TjM6Y+R8/sGsMZ8iBu3dthe1Lg1eGIZ1JuWwfjwLiyqDBjj78CUYj/qiLVYYMlV2/5YneMftO4ibtkZ+vNHYXiSZ+6O763fzcatHLYXNWoFnkQKzQ9f276bxvg7MBfJM//OFeTHXoU5MxXmzFTo9m8Dm6+HT3kO38/WXaE7cwh554/CnPYYmm3rnH5uxU3agJFIoVq/BMb4OJizM2B86nPLanNgyVHb/oQ1G8KUkYr8+yWPHHQ1YeO2MF4/BeONs7BkpUK//2ewpnz41GlW8kbsU33QU59JUcvuMD24CcOxnbCkPwKrzoTp/o0SizGuJmreCYaLx2C4bN2faP/YBBjzIWzoeH8ibPgiGLEUOVtWwJT4ZH+SYL8/ydm0FIbLJ2FOfwxzahJyt68F3y8QgnIV3ZVWMZsu3kWf2pXQq3ZFVAlU4P32DSAS8PH7jfgSt2HAIEgqsv0FFik+yIU++Kbvi+gcFYlK/nLUDQ/AjLb1cStNhWRN8R837rLp3G30rV8VL9ergqpBSnzwUhOIfATYfq3kUWFmiwXv7zyN11+sg0g/abH1Vx5lokedSnihQijKKWXo16AaokL8cCM505WpOLXx5HX0bVwDvRtFoWqIPz7s2dKa58XYErcxWyx4/5fDmNCuESL9FcXWd6tXFTFVIxAZoEC1EH9M69IMuQYj4lKyXZlKibzlu5m+5yhi5yxF6u/7n6t9xXGDkPcgCbemf4bc2/eR8M0PSPl1Dyq/NdLWpvKUUUhc8xOSNmxD7q17uPbGHJh1epQf2c9FWTybK44PAAC+QsgHjEPO9vUOCyuEuNJ/euQJACxcuBBNmjTB+fPn8cILL7j0tcLCwrB582Zcv34dderU+VvbhoSEYOjQoVi7di3MZjP4fL6LoizECASQVI9C2pZNhQtZFrmXzkNas7bDbbQ3ryOgQ2dIatSE7s4t+IaFQ9E0Bln799q1842IRO0ff4MlPx/aW9eRvOY7GNPTXJlOyfh8CMIrIu/on4XLWBbGezetQ8Ad8I1uAGPiPch6DIVvdANYtLkwXDuNvGN/OR6ZwTDwrd0EjK8vTE4uH3EpHh+8kAjkXzhYZCELc2IceGFOdvI+vpCOeB9gGJjTHyH/1F+wZBUdjspA1Gkw8i8eeWo5B/h8+ERWRu7BHYXLWBaG2OvwrVgdjsbWCGs3hjEhDsq+oyCs0xiWXA3yLp2E9uAO23uZHx8HSUx78IPCYM5IgSC8Anwr14BmxyYHz+gGfD4E5SpBe2RX4TKWRf7dG/ApoaAjjG4AY+JdyHsNg7BmQ1i0OdBfOQ3d0V12n1lBYCgCZywBTEYYH95D7t6fYVFzc1apIE/dUfs8jfduwqd8NeQ52MQ3uiGMD+9B1vNVW56Gq6ehO/pnid9NYZ0mYHyFMD7k6LvJ58MnojK0B3cWLmNZ5MfdgE9Fx8P4RbUawZhwF4o+IyCs3RgWrQb6S6egPbTTcZ58PsSNWkJ79C8XJfEceHzwQiNhOFv0gJ6FKSEW/PBKJW/n6wvZmNnWPig1CYYTu2DJTHmykoGgSi0Yzh2EpO/r4IVEgFVnwXB2P0z3OBhOzudDUK4i8o7b70/y79+CT2QV6B1s4lujAUxJ9yHtPgS+NRrCostB/rUzyDtewv4E1ku2AJQ4YtDVjGYLbqepMKpJlG0Zj2HQtEIwrqWU3F/kGU3ovnY3WBaIDlHizRa1UTWw+I/uArn5RjCwFla4YDSbcSslG6/F1LIt4zEMmlUKxdVHJRc6Vp24gQCJEH3qV8WlpPRi6+tHBOLI3cfoXa8KgmVinH+YhoTsHLxTuaFL8ngWo8mMW8kZGN26nm0Zj8cgpmo5XE0q+djsu8OX4S8To2/jGriU4Hz/bzSZ8ev5O5CLfBFVwqVdLuUl381/wi+mATIOnrJblr7vOGp9ab1Em/HxgbJRbdz77LvCBiyLjIMn4RfDzWfWlccH8p7DrCdA790E2vZ0fS6EFPGfL540atQIr7zyCmbMmIEDB5xfD/hvTZo0CceOHUPdunVRsWJFxMTEoHPnzhg6dCiEQsdDXIuKjo5GTk4OMjMzERLi+utF+QolGL4Axmz7AyFjdjaE5R3/2FYd2g+BUolqi1eAYRgwAgEydm5H2paNtjba2zeR9/mnMCQlwicgEGGvjkT1xStwe9xwWPIcdXeuxZPIwfD5xYbGW7Qa+ASHO97GPxg+lWvCcPU01Bu/Aj8wBLIerwI8AfIOF/5w54dEwG/s+4DAB2y+AZofV8CcnuzSfErCiKVgeHxYnjpry+pywfd3/HmyqNKhP/AzLBnJYHxF8G3UBpL+b0L7w5dgtdbRQr6N2wKshdM5TgrwpE/eyxz7kUyWXDUEIY4vdxMEhoBfrRbyLp5A1upFEASFQtl3FBg+H7l7twEAtAd3gCcSI3jGFwBrARgecv76CfqLJ1yekyO2z2zu03lqICjhM8sPCAHfLwj6K6eg2rAY/MBQyHsNB/h86A7+DgAwJt2D5tfVMKUngy/3g7T9y/Af+z6yln0INt/RoaVrFeb51HczVw2foDCH2/ADgsH3qwn91VNQf78E/IBQyHoNA3gC6A79XtguNBL+4z4o/G5uXs7Z5XS2z+1T76c5Vw3fkBLez8AQ+PoHIe/SSWSv+RyCoFAo+owE+Hxo9xWfi0dU+wUwIgnyzh91RQrPpaAPYnX2w6lZXQ74AcWH/AOAJTsN+j1bYM54DEYogm/jdpAOegu5GxaCzVWDkcjA+IogbNoBhhN/wnRsJwSVoiHuNQq6n1fAnOTeghgjkVlzfOozy2o1YEr6zPoHgVc5Goarp6H54SvwA0Ig7T4U4PGRd2Rn8Q0YBtIuA2F8GMfZZWaqPAPMLIvApy7PCZSIEJ/leMRPJX8ZZndqhOpBCuQaTNh4MQ6jfjqCn1/tiFB58Us4DCYzlp24gZdqRELGUfEkW5cPM8sWuzwnUCJCfKaDy+kAXEpKx/ar97FlVJcSn3dGx8aYt+ccXvpmBwQ8BgzDYFaXJmjM0Vwg2To9zBYWgU9dShMoFeNBuuORwRcTUvDbxTv4aUIfp8995M5DzPj5EPRGE4JkEqwc0QX+Ti53chVv+W7+E8LQIBhSM+yWGVIz4KOUgycSwsdfCZ5AAENa5lNtMiGtwc1oalcdHwjrNoUgvCKyV851eQ6EOPKfL54AwCeffIKaNWti7969zyxK1K5dGwkJCQCAVq1a4a+/nv8snlQqxa5du3Dv3j0cOnQIp0+fxjvvvIOvvvoKp06dgkQicbo9+6QqyjBMiW0MBgMMBoPdsnyLBb4891xBJavXAKGDhiHp68XQ3b4JYUQEIia8hdCsEUj9wTpBYc65M7b2+gf3oLt9E7U2/Qy/Nu2RtXtXSU/9n8IwDCxaDXJ3bABYFubkBOgU/tZLKYoUT8yZKcj+di4YoRjC2o0h7zsa6rWfcVZA+bssKQmwpCTYHuelxEM69F341IlB/pk94AVHwKd+K+i2LuUuyH+LYWDJ1UD982qAZWFKegC+IgDSdt1txRNR/RiIG7WE6ocV1jlPIipC8fIwWDTZyDt/jOMEntOTz2zO9nXWPB8ngKfwh6RVV1vxJD+28Ey9OTUJxqT7CHz3CwjrNoX+Anc/uv+Wgu/m9vVF8vSDuFVXu+KJOSMZWSvmgCcSQ1i7CeT9xkC1eiFnBZS/7cnnVvPLGmuej+LBUwZA2qa7w+KJuGkbGO5cgUWjcn+s/4I5OR7m5Hjb47zHDyAbORO+9VrAcPIv4Mn+0HTvOvIvHgEA5Kc/Ar9cZfjWa4k8NxdP/pEnn1ntzu9t+xOewg/iFi85/IEm7TYU/JAIaNZ+xkGw/1y98EDUCw8s8jgA/Tfux6/XH+CN5rXs2hrNFrz351mwLIuZ7Rq4OdJ/Tmsw4sM/TmNWlybwL2HeFwDYciEO1x5nYmm/VghXSHExMQ0L91nnPImp5PiH33+J1pCPD349gjm9XnxmIaRJ5XD8NKEPVDo9fr1wB+9uPYhN43o5nUflP8NLvpte4xnHBzxlAGTdh0C17gvO5swihJPiiUKhgFpdvFKuUqkc3q2matWqGDt2LN577z2sWbPG6XP/+eefMBqNAACxWGx7Pa1WC4vFAl6RIkXB3Xeefs2qVauiatWqGDNmDD744ANERUVh69attrvslOTWrVtQKBQIDCx5hvcFCxZg7lz7aun4KuXxetW/f+2lWaMGazbBx99+eKWPvz9MWY6Hq4aNGIPsA3uRtfsPAIA+/j54IjHKv/UuUjd/73CYo1mbC0NSIoTlIv92jKXBossBazaDJ7UfOsyTKoqNYLBtk6u2TnJbJB9z+mPw5H4Anw8UTIBrNsOSZR3yqktOgCCiMkQxHaHdudHBs7oWm6cFazGDJ5HBUmQ5I5HBonMwsZYjFgvM6Y/A87N+BvnlKoORSCEdWXj3HYbHh/DFnvBt0AraDQtKMYPnCE/75L2U23/neDIlLCXcdcOsUVnfryLvpSntEfgKf9t7qeg5BLkHd0B/2Tqs1ZSSCL5/EGQdXuakeGL7zMqezlNR4oS9lhxVsTzN6Y/Bf/ozWwSr18GckQJ+IDdnQwvzfOq7KVM6nvwXT/K0PJ1ncvE8n3w3LQBMjxMgiKwEcYtOyP3d/XehsX1un3o/+TJlyX2QRmWdzLfo5zb1EfgKv2LvJ88vEL7V60D1/VJXhP/cCvogRiK3W85I5I4nxXXEYoE57RF4fsGFz2k2w2y7jOdJs6xU8MtVLpW4/w5Wl2vN8anPLCNVgC3xu6ku9l6a05OL708ASLsNgU9UPWjWLYJFw828EQDgJxaCzzDI1NmfrMnU6REkffZIWgDw4fNQI1iJJJX95Q1GswXv/XUWyTk6rOz7ImejTgDAX+ILPsMgS2s/8i5Tpy82SgMAklS5eKzWYsqvhfsFy5P39YVFW/Hb2G4Ilonx9dGrWNz3RbSqah0RGRXihztpKmw8e5uT4om/RAQ+j0Gm1n70b6Y2D0EORgUlZuXgsSoXkzcX3vCgIM9GH63F75P7o3yA9Tsg8fVBhUAfVAhUoF75EPRc+jO2X4zF6Nb1XZhRcd7y3fwnDKkZEIYG2S0ThgbBqM6BRW9AfkY2LCYThCGBT7UJhCHFfsSKu7ji+EBQriJ4MiX83/jItp7h8+FTMQriZh2Q8dHYEi/XIqS0cDJhbI0aNXDx4sViyy9evIioqCgHWwCzZ89GbGwstmzZ4vS5K1asiGrVqqFatWqIiIiwvZ7JZMLly5eLvR6AEl8TACpVqgSJRAKt1vm1kWlpadi8eTN69+5tV6B52syZM6FWq+3+Xqtc3ulzl4Q1maCLi4WsQePChQwDWYPG0N664XAbnkgE1mKxW2a7k04JI2Z4IjF8wyNgzOKmA4bZDFNyAnyqFJnUlmHgU6UmTCWctTQ+vAt+QIhdTvzAsMIf4iVhGDACjg4ELWZY0h6BH1l0DgUG/PLV7EaXOMUw4AWF22YxN965CN3mxdD9uMT2Z8lVI//SYeh+X136OTyL2Qxj0gMIqxeZk4dhIKxeG/kJcQ43MT6IBT8o1P69DA6HWZ1tey8ZH1/AYr/DZC2WEj/TLmc2w/Q4Hr5Vi5ytZRj4Vq1V4rwdxoQ48ANDHXxms0v8zDK+QvADQkosPLlcQZ5V7PP0qVITxsS7DjcxPbxrvQSkaJ5BzvO0Pi8PDJ+jwZJmM4yPHsC3mv3n1rdabRgTHOeZHx8HwVPvp+Cpz20BSZM2sORqYLh12RXRPz+LGZbUJAgqFL27HQNBhSi70SVOPemDbMUWixnm1IfgPXXpIc8/GGwOBz9gzGaYHifAp/LT+5NoGJMcTzBqTHS0PwktLHg+Ie02BL7RDaHZ8AUsKo72l0/48HmIDvHDucTC+TwsLItziemo+5zzWZgtLO5mauyKLQWFk0RVLr7t8yL8xM9XiHEVHz4fNcP8cabIfB4WlsXZ+FTUiyh+IqtSoAI/v9YFW0a9ZPtrUz0CTSqGYMuolxCmkMBkYWGyWPD03oPPMLYChLv5CPioGR6EM/cLR8VaLCzO3H+MepHFi+eVg5T45c0+2Dqht+2vbY0KaFIpHFsn9EaYovgkubbnZVnkmziYWN5Lvpv/hOr0ZQS2j7FbFtShBbJPXwYAsEYj1BdvIKh988IGDIPAds2hOn3JjZEW4YLjA+O9W8ha9iGyV8yx/RmTHsBw9TSyV8yhwglxC06ORCdMmIDly5dj8uTJGDNmDIRCIXbt2oUff/wRO3c6uEYRQGhoKKZOnYrPP//c4Xpnateujc6dO+O1117Dl19+iSpVquDOnTuYMmUKBg4caCuyfPTRR9DpdOjWrRsqVqwIlUqFZcuWwWg0olOnwlv3sSyLlJQU262KT506hU8//RRKpRILFy50GotQKCw2f8q/uWQn/detqPDu+9DF3Ybu9i0E9x0AnkiMrD3WCbcqvPsBjJkZSF5rnURKc/oEgvsORN69OOhu34RvuQiEjxgD9ekTwJOiSrmxb0B9+iSMaSkQBAYhfPhrgMWC7EOunXPGmbyTeyHvMxqmx/EwJT2AqHlHML5C25wWsr6jYdFkQ7ffehmH/uwhiJq2h7TrYOSdOQB+YCgkrbsh73RhDpKOfZEfdx0Wdab1mvx6zeBTqQY0G5dwkiMA5F8+ClHHgTCnJcGSmgifBq3ACHxhvHkOACDqNMha/DhlvRzNt0lHmFMewqLOACMUw7dRG/Dk/tDfeHLplV5XfCZyixmsNgesqvgkee6gPfon/Aa9DmPifRgf3oOkdVcwviLknbUO6VcOngCLOgs5f261tj+1D5IXO0HRezi0x/ZAEBwGWYeXoTu22/ac+psXIev4MsyqDJhSkiCIqARpm27IO3uYixQBALoTe6DoNxamRw9gTLoPSYvOYHyFyLtgPeMp7z/Wervsvb8AAPLOHoI4piNk3Yci79Q+8IPCIG3bA7pThZN3yroMhOH2ZZhVmeAp/CDr0BtgLdBfOeMoBLfIO7EX8n5jYHwcb72N+JM89Resc+zI+42BRaOCdl9hnqJmHSDrNgR5p/dbv5ttuiOvSJ7STv2RH3cVZlUmGKEYonox8KlUA+oNX3KSIwDojv4F5cDxMCY9gDHxHqStuljfz3NPPreDxsOszkbuXz9Z25/aD0nLTpD3Ggbdib0QBIVB2r5X8VtnMwzETVpbR0g9VdjmguHCYYi7DIE5NRHmlIfwbdQGjI8vjE/6FFGXoWBz1TAct45e9I15CebkeFhU1j5I+EJ78BT+MF4rnNww//xBiLuPgPnRPZgS70JQKRqCKrWh+2k5JznqT+2DrM9rMD9OgOnRA4hiOoLxEcJw6cn+pM9rsGhU0B2w7k8M5w5D1LQ9JF0GQX/2IPgBIRC36g79mcL9ibT7UPjWbYacH5eDzdfbzp6z+jzAZHR/kgBebVQNc/ZeQM0QP+utii/dQ57RjF61rCNdZ+85j2CZGJNaWouCq87cRt0wf5T3kyHHYMTGC3FI0ejQu3YlANbCyYw/z+B2mhpLezWHmWWR8WTEh1LkCx8+NzdwfLVJNGbvOo1aYQGoEx6AzedjkWc04eW61rkePvzjNELkYkxuUx9CAR/Vgv3sti+Y7LZguQ+fj8blg7H08BWIfPgIV0hxITENf9yIx9T2DdyYmb1hLepg1m9HUbtcEOpEBmPTqevIyzehdyPrCcAPfj2CEIUEb3VqAqGPANVD7YtkcpH12LNguS7fiNVHrqBtdAUEycVQ6QzYcuYm0nJ06FTH/aPCAO/5bvKlEkirVbA9llSOhKJ+NPKz1NAnJqPGJ1MhigjFlVEzAAAJq7ag4htDEb3gXSSu/xVB7WIQPqArzvUab3uOB0vXof7az6C6cB3qc1dRafIICKRiJG7Y5vb8CpT28QGbr4c57ZHda7BGAyy63GLLCXEVToonVapUwdGjR/HBBx+gY8eOyM/PR3R0NH7++Wd06VLyBF7Tpk3Dt99+C73+70+MuHXrVsyZMwfjx4/H48ePERkZiT59+mDWrFm2Nm3atMGKFSswfPhwpKamwt/fHw0bNsTevXtRo0YNWzuNRoPw8HAwDAOFQoEaNWpgxIgReOutt6BQlDwrvSuojhyEQOmH8OGjIfAPQN79u7j/wTSYVNYzer4hoXaV2JQfvgfLsggfMQY+QcEwqVVQnz6BlHX/s7XxCQ5BpffngC9XwKRWQXvjGmLfGg+zWuXW3IrKv34OWokckva9wZMpYEpJhGbjErBPzm7ylQF2eVo02dBsXAJpl4Hwf2MuLDnZyDu933q3nSd4UgXkfUeDJ1eC1efBlJoEzcYl1tm7OWKKuwKDWAphs5fASOWwpD+Gbsdq2y09GZkfeEXyZIRiiNr3ByOVg9XnwZKeBN3Py2HJ5ujOSM9Bf/k0NFIFZC/1B1/hB+OjBGT9b6FtGCffL9A66esTFlUWslZ9BsXLryJ42kKY1dnQHtttvdvOE5rfNkDeZQAUfUeBL1fCrM6G7tQB5O7j7qDBcO0scqVySDv0AU+uhCn5IVTrvyzymQ20/8yqs6Ba/wXk3YZAPOkTazHw5D67mep5ygAoBr5uvbRLmwNjQhyyV84rNsGnOxmunwUjlUPaoTd4Mmue6g2LbXny/Irnqd7wJWTdBsN/4jzrd/PUPuts+k8wMjnk/cYW+W4mQr3hS06/m/orZ6x9xkv9wJMrYXycgOzVi4p8boOK5Zm9+jPIe76KoKmfwqzJhu74HuvddorwrV4bfP8gWxGGa6bYS9BLpBC26ApGooAl/RF0276z3X6YJ/e3O/vOCMUQdxoIRqIAa9DBnJoI7Y9f2d3Zy3T3GvT7f4Zv044QtesLS1Y68naug/nxA7fnBwD5N85BJ5VB3O5l2/4kZ9PSws+sMtA2hxlg3Z/kbFwCSZeB8JvwESyabOjP7Lfe0eMJUZN2AADlqOl2r5W7fS0Ml0+6IaviOkdFIjvPgJWnbyFTZ0BUkBJf925hu/1wSk6e3RxtOfp8fHLgEjJ1BiiEPogO8cPaV9qgypO77aRr83DkvvXyq8GbD9q91nf9XsQLkcFuyszeSzUrIFunx7fHryFTq0eNED+seKVtYZ4aLXh/cxDiwl4t8PWRq3h/52lo9PkIV0jwZqu6GNDA8d213KFL3SrI1unxzcELyMjNQ42wQHwz7CXb3CQp6lzw/sZoSz7D4EGGCju2xEGl08NPIkLtiCCsG90d1UL8XZWGU97y3VQ2roPmBwovD6/1hfXS6sTvt+Hq6JkQhgdDXL5wMvK8+CSc6zUetb6ciUqThkOflIJr4z9Exr7CGwEk//wXfIMDEDVnMoRhwdBcuYWzPcYg/6lJZN3JFccH5G/iagS2B2NYlsY4ce1yZ8f3O/c0kTElXx7lKYTBHNzejwO58d5R4eeLfLkOwS2cTXLtKcwGbs4wupskPOjZjTyAUeP4jjGeRhjiHe8nT8Tt5T/uwJOWfKmMJ9HeiuU6BLc4Pb+MTEb/LzWd0YLrEFwu+JN1XIfgMrq1c7gO4W+RvPbfv4sSN2MsCSGEEEIIIYQQQsoIKp4QQgghhBBCCCGEOEHFE0IIIYQQQgghhBAnqHhCCCGEEEIIIYQQ4gQVTwghhBBCCCGEEEKcoOIJIYQQQgghhBBCiBNUPCGEEEIIIYQQQghxgoonhBBCCCGEEEIIIU4IuA6AEEIIIYQQQgghpYhH4yRKG/1HCSGEEEIIIYQQQpyg4gkhhBBCCCGEEEKIE1Q8IYQQQgghhBBCCHGCiieEEEIIIYQQQgghTlDxhBBCCCGEEEIIIcQJKp4QQgghhBBCCCGEOEHFE0IIIYQQQgghhBAnqHhCCCGEEEIIIYQQ4gQVTwghhBBCCCGEEEKcoOIJIYQQQgghhBBCiBNUPCGEEEIIIYQQQghxgoonhBBCCCGEEEIIIU5Q8YQQQgghhBBCCCHECQHXARBCCCGEEEIIIaQUMQzXEXgcKp78B8jDFFyH4BaPzsZxHYLLhdWvyHUIbmHU6rkOwS28Jc/cVDXXIbic2F/KdQhukX7rEdchuEVky5pch+AWOfcech0CKSXy6t5xfHB//3WuQ3CLpjNacB2CW5z97CTXIbhc90+4joCUJXTZDiGEEEIIIYQQQogTVDwhhBBCCCGEEEIIcYKKJ4QQQgghhBBCCCFOUPGEEEIIIYQQQgghxAkqnhBCCCGEEEIIIYQ4QcUTQgghhBBCCCGEECeoeEIIIYQQQgghhBDiBBVPCCGEEEIIIYQQQpwQcB0AIYQQQgghhBBCSg/Do3ESpY3+o4QQQgghhBBCCCFOUPGEEEIIIYQQQgghxAkqnhBCCCGEEEIIIYQ4QcUTQgghhBBCCCGEECeoeEIIIYQQQgghhBDiBBVPCCGEEEIIIYQQQpyg4gkhhBBCCCGEEEKIE1Q8IYQQQgghhBBCCHGCiieEEEIIIYQQQgghTlDxhBBCCCGEEEIIIcQJAdcBEEIIIYQQQgghpBQxNE6itNF/lBBCCCGEEEIIIcQJKp4QQgghhBBCCCGEOEHFE0IIIYQQQgghhBAnXD7nyciRI6FSqbB9+/Zi6ypVqoQpU6ZgypQptscJCQk4deoUYmJibO2mTJmCy5cv4/DhwwCAjz76CNu3b8fly5dtbY4dO4aePXti5MiRWLJkCRiGsa07fPgw2rVrh+zsbPj5+TmN4ciRI5g7dy4uX74MvV6PiIgItGjRAv/73//g6+trey4AYBgGcrkcVapUQadOnfD2228jPDz8X//P/i5Fh+7w69YPfKU/8hMfIGPjShjuxzpsW27mAohr1iu2XHv5HFIWf2R77FOuPAJfGQVRdB0wfD7yHz1E6tefwpSZ7qo0nimwZx+E9B8EgX8A8u7fw6NvvkJe7K0S2wf1HoDAHi/DNzgUJo0a6mOHkbxuFVhjfrG2Ia8MRfhr45H+2894/N3XLszi2cTNO0Lauht4ciVMyYnQ/P49TEn3S2zPiCSQvTQAwjovgCeRwpydgZydPyD/zhVbG57CH7KuAyGsUQ+MrxCmjFRofv4fTI8euCMlh2RtukDRuTf4Cj/kJ8Uje+tq5Mffddg2ZOrHEEXVKbY879oFpK+YD/D48Ht5CER1GkEQFApLng6G21eh+m0jzOpsV6dSIm/IEQD8u76MwN6vQOAXAEP8PSSv/hr6uDsltg/o0Rf+XXrBJygE5hw1NCePIm3TarBGIwBAUqsuAnsPhKhqdfgEBCFxwWzknD3hrnRKJG/fDcoufWx9beYPq5D/IM5h27Dp8yGOrltsue7KOaR+NQ8AEPTaW5C/2MF+/bWLSF3yUanH/ncEdO+N4L4DIfAPgP7BPTz+bhnyYm+X2D6wVz8EdusFnyd9rebEEaRs+J/t/QweMASK5q0gjKwANt8A7a0bSFm/CvmPEt2VUjHCRq0hbNYJPJkC5rQk6Pb+BHNygsO2vnVjIO0x3G4ZazJC9flbtseMRA5xu97wqVwTjEgCU2IcdHt/giWbu30mAEhadoK0bQ/w5UoYHz+E5rcNMCbeK7E9I5JA3u0ViOo2AU8igzk7A5rtG2G4fflJAwayl/pD3Kgl+Ao/mNXZyDt3FLn7f3NPQiUo7TyDP/gKgoDgYttpT+yFZtt6F2XxbD9dvofvL8QhU6tH9WAlprerjzphAQ7b7riRgLl7L9gt8+XzcGpybwCA0WzBtydv4viDFDxSayET+qBZhRBMerE2gmViV6dSopC+/RA2+FX4BARAd+8uHi75EtpbN0tsHzpgIIL79IUwNBQmlRpZhw8i6btvweY/Odbj8RDx2hgEdu4Cn8AA5GdkIOPPXUjesM5NGTkmatYekhe7gidTwpTyELl//OD0mIwRiSHt2A++tRuDJ5bCrMqE9s8fkR97tVhbcetukHUeAN3JvdD++aMr03Aq4MUXUOWd0VA2qgNRuRCc7/cGUncccL5N66ao9cV7kNWqDn1iMu4u+BZJ39v3LxUnDEGVqaMhDAuG5upt3JgyD+pz11yZCiE2/7kJY0UiEWbMmIEjR4489za7du3CgAED8N5772H27Nn/+LVv3ryJLl26YNKkSVi2bBnEYjHi4uLw66+/wmw227W9c+cOFAoFNBoNLl68iEWLFmHNmjU4fPgw6tYtfsDsKtJmrRA0ZCzS1y+H/t4d+L3UG+HvzkPi9HEw56iLtU9ZNh+MwMf2mCeTo/wny6E9e9y2TBAShogPF0FzZC+yftsES54OvhEVC3dEHPBr3R7lxr6JpK+/hO7OTQT3HoAq87/AnTFDYVKrirdv2xHhr41D4uLPoL11HcKI8qjwzkwALB6vWmHXVhwVjYBuvZB33/GPWncS1msGeY8h0Py2DsaH9yB5sQv8R09HxhfTwWo1xTfg8+E/ZgYsuRqoNy2DWZMNvl8QWL3O1oQRSxAwYRby799C9tovYNHmQBAUCjZP68bM7Ekat4R//1HI2vwdDPGxULTvgZBJs/H4o0mwOPjcZqxcBAgKuyu+VI6wDxdDd/EkAIDxFcKnQhVo/vwZ+Unx4Elk8H/lNQS9MROpC6a7La+ivCFHAFC0bIvQUa8jeeVS5MXeRmDPvqg4+zPcnTgSZgffTUWr9ggZNhaPl3+OvNs34FsuEuUmW+NPXfctAIAnEkMffw+qA3+h/HsfuzOdEkmbvIjAgaORsfEbGO7HQtGpF8KmzkXS+xMcvp9pKxaA4Re+nzyZHBFzl0F73r4IpLt2ARlrvrI9Zk1G1yXxHJSt2iF8zAQ8XrEEuju3EPRyf1T+eBHujB/u8P1UtumAsJHjkPTVIuie9LWRU2YAAJJXfwMAkNapj8xd25EXdwcMn4/Q4WNQed4ixE4YBdagd2d6AACfmo0h7tAPut0/wvQ4HqIm7SEbOAmaVR+B1eU63IbV50G9am6RBazdeln/8WDNZuT++h1YQx5ETTtANngyNP+bBzgo2LuDqEEMFL1ehfqXtTA+vAtpq64IGPce0j97B5Zcx/uTgPEzYcnVIHvDV7Cos8D3D4Ilr3B/Im3fC9IWHaH68VuYUpLgU74KlAPHw6LXQXd8jxuzK+SKPDOXfgjwCgdnC8LKI/D196G/csYdKTm0904SFh+9hvc7NECdsABsvngXE7edwLaRnRAgETncRuorwLaRnW2PmSLr9CYzbqepMKZZNKKClcgxGPH54St4+/dT2DS0vYuzcSygfUeUn/gWEr74DLk3byD0lUGIWrwU1wYPhElV/CRBQKfOiHz9DTxYOB+5165BVL48Kn8wC2CBxOXWfjV86DAE9+6LB/M/Rt6DB5BGR6Py+x/CrNUi7Zef3J0iAEBYpylkXQchZ8f3MCXeh7hFJyhHvoOspTPBanOKb8DnQznyXVi0Gmh+XAHLk2M9S5FjvQKCiMoQN2kLU/JDN2TiHF8qgebqHSSu/xUv/LLime3FlSLRZMd3eLhqCy4Pn4bA9s1R97tPoE9OR8Y+6++U8AFdUfPzmbj+5hyozl5B5ckj0GzXGhyu3QX56VmuTomQ/95lO+PGjcPp06fx559/Plf7zZs3o2/fvli0aNG/KpwAwN69exEWFoZFixahTp06qFq1Krp06YL//e9/EIvtq/AhISEICwtDVFQUBg0ahBMnTiA4OBgTJkz4VzH8XX5d+kBzeDdyju2H8XEi0tcvB2vQQ96ms8P2Fm0uzOps25+kTkOw+Qbknj1maxPQfzh0V84ja+s65CfchyktBbpLZxwWY9wlqO8ryNr9B7L3/QXDwwQkff0lWIMeAS91d9heWqsOtDeuQ3V4P4ypKci9eA7Zhw9AUqOmXTueSIyK02ch6atFMOc62GG5mbRVV+SdPQz9+WMwpz1Gzm/rwBoNEDdp7bC9+IU2YCRSqL5fCmNCHCzZGTA+uG2305S26QGzOss60iTpPizZ6ciPuw5zVpq70ipG3rEnck/sg/bUQZiSk5C1+TtYjAbIWjg+YLPocmHRqGx/opr1weYboLtgLSyweh3Sv5oL3YWTMKU+Rv6DWGRvWQ1hxWrg+we5MzUbb8gRAAJ79Ydq359QH9yD/KQEJK9cCovBAL8OXRy2l0TXRt7t69AcOwhjeiq0Vy5Ac+wQxNVr2NrkXjyL9M3rkHOG+9EmBRQvvYyco3uRe/wAjI8Tkfn9N2DzDZC36uiwvUWbC7NGZfsT17b2tdpz9jmxRqNdO4uOu6ImYB2xl71nF7L374YhMQGPViyGxaBHQKeuDttLa9aG7tZ1qI8cgDEtFbmXzkN19CDE1aNtbeLnzIDqwB4YHsZD/+AekpYshG9IGMTVotyVlh1R0/YwXDmB/GunYclMgW73j4ApH771WpS4DQsWrFZT+Kcr3F/wAkIgiKgC3Z4tMCcnwJKVBt3uLWAEvvCt9YI7UnJI2robdKcPIe/cEZhSH0H96xrr/qRpG4ftJU3bgieRIXvdYhjjY2HOzkD+ffv9iW+l6tBfPw/DrcswZ2dAf/UsDLHX4FuhqrvSKsYVeVq0ObDkqG1/oloNYcpIQf69kke7utqmi3HoU6cSetWuhCqBCrzfsSFEAj5+v+54xBRgHSEdJBXZ/gKlhUUWudAH3/R7EZ1rRKJSgBx1wwMwo1193EpTIVlT/Ee5O4QOGoz0nb8j489d0MfHI+Hzz2DR6xHUo4fD9rI6dZF77Sqy9u1FfkoyNOfOImv/Pkhr1bJrozp+FOpTJ5Gfkozsw4egPnsWspq1HD6nO4hbdob+/FEYLh6HOf0xcnd8D9aYD1HjVg7bixq1Ak8iheaHr2F6eBcWVSaM8XdgTnlq9J6vEPIB45Czfb3Dwoq7pe85itg5S5H6+/7nal9x3CDkPUjCremfIff2fSR88wNSft2Dym+NtLWpPGUUEtf8hKQN25B76x6uvTEHZp0e5Uf2c1EWhNj7zxVPKleujNdffx0zZ86ExWJx2nbFihUYNWoU1q5di4kTJ/7r1w4LC0NycjKOHj36t7cVi8V4/fXXceLECaSluelHKV8AYaVq0N24XLiMZZF38zJE1aJL3KwoeevOyD19FGy+wbqAYSCt3wTGlEcIf/djVFr+AyLmLIakUYzzJ3IhRiCApHoUci6dL1zIssi5dAGSmrUdbqO9eR2S6lEQR1mLJb5h4VA0iYHm7Gm7dhFvvg3N2VPIvXTB0dO4F58PQUQl5MfdKFzGssi/ewM+Fao53ERYqxGMCXch7z0CQR8uR+DbCyBp1xMoctmasFYjGJMeQDl0EoJnrUDA5HkQN23r4mSc4AvgW6Eq9LeKDDVlWehvXYVvlRolb1eEtGUH6M4fL/zcOsCIJWAtFli4GGHjDTkCgEAAUdUoaK9cLFzGstBevQhJDccHprrbNyCqGgXRk2KJT2g4ZI2bIvfCWXdE/M/wBRBWrIa8m5cLl7Es8m5egbDqc/a1rToi9+yxYu+nKLoOKiz9HhGffoPAYRPAk8pLMfC/hxEIIK4WhdzLRfpDlkXu5YuQRJfQ1966AXHVKIijrP8Hn9BwyF9ohpzzJZ+h50ulAACzo1EBrsbjgx9WAaYHRS8rY2GMvw1BROUSN2N8hVC8MQ/KN+dD2m88eEFFLtEtGGFkN2qIBcwmCCI5Kirw+fCJrAxD3PUiIbEwxF6Hb8XqDjcR1m4MY0IclH1HIeSjbxE07TNIO7xstz/Jj4+Db/U64AeFAQAE4RXgW7kG9LevOHxOl3NRnk+/hrjxi9Cdff4R0aXNaLbgdqoKTSuE2JbxGAZNK4TgWnLJZ9vz8k3ovvovdPvfX5j6+yncy3D+ncs1mMDAWlhxN0YggDSqBjTnzxUuZFlozp+DrLbjEd25169BUiMa0ieFEGG5clDGtID61Em7NorGTSAsXx4AIK5WDfJ69aE6fcp1yTjD50NQrhLy79kf6xnv3YRPecfHer7RDWF8eA+ynq8i8L2l8J80D5I23Yt9ZuU9hyH/zhUY75V8mdN/mV9MA2QctH9f0vcdh39MAwAA4+MDZaPayDhQ+P6CZZFx8CT8Yhq6MVLizf5zl+0AwIcffoh169bhhx9+wLBhwxy2uXXrFiZOnIg1a9Zg6NChpfK6AwYMwJ49e9CmTRuEhYUhJiYGHTp0wPDhw6FQKJ65fXS09eAxPj4eISEhDtsYDAYYDPYHzwazGUI+/2/Hy5crwPD5MGtUdstNahXE4eWfub2wShSE5SshvciQcb7CDzyxBH49BiDrl43I3LoeknqNETb5AzxeMBP6O9edPKNr8BVKMHxBsSGbJlUWhOUrONxGdXg/BEolqn25HAzDgBEIkPHHdqRt3WRr49emPcTVohA3eZxL439ePIkcDJ8PS679CB9Ljga+weUcbsMPCIZv1ZrQXz4F1bovwA8MhaL3CDB8AbRPrkHnBwRDEtMeumO7kX1oB3wiq0DeaxhYkwn6i8cdPq8r8WVyh59bS44KPmERz9zet1I1+EZURNZGJ0NABT7w7zPMWnzQ5/3LiP8+b8gRAARyJRg+Hyb109/NbAgjHPdBmmMHIVAoUXn+V8CT72bW7h3I+HWzO0L+R0rqa80aFXzCn+P9rFwdvpGVkL7Ofj6lvOsXobt4Csb0VPiEhMG/3zCEvT0Hj+dPB1jnJw9cwdrX8h30tdkQRjrua9VHDkCgUKLKZ8tsfW3mn78j/ecfHL8IwyB87ERob1yDISG+lDN4NkYiA8Pjw6Kz/xHJanPADwx1uI05KxW6XZtgTnsERiiGsFlHKIZNg3r1PLA5KlgyU2BWZ0Lc9mXodm8Gm58PYdP24Cn8wZMp3ZFWMTzpk/3JUyNGLblqCEIc708EgSHgV6uFvIsnkLV6EQRBoVD2HQWGz0fu3m0AAO3BHeCJxAie8YX1M8rwkPPXT9Bf5GaUmKvyLEpU5wUwIgnyznFXPFHlGWBmWQRKhHbLAyVCxGc7HjVbyV+G2Z0boXqQErn5Rmw8H4dRWw/j5+EdESqXFGtvMJmx7Ph1vBRdHjIOiicCpR8YgQDGLPtikDErG6KKlRxuk7VvLwRKP0R/8x3AMOAJBEj7bRuSN26wtUne9D34Uinq/rAVrMUChsfDo1UrkbWPm8vMCo/17PsgS64aPk+Kkk/jBwSD71cT+qunoP5+CfgBoZD1GgbwBNAd+h0AIKzbFILwisheOdfhc5QFwtAgGFIz7JYZUjPgo5SDJxLCx18JnkAAQ1rmU20yIa1RxZ2hEi/2nxt5AgDBwcGYNm0aZs+ejfwS5tmIjIxEo0aN8PnnnyM5Odm2vGvXrpDJZJDJZKhd2/GZspLw+XysW7cOSUlJWLRoESIiIvDpp5+idu3adq9REvbJNdBMSWcvACxYsABKpdLub+X1kic1cyV5684wPHxgP7nsk9i1F09DvWc78h/eh+qPn6G7fA6K9t04ifOfkNZrgJCBr+LRisWInTgGDz7+AIqmzREyxDrpn09QCMq9PhkPF33scALZMoNhrNfA/roGpkfxMFw9A+2hHRA3K3JpCMOD8XECcvf8DNPjBOSdPYS8s4chjuHmmuZ/S9qiI/KT4kuceBU8PoLGTgMYBlmbv3NvcKXEk3OU1K6PoH5DkLxqGe6/8zoSF86GvHEzBA14levQXEbeqhPyE+OLTS6rPXsMustnYXyUAN2lM0j9ah6EVaIgii4+cfB/lbRufQS/MhSPv12KuLfGIWH+LMhfiEHIIMcnPspNeAuiipXxcNF/Yy6b52F+9AD518/AnJYEU2IctNu+gyUvB8KGL1obWCzQblsFXkAI/N7+En7vLoVPxSgY710vNjfKfxrDWOfP+nk1TEkPoL98Grn7f4ekeeGkxqL6MRA3agnVDyuQsfgDqLeshKxtd4hfcHy5wX/Sc+RZlKRZOxhuX4HlqeLpf129coHoUasiaoT4oXFkMD7vGQN/sRC/Xis+KanRbMF7u86ABYuZ7Ru4P9h/SN6wEcoNG4GELz/HzddGIO79GVC2aIHwEaNsbQLad0Bgp5dwf+5s3HxtBB7M/xhhg4cisEvZOaYtONbL3b4epscJMFw/C93hnRA9GUXMUwZA1n0IND9/B5hM3MZKiIf7T448AYCpU6fim2++wTfffONwvVwux/79+9GpUye0a9cOhw4dQnh4OFavXo28POtZWB8fa+W8YNSIWq0udrcdlUoFpdL+zFBERASGDRuGYcOGYd68eYiKisLKlSsxd67zau6tW9ZrYStVqlRim5kzZ2Lq1Kl2y5ImvOL0eUtiztGANZvBV/jZLRco/Z559w3GVwhZTGtkb9tkt9ycowFrMiH/kf1EU/mPEyGK4ub6ULNGDdZsgsDP3265wC8ApmzHw1XDho9G9sG9yNq9CwCgj78PnkiE8pPfRdqPGyGuHgUf/wBELV9t24bhCyCtUx9Bvfrgas+OwDMuGyttFl0OWLO52JlKnlwBc47K8TY51v9N0QN0U9pj62eCzwfMZlhyVDCnPrLbzpT2GMI63FyLb87Ncfi55cn9ip3ZfxrjK4S0SUuod25x3IDHR9C4aRAEBiNtyWzORmR4Q44AYMpRgzWbIVA+/d30h0nl+LsZMmQUVEf2QbXfOq+V4eED8ERihE94Gxm//PCf/LFZUl9rvduIyum2jK8QsqatkL392SNrTOmpMOeo4RMSbn/Jl5tY+1qzg77Wv8S+NvTV16A6uBfZe5+8nwkPwBOKEDHxHetIvyLvZ7nXJ0PepDnuv/cWTJkZDp/P1VhdLliLGTyJAkWngWekcseTizpiscCckgS+f+HdWMwpichZuwAQisDwBGDzciEf8S5nkzZatE/2J/Kn9icyJSwl7E/MGhVgNj+1P3kEvsLftj9R9ByC3IM7oL9sHVpvSkkE3z8Isg4vI+/8MYfP60quyrMA3z8IvtXrIHv9EleE/9z8xELwGQaZOvuRy5k6A4JKmCz2aT58HmqE+CFJZX+ZZ0HhJFmTh5X9X+Rk1AlgHTXNmkzwCbC/e5BPgD+MmZkOt4kYMw4Ze/5Cxh87AAB59++BLxKj4vT3kPz9eoBlUf6NSUj+4XtkHdhva+MbFo7wYcORufv55lcsTYXHevYj2nkyZYl9kCVHBVjsP7Pm9GTw5X5PLgOqCJ5MCf83PrKtZ/h8+FSMgrhZB2R8NPY/uW99miE1A8JQ+znchKFBMKpzYNEbkJ+RDYvJBGFI4FNtAmFI4WafQrzPf3LkCQDIZDLMmjUL8+fPR06O4yGJ/v7+2L9/PxQKBdq2bYvHjx8jIiIC1apVQ7Vq1VCxYkUAQPXq1cHj8XDhgv28Fvfv34darUZUVMmT1vn7+yM8PBxarfM5BfLy8rBq1Sq0bt0awcHFb29XQCgUQqFQ2P39k0t2AABmEwzxdyGp3aBwGcNAXKsB9HdLvq0kAMiatgIj8EHOyUPFn/NBHHzDI+0W+4SVgymTmwlGWZMJurhYyBs0LlzIMJA1aATdrRsOt+EJRYDlqR1FQTGEYZB7+QLujB+B2DdG2/50sbeQfWgfYt8Y7fbCCQDAbIbpUTx8qxUpUjEMfKvVhvGh4xEIxvhYCAJD7a575QeFwazJth0A5sfHgh9sfwttflAYzCrHByMuZzYh/+E9iKKL3DKbYSCKrof8+yXf3hYAJI1bgBH4QHvGwfDpgqJCcDjSln4Ei9bxXTPcwhtyBACTCfp7sZDWK3KtMcNAWrchdHccX3PNCIXFvptswY8VJ6P2OGU2wZBwF6Ka9QuXMQzENevBcM95Xytt0hLw8UHuqcPPfBm+fyB4Ujlnt55mTSbk3Y2FtH6jwoUMA1n9RtDddtLXPnVQzhbpawuUe30yFM1fxIMPpsKYmlLqsT83ixnmlIcQVCo69xADn4o1nv/W7QwDfkg5xz90DHqwebng+QeDH1YRxjj3F8EAAGYzjEkPIKxeZAQuw0BYvTbyExzfXtv4IBb8oKf2J8Hh1s/jk+8o4+Nb/PtrsXD33XVRngXETdrAkquG4dYll4T/vHz4PESH+uFcYuFxmIVlcS4xDXXDHd+q+GlmC4u7GWoEFZk0tqBwkqjS4tt+L8JPLHTyDK7FmkzQxt6BonGTwoUMA0XjJsi94fg2tDyRo/7Hfn/CE4nAPn08aDaD4XH0E8hshulxPHyr2B/r+VSpCWOi42M908O74AeUfKxnvHcLWcs+RPaKObY/Y9IDGK6eRvaKOWWicAIAqtOXEdjefo7FoA4tkH36MgDrBOvqizcQ1L55YQOGQWC75lCd5vY7SryHW3oOtVqNy5cv2/0lJiY+c7tx48ZBqVRi8+aSz9j5+flh37598Pf3txVQniaXyzFmzBi888472LFjBx48eICjR49i6NChiImJQYsW1hn2v/vuO0yYMAF79+7FvXv3cOPGDcyYMQM3btxAz5497Z4zLS0NKSkpiIuLw5YtW9CyZUtkZGTg22+//Zv/nX9Htfs3yNu8BPmLHeBTrjyCRrwJRihCztF9AICQcVMRMGBEse3kbTpBe/EULA7uMKP681fImrWCvO1LEISEQ9GxB6QNm0FzYJfL8ylJxrafENC1B/w7doGwfEVETnoHPJEYWU/Odpaf9j7CRhXOXaI5cxKB3V+GX5v28A0Nh6zhCwgbPhqaMycBiwWWvDzoEx7Y/Vn0epg1GugTnvMA2gW0x/6CuGlbiBq9CH5IOcj7jATjI4T+vHUSY8Ur4yHrUjhSSXf6ABiJDPKer4IfFAbf6PqQtuuFvJOFM5vrju+GT4WqkLTrCX5gCEQNmkPSrJ1dG3fL2b8Tshc7QhrTFoKwCPgPHg+erxC5Jw8CAAJHToayd/G5jKQtOkB3+WzxogGPj6Dx78K3QlVkrl0K8HjgKfzAU/gVTuboZt6QIwBk7vgFfp26Q9muM3wjKyB8/BTwRCKoDlivJy83eQZCXh1ta5977hT8u/SE4sV28AkJg7R+Y4QMGYWcc6dsRUtGJIKwUlUIK1kn2/QJDYOwUlUIghzPJeUOmj2/Q96mM2Qt2sMnPBKBwyZY+9rjBwAAQWOmwL/f8GLbyVt1gu7iaVieuv0kIxTBf8BICKvUgCAwBKKa9RA66QOY0pKhu36x2PO4S8b2nxHwUg/4tX8JwsgKKPfG2+CJRMjevxsAEDl1JkJHjLG115w9iYBuvaBs3Q4+oWGQNWiM0Fdfg+Zs4ftZbsIU+LXthMTP58Oi00Hg5w+Bnz8YX19OctSfPQhhg5bwrdsMvMAwSLoMAnyEyL9qHU0h6TECojYv29qLWnaFoHJN8PwCwQ8tD2mvkeApAmC4XDjPh090QwgqVAfPLxA+1etBNmgyjLFXYHrA3d1ZtEf/hKRZO4hfaAVBSDko+r0GxleEvCcTnyoHT4C828DC9qf2gSeRQtF7OPhBYRDWbABZh5ehO7HX1kZ/8yJkHV+GsGYD8P2DIKzzAqRtukF/7Vyx13cXV+QJwFogbdLaOqKGixMqT3m1UXX8di0eO28k4EGmBgsOXEKe0Yxeta0nCmfvPo+vjxfOS7fq9C2cSkhFkkqLW6nZmLX7HFI0OvSuUwmAtXAy448zuJWqwiddX4CZZZGh1SNDq4fRzE2+qVt+RHDPXgjs0g2iipVQcdp08MQiZOyyHn9W/nA2IscX3tVSdeI4Qnr3RUCHjvAND4fihaaIGDMO6hPHbe+Z6sRxlBs+EsrmLeAbFg6/1m0QOnAwso9yN4dN3om9EL3QBsKGLcEPDoes13AwvkLoL1jnoZP3GwNpp/6F7c8eAiOWQtZtCPiBofCNqgdJm+7Qn7EeT7D5epjTHtn9sUYDLLpcmNMeOYzBHfhSCRT1o6Gob50TUlI5Eor60RCVt57Qq/HJVNRf95mtfcKqLZBULo/oBe9CWqMKKr4+BOEDuuLBV+ttbR4sXYfyo19BxLDekEVXQZ0VH0EgFSNxQ/H5ighxBbcccR8+fBgNG9rPgjx69OgSWhfy8fHBvHnzMGTIEKftlEol9u7diy5duqBNmzY4fPgwIiLsJ/H76quvsHDhQsyYMQMJCQkICwtDp06dMH/+fNscJU2bNsXx48fx+uuv4/Hjx7Z5U7Zv3442bexveVejRg0wDAOZTIYqVaqgc+fOmDp1KsLCHE/25CraM8eQKVfCv++rECj9YXh4H8mfz7ZdGiAIDLbNxVLAJywC4hp18PizDxw/54VTSF+/An49BiDo1fEwJj9CytefQh/L3ezdqqMHwVf6IWzYaxD4ByDv/l08+HCabWJD35BQu8p66ubvAZZF2Igx8AkMhkmtgubMSSSv/x9XKTwXw9UzyJHKIevcDzy5EqbHD5G99nPbGU6+X6BdnhZ1FlRrFkHWcygCp8yHWZMN3Yk90B3+w9bGlPQAqu+/gqzLK5B16A1zdjpydm6C/vLJYq/vLroLJ8CTK6DsORh8hR/ykx4g7et5tkn/+AFBYJ+aMFMQWg6i6rWQ9lXxy+f4/gGQ1G8KAAiftdhuXeriWTDEOj5r7krekCMAaE4cBl+hRPCgkRD4+8Pw4B4efvyebfSET3CI3Wc2/edNYFkWIUNGQRAQBLNGhZzzp5G2aY2tjbhqDVT6pDDHsNfeAACoDu7B468XuSkze9pzx8GTK+Hfewj4Sn8YEu8jdclHtnkQBAHBxc7I+4RFQBRVG8lfzC7+hBYLfMtXgrxle/AkUphUWci7cRnZv/3A6TXr6mOHIFAqEfrqSAj8A6C/fw8PZs+w9bU+wSF2PyTTtmwEWBahr46GT2AQTGoVcs6eQsrGwksiA7tbCxFVFi61e63EJQttRTZ3Mt66gDyJDKJWPcCTKmBOS0LuT8tttx/mKfztJuxlRBJIug4BT6oAq9dZL9HZ+AUsmYUjaHgyJUQd+j+5/EeN/OtnoD/+l9tzK0p/+TQ0UgVkL/UHX+EH46MEZP1v4VP7k8I8LaosZK36DIqXX0XwtIUwq7OhPbYb2oM7bG00v22AvMsAKPqOAl+uhFmdDd2pA8jdx90PF1fkCQC+1etAEBAM3ZnD7kynRJ1rRCI7z4CVp24iU2dAVLASX/dpabv9cEqOzm4AUI7eiE/2XUSmzgCF0AfRoX5YO6gtqgRaLxdJz83DkfvW+fwGbzpo91rf9W+FF8qXPIraVbIO7ofAzw8RY8bCJyAQurtxiH3nbdtlg76hYXb97OMN6wCWRcTY8fANDoZRpYLqxHE8WrXS1iZhyZeIGDsOFd95Fz7+/sjPyED6ju14vG5Nsdd3F8P1s2Ckckg79AZPpoQp+SHUGxaD1Vo/szwHx3rqDV9C1m0w/CfOgyUnG3mn9kF31P2XHf0dysZ10PzARtvjWl+8DwBI/H4bro6eCWF4MMTlC0dG58Un4Vyv8aj15UxUmjQc+qQUXBv/ITL2Fd7cIPnnv+AbHICoOZMhDAuG5sotnO0xBvlpHI2mJl6HYZ/+ZU3c7t7w7lyH4Ba5aY4vv/IkYfUrch2CWxjUHN0al7hEbqr62Y3KOLG/lOsQ3MIb+lkAiGxZk+sQ3EKfoeI6BFJK5NW94/jg1qZDz27kASq19Y4+6Oxn3J1oc5fuRueXU5dleZsXcB3C3yIeMpPrEJ7pPzvnCSGEEEIIIYQQQsh/ARVPCCGEEEIIIYQQQpyg4gkhhBBCCCGEEEKIE1Q8IYQQQgghhBBCCHGCiieEEEIIIYQQQgghTlDxhBBCCCGEEEIIIcQJKp4QQgghhBBCCCGEOEHFE0IIIYQQQgghhBAnqHhCCCGEEEIIIYQQ4oSA6wAIIYQQQgghhBBSehiGxkmUNvqPEkIIIYQQQgghhDhBxRNCCCGEEEIIIYQQJ6h4QgghhBBCCCGEEOIEFU8IIYQQQgghhBBCnKDiCSGEEEIIIYQQQogTVDwhhBBCCCGEEEIIcYKKJ4QQQgghhBBCCCFOUPGEEEIIIYQQQgghxAkqnhBCCCGEEEIIIYQ4QcUTQgghhBBCCCGEECeoeEIIIYQQQgghhBDiBBVPCCGEEEIIIYQQQpyg4gkhhBBCCCGEEEKIEwzLsizXQRD3MhgMWLBgAWbOnAmhUMh1OC7hDTkClKenoTw9hzfkCFCensYb8vSGHAHK09N4Q57ekKO76bcu4jqEv0U0cDrXITwTFU+8kEajgVKphFqthkKh4Docl/CGHAHK09NQnp7DG3IEKE9P4w15ekOOAOXpabwhT2/I0d2oeFL66LIdQgghhBBCCCGEECeoeEIIIYQQQgghhBDiBBVPCCGEEEIIIYQQQpyg4okXEgqFmDNnjkdPxuQNOQKUp6ehPD2HN+QIUJ6exhvy9IYcAcrT03hDnt6QIyn7aMJYQgghhBBCCCHEg9CEsaWPRp4QQgghhBBCCCGEOEHFE0IIIYQQQgghhBAnqHhCCCGEEEIIIYQQ4gTNeUIIIYQQQgghhBDiBI08IYQQQgghhBBCCHFCwHUAhBBCCCGEkH9OrVZj3759iI+PB8MwqFy5Mjp27AiFQsF1aIQQ4jGoeEII+U+xWCxYv349tm3bZncQ2L9/fwwbNgwMw3AdYqnwljy9ycGDBx2+n61bt+Y6NEK8GsuyuHDhgt13s2HDhh7Tz27atAkTJ06ERqOxW65UKrFy5UoMHDiQo8hcg2VZZGZmgmEYBAYGch0OIcSL0JwnXsKbDuozMjJseVaqVMljd6yemCfLsujZsyf+/PNP1K9fH9HR0WBZFrdu3cK1a9fQq1cvbN++nesw/zVvybMoT++DXn/9daxatQr+/v6IiooCy7KIi4uDSqXCG2+8ga+//prrEEuNN53h9sR+tiitVovPPvvM4Xdz2rRpkEgkXIf4rx06dAijR49GQkICCg55C/Jcu3Ztme+DLl68iGbNmmHo0KF4++23bfuTmzdvYunSpdiyZQvOnTuH+vXrcx3qv5aSkoLp06djx44dyMnJAQAoFAr06dMHCxYsQGhoKMcRlj5vKRR5el9LPAhLPN748eNZhmHYgIAANiYmhm3WrBkbEBDA8ng8duLEiVyHV2quX7/OtmrViuXxeHZ/7dq1Y2/fvs11eKXGk/Ncu3YtK5fL2YMHDxZbd+DAAVYul7MbNmzgILLS5S15FvD0Pmjbtm2sr68vu27dOtZisdiWm81mds2aNayvry/7+++/cxhh6dm4cSOrVCpZhmHs/vz8/NgtW7ZwHV6p8eR+toDBYGAbN27MCoVCtnfv3ux7773Hzpgxg+3Vqxfr6+vLxsTEsPn5+VyH+a/ExcWxEomEbdeuHbt9+3b29u3b7K1bt9hff/2VbdOmDSuVStl79+5xHea/MnLkSLZ///4lru/Xrx87atQoN0bkGmq1mq1cuTIbHBzMTpkyhV25ciX77bffspMmTWKDgoLY6tWrszk5OVyHWWqSk5PZYcOGsUql0tb/+Pn5saNGjWJTUlK4Dq/UeENfSzwLFU88nLcc1CcnJ7OBgYFsdHQ0u3TpUnb37t3sX3/9xX755ZdsdHQ0GxwczKampnId5r/m6Xl26tSJXbBgQYnr58+fz3bu3NmNEbmGt+TJst7RB/Xs2ZN97733Slw/ffp0tlevXm6MyDUuXLjACgQCdsSIEezly5dZvV7P5uXlsRcuXGCHDRvG+vj4sJcvX+Y6zH/N0/vZAkuXLmVDQ0Md/kC5desWGxoayi5btoyDyErPm2++ybZv397hOovFwrZv377MF3CrV6/O7tu3r8T1+/btY6tXr+7GiFzj448/ZqtVq8ampaUVW5eamspWq1aNnT9/PgeRlT5vKRR5S19LPAsVTzyctxzUT58+nW3UqBGbl5dXbJ1Op2MbNWrk9P9QVnh6nqGhoeylS5dKXH/x4kU2NDTUfQG5iLfkybLe0QdFRESwZ86cKXH96dOn2YiICDdG5Brecobb0/vZAq1bt2aXL19e4vply5axrVu3dmNEpa927drsjh07Sly/Y8cOtnbt2m6MqPRJpVI2ISGhxPUJCQmsRCJxY0Su0axZM3bt2rUlrl+zZg0bExPjxohcx1sKRd7S1xLPQrcq9nAXL15Enz59Slzft29fXLhwwY0Ruca+ffswY8YMiESiYuvEYjHeffdd7Nmzh4PISpen55mVleX0muXQ0FBkZ2e7MSLX8JY8Ae/ogzIyMhAZGVni+sjISGRmZroxItc4ceIExo8fX+L6119/HcePH3djRK7h6f1sgZs3b6Jt27Ylrm/Xrh1u3rzpvoBc4OHDh6hbt26J6+vUqYOEhAQ3RlT6dDqdw89qAaFQCL1e78aIXCM2NhYtWrQocX2LFi1w584dN0bkOrt27cL777+P4ODgYutCQkIwc+ZM7Ny5k4PISpe39LXEs9DddjyctxzU379/H40aNSpx/QsvvID79++7MSLX8PQ8zWYzBIKSuyU+nw+TyeTGiFzDW/IEvKMPys/Ph4+PT4nrBQIB8vPz3RiRazx+/BhRUVElro+KisKjR4/cGJFreHo/W0ClUjmdlDEwMBBqtdqNEZW+3Nxcp5PeSiQS6HQ6N0bkGnv27IFSqXS4TqVSuTcYF9FoNPDz8ytxvZ+fX7G7DZVVz1MomjZtmhsjcg1v6WuJZ6HiiYfzloP6nJwcp3d6kMvlyM3NdWNEruHpebIsi5EjR0IoFDpcbzAY3ByRa3hLnoD39EGzZs0q8UeaJ/w4A7znDLen97MFLBYL+Hx+iet5PB7MZrMbI3KNmzdvIiUlxeG6jIwMN0fjGiNGjHC63hNuycyyLHi8kgfMMwxju5tSWecthSJv6WuJZ6HiiRfwhoN6wNoJl3Rgr9FoPGan6sl5PusAEACGDx/uhkhcy1vyLODpfVDr1q2fOVy8rN8OtYA3nOEGPLufLcCyLDp06FDiKDhPGf3WoUMHh+9XwY/tsl5YsFgsXIfgFizLIioqqsT3yxO+kwW8qVDkDX0t8SwMS59Kj9a2bdvnOjA4dOiQG6JxHR6P5zTPggOksn4WzVvyJJ7DW/ogb+DsYL6AJ/Q/3tLPzp0797nazZkzx8WRuM7zzmdSsWJFF0dC/q0NGzY8V7vnOTnxX8fj8aBUKp0WijQaTZnvg7ylryWehYonxCMcOXLkudq1adPGxZG4lrfk+bSEhARotVpER0c/1w+4sspb8vQWJpMJer0eMpmM61DI3+Ct/Swpm2JjY6FSqdC0aVPbsgMHDuCTTz6BVqtF79698f7773MYIfm7vKVQRH0tKYuoeOKl6KCe/BetXbsWKpUKU6dOtS0bN24c1qxZAwCoUaMG9uzZg/Lly3MVYqnwljyd8aQ+aOfOncjMzMTIkSNty+bPn4958+bBZDKhffv22Lp1K/z9/bkLkpDndOTIEWi1WjRv3rzMf2YzMjKg1WrtRpbcuHEDX3zxha2wMGTIEA4j/Pf69OmDunXr4uOPPwYAPHjwALVr10arVq0QHR2NtWvXYt68eZgyZQq3gbqAXq/H1q1bodVq0alTJ1SvXp3rkAghHo5ObXq4nTt3Yv369XbL5s+fD5lMBj8/P3Tu3NkjbolqMpmKTbKZmpqKuXPnYvr06R5x+0zA8/NctWqV3cH67t27sW7dOnz//fc4d+4c/Pz8nnuo+X+Zt+QJeEcftHjxYmi1WtvjkydPYvbs2Zg1axZ++uknJCYmYt68eRxGWDpiY2Nx9uxZu2UHDhxAu3bt0LRpU3z66accRVa6PL2fLfDZZ59h1qxZtscsy6JLly5o164devTogZo1a+LGjRscRvjvTZo0CcuWLbM9TktLQ6tWrXDu3DkYDAaMHDkSGzdu5DDCf+/8+fPo2rWr7fEPP/yAqKgo7NmzB1999RWWLl1arA8ui6ZOnYpJkybZHufn56N58+YYO3Ys3n//fTRs2BCnTp3iMELX0uv12LBhA7755hvExcVxHU6p8Ja+lngYlni0tm3bssuXL7c9PnHiBMvj8dhPPvmE/fXXX9no6Gj27bff5jDC0jFy5Eh23LhxtscajYYtX748GxwczNarV48VCATsrl27OIywdHh6ngEBAezVq1dtj19//XW2X79+tseHDh1iK1WqxEVopcpb8mRZ7+iDgoOD2YsXL9oev/322+xLL71ke7xr1y62WrVqXIRWqnr37s3OmjXL9vj+/fusWCxmO3fuzE6ePJmVyWTskiVLuAuwlHh6P1ugYcOG7JYtW2yPf/rpJ1YsFrPHjx9nMzMz2e7du7MDBgzgMMJ/r1KlSuzhw4dtjz///HO2atWqrNFotD1u1qwZV+GVCpFIxD58+ND2uH379uyHH35oe3z37l1WqVRyEFnpql27Nvv777/bHq9du5b19/dn4+PjWYvFwo4cOZLt1q0bhxGWnrfffpudOHGi7bHBYGAbNGjA+vj4sEqlkpVKpezJkyc5jLB0eEtfSzwLFU88nLcc1FevXp3ds2eP7fHy5cvZcuXKsSqVimVZlp0+fTrbtm1brsIrNZ6ep1gsZuPj422P69Wrx3711Ve2xwkJCaxIJOIitFLlLXmyrHf0QSKRiE1ISLA9btKkCbto0SLb4/j4eFYikXARWqmKjIy0O2CfN28eW79+fdvj1atX2z0uqzy9ny3g5+fH3rx50/Z45MiR7LBhw2yPT506xUZGRnIRWqkRiUR2fW3Xrl3Zd9991/b4zp07bEBAABehlZpy5cqxZ86cYVmWZc1mM6tQKNg//vjDtv7mzZusQqHgKrxSI5fL2bi4ONvjQYMGsWPHjrU9vnTpEhseHs5FaKXOWwpF3tLXEs9Cl+14uJycHAQGBtoeHz9+HB06dLA9rl27Nh4/fsxFaKXq0aNHdte6HjhwAP369bPdUnPEiBFlfvgx4Pl5VqxYERcuXABgvVb9xo0baNmypW19SkpKibdJLUu8JU/AO/qgiIgI3Lp1CwCQm5uLK1euoEWLFrb1mZmZJd6quSzJyMhAZGSk7fGhQ4fQs2dP2+O2bdsiPj6eg8hKl6f3swVMJhOEQqHt8alTp+w+t+XKlUNGRgYXoZUahUJhdwvts2fPolmzZrbHDMMUu2ygrGnbti3mzZuHxMRELF26FBaLBW3btrWtv3nzJipVqsRZfKWFx+PZ3bb29OnTiImJsT328/Mr85eAFnj48CFq1aple7x37170798fFStWBMMweOutt3Dp0iUOIywd3tLXEs9CxRMP5y0H9SKRCHl5ebbHp0+ftjtAEolEyM3N5SK0UuXpeY4YMQJvvvkm5s2bhwEDBiA6OhqNGze2rT958iTq1KnDYYSlw1vyBLyjDxowYACmTJmCjRs3YuzYsQgLC7M7qD9//jxq1KjBYYSlIyAgAMnJyQAAi8WC8+fP2+WZn59v9+OmrPL0frZA1apVcfToUQDWH2uxsbFo3bq1bX1SUpJd4bMsiomJwbJly2CxWPDLL78gJycH7du3t62PjY0t8xNzz58/H7dv30bFihUxY8YMLFq0CFKp1LZ+48aNdjmXVTVr1sTOnTsBWCf9ffjwIdq1a2dbn5CQgNDQUK7CK1XeUijylr6WeBYqnng4bzmob9CggW3St2PHjiE1NdXuYOHevXsoV64cV+GVGk/Pc/r06Rg7diy2bdsGkUiEn3/+2W79iRMnMHjwYI6iKz3ekifgHX3Q7Nmz0aRJE0yePBmXL1/Gpk2bwOfzbet//PFHuxEaZZW3nOH29H62wJtvvomJEydi9OjR6Nq1K5o3b253tvvgwYNo2LAhhxH+e/PmzcOOHTsgFosxcOBATJ8+3W6y7i1btpT526BWqlQJt27dwqVLl5CQkIAJEybYrZ87dy4+/PBDjqIrPdOnT8fMmTPRoUMHdOjQAd26dUPlypVt6//880+72zWXZd5SKPKWvpZ4GI4vGyIuptPp2GHDhrF+fn5sdHQ0e/ToUbv1bdu2ZRcuXMhRdKXn8OHDrFgsZqtUqcKKxWL2tddes1s/YcIEdvjw4RxFV3q8JU/iObylD/IGDx48YKtVq8YyDMMKBAL2m2++sVv/8ssvs1OmTOEoutLjTf3smjVr2N69e7Ovv/46m5ycbLduwoQJ7LZt2ziKrPSkp6ez27dvZ0+fPl1s3R9//MHev3+fg6jIP7F//352ypQp7MKFC1mtVmu37qOPPmIPHTrETWClbNu2bayvry/bvn17NjQ0lO3Ro4fd+unTp5f5yZxZ1rv6WuI5GJb1gDG2hMB61nPfvn0ICwvDgAEDwOMVDqxatWoVmjZtigYNGnAXYCnx5Dw1Go3D5VKp1O5MflnnLXkSz2MymXDjxg0EBwcXOyN45coVREZGlvlLPQDP7meJZ+nbt6/D5UqlElFRURgzZgyCg4PdHBX5tw4cOIA//vgDYWFhmDRpkt3lrXPnzkWbNm3sRv6VVdTXkrKGiieEkP8MHo8HhmGKLefz+ahcuTKmTZuGsWPHchBZ6fKWPL2Fv7+/w/ez4MfLtGnT0KlTJw4iI6RkV69edbhcqVSiQoUKDj/TZc3UqVMdLi/4bvbt29du0tyyaNSoUQ6Xq1QqXLlyBSqVCkePHi3z82jt2LHD4fKC9zI8PNzNERFCvBEVTzyctxzUL1u2zOHygjybN2/u5ohcw9PzPHLkiMPlKpUKFy5cwLJly7BkyZISDxbLCm/JE/COPmjDhg0Olxe8n1u3bsUvv/xS5uc98ZYz3J7ezxYoKOI+fRjIMAxEIhGmTJmCjz/+uEyPhis6T0RRKpUKd+/eRWhoKA4ePIgKFSq4OTL3sFgsGDt2LNLS0mxzaJRVRUckPI1hGAwaNAj/+9//yvwE5ID3FIq8pa8lnoWKJx7OWw7qi04aVpRKpYJarUaLFi2wY8cOBAQEuDmy0uUteZZk7dq1WL58OS5evMh1KC7lSXl6Sx/kzOLFi/HLL7/g5MmTXIfyr3jLGW5v6WcTEhIcLi/4bs6aNQtvv/02pk2b5ubI3EOj0WDo0KGQy+XYvHkz1+G4zJUrV9C1a9cyf0v4kqjValy4cAFvvvkm+vTpg08//ZTrkP41bykUeUtfSzwLFU+8nKcc1Dtz//59vPrqq2jQoAG++eYbrsNxGW/I8969e2jYsGGJc4Z4Cm/JE/COPig2NhYxMTHIysriOhSX8aQz3M54Qz9b4JdffsHcuXNx7do1rkNxmbNnz2LAgAElFpI8wd27d/HCCy9ApVJxHYpL7d69G1OmTMHt27e5DsVlPLFQVBJv6mtJ2UK3KvZyPXr08OgdDQBUqVIFCxcuxN69e7kOxaW8IU+1Wg2lUsl1GC7nLXkC3tEHGQwG+Pr6ch2GS/F4PEyePBkXLlzgOhSX8oZ+tkDjxo3x4MEDrsNwqaCgII8uagLAvn37EBUVxXUYLhcdHY2kpCSuw3AppVKJ9u3bY8mSJdi2bRvX4biUN/W1pGwRcB0A4ZY3HNQDQIUKFZCSksJ1GC7nyXkajUZ8/vnnaNasGdehuJS35FnAG/qgNWvWeMXdAqRSKXQ6HddhuJwn97NFpaSkeMQcNs6cPn0aVatW5TqMf6Wk+TEKRimsXr0aq1evdnNU7nf//v1idwDzVN5QKAK8p68lZQsVT7yctxzUX7t2DRUrVuQ6DJcr63mWNCGlWq3GjRs3wDAMjh075uaoSp+35Pk8PKEPKumOHmq1GhcvXkRsbCyOHj3q5qjcz1vOcJf1fvZ5pKenY9asWSVOuFpWlHRHoYLCwqeffoo5c+a4OarS1bt3b4fL5XI5atSogdWrV2PQoEHuDcrNLl++jGnTpqF79+5ch+IW3lIo8oa+lpQ9VDzxcN5yUF/S3BAFB0jvvPMORowY4eaoSp+n51nSpSrly5dHv379MHToUI+4nMVb8gS8ow+6dOmSw+UKhQKdOnXCtm3bSpwYryzxljPcnt7PFmjYsKHDO2Gp1WokJSWhRo0a2LRpEweRlZ4GDRo4vKMQYL1kZ+rUqXjjjTc4iKz0WCwWrkNwi5Lu3KbVamEymdCpUyfMnTuXg8jcy5MKRd7S1xLPQhPGeriSzhopFArUqFEDEyZM8IiD+oJbLjrCMAzGjBmDZcuWlfnLA7wlT+I5vKUP8gYl3QGi4Az31KlTPeIMt7f0syX90Cz4br700ktl+jbFQMl3FFIoFPD393dzNO6TlJSEcuXKOb1rS1lT0p3bCj6vtWrVcnNErvM8haKffvoJCoWCg+hKj7f0tcSzUPGEeIQjR444XK5QKFC9enXIZDI3R+Qa3pJnUQsXLsTrr78OPz8/rkNxKW/J01v8+OOP6NWrF6RSKdehkL/JG/tZ4lkUCgUuX76MKlWqcB0K+Qe8pVBEfS0pi6h44oXooJ6UJd5yEOgteQLe0Qd5y/vpiWe4vdkbb7yBjz/+GEFBQVyH4jLe8N2Uy+W4cuWKR+cIAN27d8fq1asRHh7OdSiEEC9BRzteaPz48UhNTeU6DJerW7cuEhMTuQ7D5Tw9T2+p73pLnoB39EHe8n7WqlUL8fHxXIfhcp7ezxbYtGlTifMQeApv+W56g6NHjyIvL4/rMNyie/fuSE5O5joMl/OWvpaUXVQ88ULecuAQHx8Po9HIdRgu5y15Es/hLX2QN/CW99Jb+llveT893fvvv4+AgADbY2/47Ho6bykUeUtfS8ouKp4QQv7Tbt686RW3qns6z+vXr3MYDfm3/vrrL0RERAAAdDodTp48yXFE/97Dhw/pxzUp81599dUyP9FmUcOGDSs2WmjmzJm2+bPOnz+Phg0bchCZ61WsWBE+Pj5ch0FcyBtG25CyhYonXqjoQb0na9WqFcRiMddhuJwn5anVajFhwgREREQgODgYgwYNgkgkKvN3fHge5cuXh06nw6pVq9C0aVPUr1+f65Bcxhv6oBdffBFCoRAAEBcXh1atWnEc0b9XuXJlpKen2y17+gy3p/KkftaZnJwcj58n49tvv/WoOV1u3ryJWrVqYc+ePXbLjUYjZs6ciRYtWuDFF1/kKLrSs3///mLLrl+/jvLlywOw3rL5k08+cXdYbuOJhaKpU6cWW1a0r01OTkbbtm3dHBUhzlHxxMPl5eVhx44dyMnJsS0rOKjXaDTYsWMHDAYDhxG6zp9//ukVk4h5Up6zZs3Cxo0b0aNHDwwdOhQHDx7EuHHjuA7L5Y4ePYoRI0YgPDwcX3zxBdq3b4/Tp09zHVapSEtLK7asaGHBZDLh7Nmz7g6L/AOORp0UPcPtyTypny3w+PFjTJs2zeEcJ2q1Gu+++65HzE2Uk5ODCxcuIDc3FwBw8eJFDB8+HAMGDMAPP/zAcXT/3pkzZ/Daa6+hZ8+eGD9+PHJzc3H+/Hk0aNAAmzdvxh9//IGVK1dyHea/1q1bN0ycOBE6na7YuuvXr6NJkyb49ttvOYjMPYoWijzFunXrMH/+fLtlBX1tQeEkODiYo+gIcUzAdQDEtVatWoUdO3agV69exdYpFAosW7YMiYmJePPNNzmIrvTs2LHjudo5+j+URZmZmQgMDAQAJCYm4n//+x/y8vLQq1evMn2G+7fffsO6deswYMAAANbhyDExMTCZTBAIPKu7SklJwfr167FmzRpoNBq88sorMBgM2L59u8fchhCA7SAoJCQEgHUyuD///NN2EJiZmYnmzZvDbDZzGSZ5TgzDcB2Cy124cAHTpk3D77//XuzyDrVajd69e2Pp0qVlfnTY4sWLodFoHF7ColQqkZOTg8WLF+Ozzz7jILrScfToUfTo0QO5ubnw9/fHjz/+iP79+yMiIgJ8Ph/btm2DTqfD2LFjuQ71HxMIBPj444/Rq1cvjBw5ElFRUcjIyMCwYcOwZMkSj7lE6dixYxg5ciTq16+P9evXo2XLlrBYLPj0008xb9489OvXz+HolLLo6tWrz9WuXr16Lo7EtXbs2IEuXbogICAAEyZMsC1PTU1Fu3btEBAQgN27d3MYISHF0a2KPVzTpk0xa9Ys9OzZ0+H6P/74Ax9//HGZP/P79G0yGYYpdpaUYZgy/wPt2rVr6NmzJxITE1G9enVs2bIFXbp0gVarBY/Hg1arxS+//ILevXtzHeo/4uPjg4SEBJQrV862TCKR4Pbt26hQoQKHkZWunj174ujRo+jevTuGDh2KLl26gM/nw8fHB1euXPGo4gmPx0NKSoqtePL0LTRTU1MRHh4Oi8XCZZgudeXKFTRq1KjM9z88Hg/jxo2DRCJx2m7x4sVuisg1hgwZgpo1a2LWrFkO13/66ae4efMmNm3a5ObISledOnWwcuXKEi/pOHnyJMaOHYsbN264ObLS07p1a1SvXh0ff/wx1q5di8WLF2PChAn49NNPAQCffPIJfvnlF1y+fJnbQEvB9evXMWzYMMTGxoJhGKxcuRKvvvoq12GVKr1ej/feew/ffPMNxo0bh9OnTyMxMRHffvst+vbty3V4pYbH4zk8jgUKj2894ZgWAHbt2oV+/fph/fr1GDRoEFJSUtCuXTsoFArs378fcrmc6xAJseNZp3JJMXFxcU7PjtWrVw9xcXFujMg1nv7h9fQPNE8xffp01K1bFz/88IPt8pbu3bvjf//7HwBg0qRJWLhwYZktnlgslmLX9AoEAo84QCjqr7/+wuTJkzFhwgRUr16d63A4V9ZHMzxr5NuDBw/cFInrXbt2Db6+viWuL+vvJWC9DOK9994rcX3Pnj2xevVqN0bkGg8ePHBalI6MjCzzt6G+evUqVq1ahYiICMyYMQMfffQRBg4caFs/aNCgMj2yBrBeTrdw4ULMnTsXgwcPxqFDh7B582ZMmDAB27Ztw3fffecxlz6IRCIsWbIEaWlp+OabbyCVSnH+/HnUqFGD69BKlSftM56le/fuWLt2LUaNGgW9Xo9FixZBJpNh7969VDgh/0lUPPFwJpMJ6enpJR4gpaenw2QyuTkq8k+dO3cOBw8eRL169VC/fn2sWrUKb7zxhm3kzaRJkxATE8NxlP8cy7Lo0KGD3SU6Op0OPXv2tPvBdvHiRS7CKzXHjx/HmjVr0LhxY9SsWRPDhg3DoEGDuA6L/EPPU6z0hKICYL20rmAUkad69OiR04N2mUzmEXeAEIvFiI+PL/H4ID4+vsxPkqvRaGwTGvv6+kIikdi9t3K53OEcGmVJTEwMEhMT8fPPP9tGGb/xxhvo0qULRo4ciVq1amH58uV2RaOy6t69exg5ciTi4uKwcuVKrFu3Dm3btsXKlSvx8ssvcx1eqfGGOwwWNWTIEKhUKowePRqNGjXC/v37oVQquQ6LEIeoeOLhateujf3796Nx48YO1+/duxe1a9d2c1Tkn8rKykJYWBgA6wG8VCqFv7+/bb2/v7/d5MBlzZw5c4ot86QDogIxMTGIiYnB0qVLsXXrVqxduxZTp06FxWLBvn37UL58eY8548IwDHJyciASiWxDjXNzc22TVDqarLKs8eRLjorylALQswQHB+POnTuoXLmyw/W3b9/2iLu1NGvWDBs3bkTr1q0drv/+++/RtGlTN0dVuhiGsfvcPv3YE1SuXBl//fVXsbteValSBUeOHMHSpUsxevToMl88Wb58Od577z289NJL2LZtG4KDgzFmzBh8/vnnGDRoEPr374+vv/7aIyawfvjw4XO1K+uXMzds2NDu++jj4wOVSoV27drZtSvrJ8yIZ6E5TzzcqlWrMHXqVGzZsgU9evSwW7dz504MHjwYixcv9rg7mnjqZTs8Hg+pqam2IbhyuRxXr161HeSnpqaiXLlyHneZize4c+cO1qxZg40bN0KlUqFTp07PPRHyf1nBtdsFCgooTz+mz+x/39Pz13iqUaNG4e7duzh27FixdSzLolWrVqhevTrWrVvHQXSl59ChQ+jUqROmTJmCd999F6GhoQCs+5FFixbhq6++wt69e9G+fXuOI/3neDwe6tSpYxvNePXqVURHR9tGMppMJty4ccPj+5+4uLgyf4loQEAAvv76awwdOrTYuhs3bmDEiBFITk7Go0ePOIiudD293yxQdP/JMEyZHzk+d+7c52rn6MQaIVyh4okXePXVV7F582ZER0fbrgu9ffs2YmNj8corr+DHH3/kOMLSp1AocOXKlRLPHJZVPB4PXbt2td3mdefOnWjfvj2kUikAwGAwYPfu3R57IKjX67F8+XJMmzaN61Bcxmw2Y+fOnVi7dq1HFE+OHDnyXO3atGnj4khc7+eff8aPP/6I2NhYAEBUVBSGDBmC/v37cxxZ6diwYQMGDRpk63881b1799C4cWPUqFED77zzjt1+88svv0RsbCzOnz+PatWqcRzpv/fdd9/hrbfegtFohEKhAMMwUKvV8PHxwZIlS+zugFEW0Y8zz9lvJicnO71duNlsxqefflriRM9lyZUrVxwuZ1kWW7ZswbJlyyCTyZCWlubmyAghVDzxcA8fPkRkZCR++eUXbN68GXFxcWBZ1nZQ/8orr3AdYqnw9/e3q9KrVCooFIpid+HJyspyd2ilatSoUc/VriyfEU1PT8eZM2fg6+uLDh06gM/nw2g04ptvvsGCBQtgMpmQkZHBdZilgmVZXLhwAfHx8WAYBpUrVy42jJX891ksFgwePBg///wzoqKiEB0dDQC4desW7t69iwEDBuDHH3/0mPfV04tEAHD+/HmMHDkSN2/etL1vLMuiVq1aWLduHZo0acJxhP/e999/j4EDByIjIwM//fQT7t69azs+6N+/PyIjI7kOkTwnb9pvlkSlUmHTpk2YOHEi16G4xP79+/Hee+8hNjYWU6dOxTvvvOMxl/cSUpZQ8cTD8fl8JCcne/ww6w0bNjxXuxEjRrg4EvJvHD9+HD169IBGowHDMHjhhRewbt069O7dGwKBAJMnT8aIESPK/CSGgHXI/OjRo5GQkGC7HWFBAWXt2rUlzkNQ1j09RJ7P55f5eZeWLFmCTz75BBs2bCh2eeSOHTswatQozJo1C1OmTOEmwFLibUUiALh06ZJdUaFBgwZch1RqvOX4wNN5037TkQMHDmDNmjX47bffIJFIkJmZyXVIperixYuYMWMGjh07hjFjxmD27Nke851t167dM/cXDMPgwIEDboqIkGej4omH85Zr1I8ePYoWLVrY3aWFlD1t27ZFuXLl8P7772PDhg348ssvUb16dcyfP9+jzmrfvXsX9evXR7NmzfDWW28hOjoaLMvi5s2bWLZsGc6fP4+rV696xJw9x44dw9SpU3Hu3DkAhXe3KFow2rNnDzp27MhlmP9KvXr1MGXKFLz22msO169ZswZfffUVrl696ubISpe3FIm8hTccHzzvSL6yPCGlt+w3i0pMTMS6deuwbt06PHz4EIMGDcKwYcPQoUMH+Pj4cB1eqbh37x7ef/99/Prrr3jllVfwySefeMQxQVFvv/12ietycnKwefNmGAwGj70UnZRNVDzxcE9PMOqpvOUMWkk/zopiGAZr1qxxQzSlLzAwEMeOHUOtWrWQl5cHmUyGbdu2edwddyZOnIhbt245PJvCsiw6duyIWrVq4euvv+YgutI1ePBgNG/eHJMnTwZgLZ7s2rULFStWBMuyWLZsGRISEvDrr79yHOk/JxaLcefOnRLvfJCQkIDo6Gjk5eW5ObLS5S1FoqlTpz5Xu8WLF7s4EtfyhuMDb5jzxFv2m0ajEdu3b8fq1atx7NgxdOnSBUOGDMHgwYNx5coV1KpVi+sQS80bb7yBNWvWoF27dli4cKFHjXh7FpPJhBUrVmD+/PlQKpWYN28eBg0axHVYhNhQ8cTD8Xg8jBs3DhKJxGk7TzgI9PQzaADQp0+fEteZzWbs37+/TFfpn34f5XI5Ll++jKpVq3IcWemqU6cOFixYgJ49ezpcv3PnTsycORPXr193c2Slr3r16vjtt99Qp04dAMXvhHXp0iV0794djx8/5jLMfyUgIACHDx9GvXr1HK6/du0aWrdujezsbDdHVrq8pUjUtm3b5xpKfvDgQTdF5BpP34mmJGV5VIY38Jb9ZkhICKKjo/Hqq69iwIAB8Pf3B2C9va2nFU94PB5EIpHt0siSeNp384cffsDs2bORl5eHDz/8EOPGjaMR5eQ/hz6RXuDatWu22/I54inXp3tKHs789ttvDpf//vv/27v3oCjL9w3g1y6ooBwMzVMDRiXqTJ41QVMQA0GEIcAyRTkVouEhB4OJScwmURwdKZU8LCySIUdBHARLBSJjJI+UByyRwziYoSiC4gD7+8OvO4LLoR/Lvuy71+ev4Hn/uLBhed/7fZ77zsQXX3yBfv36YcOGDRpOpV5XrlxBdXU1gGe7MK5fv476+vpW17T3kKotKioqMG7cuHbX3377bZSXl2swUc+pqqqCqamp8uv4+HgMGzZM+bWZmZnWn1G3sbFBTEwMYmJiVK7v3r0bNjY2Gk6lfoaGhqitrW23ePLw4UMYGBhoOJX65eXlCR1BY+bNmwcjIyOhY1A36cLfzaamJkgkEkgkEujp6Qkdp0dt2LBBJ+5pn8vJyUFYWBjKysoQEhKCdevWKadIEvU23HkicrqyI6PtCN/2pKenayiRZvz6668ICwvD+fPnERwcjLCwMOXbGG0klUohkUig6mPp+fclEonW7qx5rrPfyzt37mDEiBFa/3MCz94WJicnw87OTuV6Xl4eFi5ciLt372o2mBqdOXMGdnZ2cHd3R0hIiLKHzdWrV7F9+3ZkZmbi9OnTmDlzptBRu8XFxQUWFhbtFomCgoJQUVGB7OxsDSdTrzfeeAPFxcUYNGiQ0FF6VGefQ1VVVdi0aRP27dun4WTqows9T3Tl7+aTJ0+QlpYGmUyGoqIiODs7w9vbGx9++CEuXrwoqp0nuuLs2bMIDQ1FUVERgoKCEB4ejsGDBwsdi6hD3HkicrpUuTY2NhZtN/m2rly5gtDQUOTk5GDZsmVITEwUxVjJsrKyTq8RS733xTeFbYlppOT06dNx8ODBdosncrkc06dP12woNZsxYwaSkpIQGBjYqneLQqGAmZkZEhMTtb5wAgDh4eGws7NDTU1Nh0UibXfr1i2tf9Dsis7uD2pqaiCTybS6eOLu7q78b4VCgcjISAQFBcHMzEy4UGrWlb+bYmBgYIAlS5ZgyZIl+PvvvxEXF4fVq1ejqakJ33zzDXx9fWFvby+KXSmvvPKKyt9PU1NTWFlZISQkBA4ODgIkUy9ra2sYGhoiKCgIlpaW+PHHH1Ve97xnGlFvwJ0nIqdLO0904eesrKzEhg0b8MMPP2DBggXYvHkzxo4dK3Qstfnyyy8RERHR7hnXiooKBAQE4KefftJwMvXq6E3hc2J4Uwg8G8n83nvvYd26dVi/fr3yd/Sff/7B1q1bER0djRMnTsDe3l7gpN3X0NCA3Nxc3LhxAwAwevRoODo6iqqoe+TIEQQGBuLevXvK7z0vEu3duxeenp4CplMPXfl70tnPeenSJUyePFkUn0PPte25JAabNm1CSEhIp73txKilpQW5ubmQyWTIysqCsbGxKF4+xMfHq/x+bW0tzp07h6SkJKSmprbbN01bvP76613qL3Xz5k0NJSLqHIsnIhcfH49Fixbh0aNHyi3IlZWV2L9/Px4/fgw3NzfMmjVL4JTdpys3u/3794dEIkFwcHCHb7Ld3Nw0mEp9LCwsMGjQICQkJCgbjD63d+9erF+/HjNnzsTx48cFSqgeXelnUldX99K/gbbas2cPPvvsMzQ1NcHExAQSiQQPHjyAvr4+tm/fjuDgYKEjdstvv/2GmpqaVuN74+PjsXHjRtTX18Pd3R3fffddp8cKtUVDQwNOnDiB0tJSAICVlRUcHR1F8/AmlUoRHx/fqlePKtr6OftceXk5zM3NIZVKVa6zeKIddGXa4NSpU/Hxxx9j8eLFMDExeWn97t27SEhI6PK0LG22Y8cOpKam4syZM0JHIdI5LJ6IXElJCVxdXVFZWYlRo0bh8OHDcHJyQn19PaRSKerr65Gamtpqa6s20pXiSXs3uS/S5h0LDx8+RHBwMJKTkxEREYHQ0FBUVVXB398fxcXF2LZtGwIDA4WO2WPq6uqQmJgImUyG33//XWv/P6pSWVmJ1NRU5a6MUaNGwcvLC+bm5gIn6z5nZ2fY2dkhNDQUwLPP3SlTpsDHxwdjx47Ftm3bsHz5cmzcuFHYoGrQ0tICuVyO9PR03Lp1CxKJBJaWlvDy8sLSpUtFcVRU7J+zXcXiiXbQlfufgIAApKSkoLm5GR4eHggICGj3OKjYlZaWwtrautUOQCLSDBZPRM7Z2Rn6+voICwtDQkICjh07hnnz5mH//v0AgFWrVuHcuXMoKioSOGn3GBoaoqKiAq+++ioAYMuWLQgKCsLAgQMBPDu7PWvWLFy5ckXAlNRVmZmZWL58OYYNG4aysjK88847OHDgAEaOHCl0tB5RUFAAmUyGtLQ0jBgxAh4eHvD09MS0adOEjkZdMHz4cGRlZWHq1KkAnvUGyc/PR2FhIQAgJSUFERERWv/5o1Ao4OrqiuzsbEyYMKFVz5OSkhK4ubkhIyND6JjdpisPox4eHh2u19bWIj8/n8WTXk4qleLOnTvK+x8xa2hoQHJyMuRyOX755RdYWlrC398fPj4+eO2114SOpzElJSVwcHBot2+atvj222+7dB17nlBvwuKJyA0ePBinTp3C+PHj8ejRI5iYmKC4uBhTpkwBAFy7dg3W1taora0VNmg3tb3ZNTExwcWLF5U3SGKaXgI8Kwa1PYb15MkTuLq6iuIY1p07d+Dt7Y2TJ09iwIABOHbsGGxtbYWOpVbV1dWQy+WQyWR4+PAhPvjgA3z//fe4dOmSKKcGpKSkIDExsdVRj8WLF8PLy0vgZN1nYGCAGzduKHfRvPvuu3B2dkZ4eDiAZw1Ix40bh7q6OiFjdltcXBzWrFmDzMxMzJkzp9XaqVOn4O7ujl27dmHZsmUCJVQPXTkG4efn16Xr4uLiejhJz2n7cBYaGor169e/NNFDmx/OpFIpTE1NO931JbZdCs+bxiYkJOD27dtwdHREQEBAp0VBMVi7di2uXbuGnJwcoaN0i6WlZafXsOcJ9TYsnohc26JC27cuYikq6MrPqQvHsBITExEcHIyJEydiz549kMlkiI6OxsqVKxEZGQkDAwOhI3abq6srCgoK4OLigiVLlsDJyQl6enro06eP6IonLS0t+Oijj5CSkgIrKyuMGTMGAHD16lX89ddfWLhwIRITE7X6uMfIkSORkJCA2bNn4+nTpxg4cCCysrIwd+5cAM9+b21tbbX+4cXR0RH29vYICwtTub5582bk5+cjNzdXw8nUqys7T/744w/R9CQSM114OJNKpdi5c2enPXp8fHw0lEizFAoF0tLSsHz5ctTW1mr9fR6Advu2PHjwAOfPn0dpaSkKCgqUL0LFSgzj0kl8OKpYB7R9KNHmhxRd9/nnn2PcuHE4dOgQEhISsGDBAri4uLQ6hrVlyxatLZ54enoiNzcXkZGRWLVqFQAgKioK7u7u8PPzQ3Z2NuRyOWxsbARO2j3Hjx/H6tWrsWLFCowaNUroOD0qOjoaP//8M44ePdqqoSoAHD16FH5+foiOjsbatWuFCagG8+fPR1hYGLZu3YqMjAz079+/1Q6wy5cv48033xQwoXpcvnwZUVFR7a47Ozt3eRt2b+bj46NyQtLznkQHDhzAuXPnRPGQJna6MsZ30aJFot8ppUpeXh7i4uKQlpYGfX19fPLJJ0JHUosLFy6o/L6JiQkcHByQnp7epcKgthPDuHQSHxZPdICvr69yysOTJ08QFBSEAQMGAAAaGxuFjKY2EolEJ4pExcXFymNYEyZMwL59+7By5Uplg8NVq1bB2tpa4JT/f9XV1bhw4cJLBYUZM2bg4sWLCAsLg62tLZ4+fSpQQvUoLCyETCbDlClTMHbsWCxduhSLFi0SOlaPiIuLw7Zt214qnADPppVERUVpffHk66+/hoeHB2xtbWFkZIT4+Hj07dtXuR4bGwtHR0cBE6rHvXv3MHTo0HbXhw4divv372swUc9oe0xFVU+i3bt3C5SO/gtVk7AOHjyIiIgI0UzCEuO9Tkeqqqogl8shl8tx8+ZNzJo1C3v27MHChQtFMxb+9OnTQkcgonbw2I7I6cKZZuDZtlVnZ2flDVBWVhbs7e1bFYlycnK0/k2h2I8ntbS0dDrpoqCgALNnz9ZQop5VX1+PpKQkxMbG4uzZs2hubsaOHTvg7+8PY2NjoeOphaGhIa5fvw4LCwuV6+Xl5RgzZgweP36s4WTq9+DBAxgZGUFPT6/V9+/duwcjI6NWBRVtpKenh+rq6nYbU2r758+LdK0nkVg5OTlhzpw5rSZhTZ48Gb6+vqKZhKUrDY6Tk5MRGxuLkydPYsiQIfDx8YG/vz/eeust5TU8TicuYpz4RdqPxRMSBV0qEr3YVd/Y2BiXL19Wbt8U08OLrrl+/TpkMhkSEhJQW1sLBwcHHD16VOhY3WZmZoa8vDyMHz9e5XpJSQlmz54tih0LYte2SN2WWIrUutSTSOx0ZRKWLujbty9cXFwQEBCA+fPnK1+08DideLF4Qr0Rj+2QKGh7UeS/0IVjWLpo9OjRiIqKQmRkJLKyshAbGyt0JLWwsbFBTEwMYmJiVK7v3r1b63vY6IquNJzU9kk7gG71JBK7+/fvtzpqlp+fD2dnZ+XX06ZNQ2VlpRDR6D+qqqpqtbuGx+m0X1fGpRP1NiyeEGmRtg8v3t7eL10jhocXXaanpwd3d3etbfrbVnh4OOzs7FBTU4OQkBCMGTMGCoUCV69exfbt25GZmcnz3VpCV4rUutSTSOyGDh2KsrIymJub4+nTpzh//jy++uor5XpdXR369OkjYELqqiFDhqg8TtfY2IiMjAzuCNNCnU2IMjU15T0t9To8tkNERD3qyJEjCAwMbDWqV6FQwMzMDHv37oWnp6eA6YhU04WeRGK3YsUKXLp0STkJKz4+Hrdv31b2Hzp06BB27tyJ4uJigZNSZ3icjoh6AxZPiIioxzU0NODEiRMoLS0FAFhZWcHR0RH9+/cXOBlR58Tak0js/v33X3h4eKCwsFA5Cev9999Xrs+dOxfW1tb45ptvBExJXaGvr6/yOB2LJ0SkSSyeEBFRj2ppaYFcLkd6ejpu3boFiUQCS0tLeHl5YenSpTo3apO0V3NzM44dO4bY2FhkZmYKHYe6SOyTsHRBUVERZDIZkpKSWh2nGz58OIsnRKQxLJ4QEVGPUSgUcHV1RXZ2NiZMmNCq50lJSQnc3NyQkZEhdEwiJX9//y5dJ5amzkTahMfpiEhILJ4QEVGPiYuLw5o1a5CZmYk5c+a0Wjt16hTc3d2xa9cuNoWjXkMqlWLkyJGYNGkS2rtFkkgkSE9P13AyInoRj9MRkaaxeEJERD3G0dER9vb2CAsLU7m+efNm5OfnIzc3V8PJiFT79NNPkZiYiJEjR8LPzw/e3t4wMzMTOhYRtaO5uRlZWVmIjY1l8YSIehSLJ0RE1GOGDRuGnJwcTJw4UeX6hQsX4OzsjOrqas0GI+pAY2Mj0tPTERsbizNnzsDFxQUBAQFwdHRkjx4iIiIdxeIJERH1mL59+6K8vBzDhw9XuX779m1YWlqisbFRw8mIuqa8vBxyuRwHDx5EU1MT/vzzTxgZGQkdi4iIiDRMKnQAIiISr+bmZujr67e7rqenh6amJg0mIvpvpFIpJBIJFAoFmpubhY5DREREAmn/jpaIiKibFAoFfH190a9fP5Xr3HFCvdGLx3YKCwuxYMEC7Nq1C05OTpBK+d6JiIhIF7F4QkREPcbHx6fTazhph3qTlStX4vDhwzA3N4e/vz8SExMxePBgoWMRERGRwNjzhIiIiOh/pFIpLCwsMGnSpA6bw3JUMRERkW7hzhMiIiKi/1m2bBkn6hAREdFLuPOEiIiIiIiIiKgD7HpGRERERERERNQBFk+IiIiIiIiIiDrA4gkRERERERERUQdYPCEiIiIiIiIi6gCLJ0REREREREREHWDxhIiIiIiIiIioAyyeEBERERERERF14P8APLIrkREf/VgAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Similarity analysis completed\n",
"\n"
]
},
{
"data": {
"application/vnd.microsoft.datawrangler.viewer.v0+json": {
"columns": [
{
"name": "index",
"rawType": "object",
"type": "string"
},
{
"name": "BTC-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "ETH-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "BNB-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "XRP-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "ADA-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "DOGE-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "SOL-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "DOT-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "MATIC-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "LTC-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "SHIB-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "TRX-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "AVAX-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "UNI-USD",
"rawType": "float64",
"type": "float"
},
{
"name": "LINK-USD",
"rawType": "float64",
"type": "float"
}
],
"ref": "f6254143-d9d4-4b41-b99e-6b96b28f9921",
"rows": [
[
"BTC-USD",
"1.0",
"0.7986424625734226",
"0.6482793033275979",
"0.7456600754365267",
"0.7164041686332907",
"0.7964835956476696",
"0.77321501194442",
"0.7183044145213001",
"0.5602219226808562",
"0.6327942217094216",
"0.627954215455201",
"0.46066350815518653",
"0.7737155206587835",
"0.8481508042829294",
"0.7616461148573074"
],
[
"ETH-USD",
"0.7986424625734226",
"1.0",
"0.7080973359115158",
"0.7036923510655948",
"0.7223418949594257",
"0.8512417824394078",
"0.7546582292786561",
"0.8187538089018461",
"0.5551541335182335",
"0.6646506737200718",
"0.7039743632665664",
"0.49901043905577946",
"0.8425526680204218",
"0.6312507153202408",
"0.838557020254197"
],
[
"BNB-USD",
"0.6482793033275979",
"0.7080973359115158",
"1.0",
"0.5881147557978883",
"0.5558375132245228",
"0.7093528958561227",
"0.635947896797573",
"0.7327382694029546",
"0.5896579782755974",
"0.6016640831886629",
"0.6196672565006741",
"0.48640960306278375",
"0.7274044533976",
"0.5394397426149486",
"0.6643609689924808"
],
[
"XRP-USD",
"0.7456600754365267",
"0.7036923510655948",
"0.5881147557978883",
"1.0",
"0.8199212572610615",
"0.7451790225147978",
"0.7466198228573968",
"0.69951857371863",
"0.5253139668121019",
"0.6111847496629687",
"0.563438378223815",
"0.45166451634514226",
"0.7181714515893987",
"0.6776447465435471",
"0.7227360251427635"
],
[
"ADA-USD",
"0.7164041686332907",
"0.7223418949594257",
"0.5558375132245228",
"0.8199212572610615",
"1.0",
"0.7213673847437885",
"0.7433675424261186",
"0.7042616559570198",
"0.5404521421648192",
"0.5273739397731345",
"0.5465266866779759",
"0.4340845220729991",
"0.7260259587257181",
"0.6452985428025357",
"0.7247690895720935"
],
[
"DOGE-USD",
"0.7964835956476696",
"0.8512417824394078",
"0.7093528958561227",
"0.7451790225147978",
"0.7213673847437885",
"1.0",
"0.7682595297571897",
"0.8448964816882972",
"0.582854123618813",
"0.7117368606484374",
"0.784313132707619",
"0.4791645284310745",
"0.8557518301501088",
"0.6338616300451798",
"0.8062160768363056"
],
[
"SOL-USD",
"0.77321501194442",
"0.7546582292786561",
"0.635947896797573",
"0.7466198228573968",
"0.7433675424261186",
"0.7682595297571897",
"1.0",
"0.7133529259347067",
"0.5102213425652745",
"0.5834087305672582",
"0.6144104831912715",
"0.42363780807723983",
"0.7713126731297596",
"0.6675466846964514",
"0.7450719000236465"
],
[
"DOT-USD",
"0.7183044145213001",
"0.8187538089018461",
"0.7327382694029546",
"0.69951857371863",
"0.7042616559570198",
"0.8448964816882972",
"0.7133529259347067",
"1.0",
"0.647433589856745",
"0.7609030796630218",
"0.768155108686504",
"0.5485412868327708",
"0.8866944699978591",
"0.5606883526297542",
"0.8205755386404796"
],
[
"MATIC-USD",
"0.5602219226808562",
"0.5551541335182335",
"0.5896579782755974",
"0.5253139668121019",
"0.5404521421648192",
"0.582854123618813",
"0.5102213425652745",
"0.647433589856745",
"1.0",
"0.5443387760307119",
"0.5276784037345296",
"0.5548382891944527",
"0.6332621152220875",
"0.6212109383568786",
"0.5910813082259896"
],
[
"LTC-USD",
"0.6327942217094216",
"0.6646506737200718",
"0.6016640831886629",
"0.6111847496629687",
"0.5273739397731345",
"0.7117368606484374",
"0.5834087305672582",
"0.7609030796630218",
"0.5443387760307119",
"1.0",
"0.5892728212071285",
"0.4971862140213053",
"0.7341582672533169",
"0.5159988617805904",
"0.6777651290403195"
],
[
"SHIB-USD",
"0.627954215455201",
"0.7039743632665664",
"0.6196672565006741",
"0.563438378223815",
"0.5465266866779759",
"0.784313132707619",
"0.6144104831912715",
"0.768155108686504",
"0.5276784037345296",
"0.5892728212071285",
"1.0",
"0.46869574186193314",
"0.7455375583586505",
"0.4802853364528364",
"0.6721688575838792"
],
[
"TRX-USD",
"0.46066350815518653",
"0.49901043905577946",
"0.48640960306278375",
"0.45166451634514226",
"0.4340845220729991",
"0.4791645284310745",
"0.42363780807723983",
"0.5485412868327708",
"0.5548382891944527",
"0.4971862140213053",
"0.46869574186193314",
"1.0",
"0.5294330496856146",
"0.42714342335871036",
"0.5151566393285687"
],
[
"AVAX-USD",
"0.7737155206587835",
"0.8425526680204218",
"0.7274044533976",
"0.7181714515893987",
"0.7260259587257181",
"0.8557518301501088",
"0.7713126731297596",
"0.8866944699978591",
"0.6332621152220875",
"0.7341582672533169",
"0.7455375583586505",
"0.5294330496856146",
"1.0",
"0.6208942764071217",
"0.8760414947974908"
],
[
"UNI-USD",
"0.8481508042829294",
"0.6312507153202408",
"0.5394397426149486",
"0.6776447465435471",
"0.6452985428025357",
"0.6338616300451798",
"0.6675466846964514",
"0.5606883526297542",
"0.6212109383568786",
"0.5159988617805904",
"0.4802853364528364",
"0.42714342335871036",
"0.6208942764071217",
"1.0",
"0.6375663206269536"
],
[
"LINK-USD",
"0.7616461148573074",
"0.838557020254197",
"0.6643609689924808",
"0.7227360251427635",
"0.7247690895720935",
"0.8062160768363056",
"0.7450719000236465",
"0.8205755386404796",
"0.5910813082259896",
"0.6777651290403195",
"0.6721688575838792",
"0.5151566393285687",
"0.8760414947974908",
"0.6375663206269536",
"1.0"
]
],
"shape": {
"columns": 15,
"rows": 15
}
},
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" BTC-USD | \n",
" ETH-USD | \n",
" BNB-USD | \n",
" XRP-USD | \n",
" ADA-USD | \n",
" DOGE-USD | \n",
" SOL-USD | \n",
" DOT-USD | \n",
" MATIC-USD | \n",
" LTC-USD | \n",
" SHIB-USD | \n",
" TRX-USD | \n",
" AVAX-USD | \n",
" UNI-USD | \n",
" LINK-USD | \n",
"
\n",
" \n",
" \n",
" \n",
" | BTC-USD | \n",
" 1.000000 | \n",
" 0.798642 | \n",
" 0.648279 | \n",
" 0.745660 | \n",
" 0.716404 | \n",
" 0.796484 | \n",
" 0.773215 | \n",
" 0.718304 | \n",
" 0.560222 | \n",
" 0.632794 | \n",
" 0.627954 | \n",
" 0.460664 | \n",
" 0.773716 | \n",
" 0.848151 | \n",
" 0.761646 | \n",
"
\n",
" \n",
" | ETH-USD | \n",
" 0.798642 | \n",
" 1.000000 | \n",
" 0.708097 | \n",
" 0.703692 | \n",
" 0.722342 | \n",
" 0.851242 | \n",
" 0.754658 | \n",
" 0.818754 | \n",
" 0.555154 | \n",
" 0.664651 | \n",
" 0.703974 | \n",
" 0.499010 | \n",
" 0.842553 | \n",
" 0.631251 | \n",
" 0.838557 | \n",
"
\n",
" \n",
" | BNB-USD | \n",
" 0.648279 | \n",
" 0.708097 | \n",
" 1.000000 | \n",
" 0.588115 | \n",
" 0.555838 | \n",
" 0.709353 | \n",
" 0.635948 | \n",
" 0.732738 | \n",
" 0.589658 | \n",
" 0.601664 | \n",
" 0.619667 | \n",
" 0.486410 | \n",
" 0.727404 | \n",
" 0.539440 | \n",
" 0.664361 | \n",
"
\n",
" \n",
" | XRP-USD | \n",
" 0.745660 | \n",
" 0.703692 | \n",
" 0.588115 | \n",
" 1.000000 | \n",
" 0.819921 | \n",
" 0.745179 | \n",
" 0.746620 | \n",
" 0.699519 | \n",
" 0.525314 | \n",
" 0.611185 | \n",
" 0.563438 | \n",
" 0.451665 | \n",
" 0.718171 | \n",
" 0.677645 | \n",
" 0.722736 | \n",
"
\n",
" \n",
" | ADA-USD | \n",
" 0.716404 | \n",
" 0.722342 | \n",
" 0.555838 | \n",
" 0.819921 | \n",
" 1.000000 | \n",
" 0.721367 | \n",
" 0.743368 | \n",
" 0.704262 | \n",
" 0.540452 | \n",
" 0.527374 | \n",
" 0.546527 | \n",
" 0.434085 | \n",
" 0.726026 | \n",
" 0.645299 | \n",
" 0.724769 | \n",
"
\n",
" \n",
" | DOGE-USD | \n",
" 0.796484 | \n",
" 0.851242 | \n",
" 0.709353 | \n",
" 0.745179 | \n",
" 0.721367 | \n",
" 1.000000 | \n",
" 0.768260 | \n",
" 0.844896 | \n",
" 0.582854 | \n",
" 0.711737 | \n",
" 0.784313 | \n",
" 0.479165 | \n",
" 0.855752 | \n",
" 0.633862 | \n",
" 0.806216 | \n",
"
\n",
" \n",
" | SOL-USD | \n",
" 0.773215 | \n",
" 0.754658 | \n",
" 0.635948 | \n",
" 0.746620 | \n",
" 0.743368 | \n",
" 0.768260 | \n",
" 1.000000 | \n",
" 0.713353 | \n",
" 0.510221 | \n",
" 0.583409 | \n",
" 0.614410 | \n",
" 0.423638 | \n",
" 0.771313 | \n",
" 0.667547 | \n",
" 0.745072 | \n",
"
\n",
" \n",
" | DOT-USD | \n",
" 0.718304 | \n",
" 0.818754 | \n",
" 0.732738 | \n",
" 0.699519 | \n",
" 0.704262 | \n",
" 0.844896 | \n",
" 0.713353 | \n",
" 1.000000 | \n",
" 0.647434 | \n",
" 0.760903 | \n",
" 0.768155 | \n",
" 0.548541 | \n",
" 0.886694 | \n",
" 0.560688 | \n",
" 0.820576 | \n",
"
\n",
" \n",
" | MATIC-USD | \n",
" 0.560222 | \n",
" 0.555154 | \n",
" 0.589658 | \n",
" 0.525314 | \n",
" 0.540452 | \n",
" 0.582854 | \n",
" 0.510221 | \n",
" 0.647434 | \n",
" 1.000000 | \n",
" 0.544339 | \n",
" 0.527678 | \n",
" 0.554838 | \n",
" 0.633262 | \n",
" 0.621211 | \n",
" 0.591081 | \n",
"
\n",
" \n",
" | LTC-USD | \n",
" 0.632794 | \n",
" 0.664651 | \n",
" 0.601664 | \n",
" 0.611185 | \n",
" 0.527374 | \n",
" 0.711737 | \n",
" 0.583409 | \n",
" 0.760903 | \n",
" 0.544339 | \n",
" 1.000000 | \n",
" 0.589273 | \n",
" 0.497186 | \n",
" 0.734158 | \n",
" 0.515999 | \n",
" 0.677765 | \n",
"
\n",
" \n",
" | SHIB-USD | \n",
" 0.627954 | \n",
" 0.703974 | \n",
" 0.619667 | \n",
" 0.563438 | \n",
" 0.546527 | \n",
" 0.784313 | \n",
" 0.614410 | \n",
" 0.768155 | \n",
" 0.527678 | \n",
" 0.589273 | \n",
" 1.000000 | \n",
" 0.468696 | \n",
" 0.745538 | \n",
" 0.480285 | \n",
" 0.672169 | \n",
"
\n",
" \n",
" | TRX-USD | \n",
" 0.460664 | \n",
" 0.499010 | \n",
" 0.486410 | \n",
" 0.451665 | \n",
" 0.434085 | \n",
" 0.479165 | \n",
" 0.423638 | \n",
" 0.548541 | \n",
" 0.554838 | \n",
" 0.497186 | \n",
" 0.468696 | \n",
" 1.000000 | \n",
" 0.529433 | \n",
" 0.427143 | \n",
" 0.515157 | \n",
"
\n",
" \n",
" | AVAX-USD | \n",
" 0.773716 | \n",
" 0.842553 | \n",
" 0.727404 | \n",
" 0.718171 | \n",
" 0.726026 | \n",
" 0.855752 | \n",
" 0.771313 | \n",
" 0.886694 | \n",
" 0.633262 | \n",
" 0.734158 | \n",
" 0.745538 | \n",
" 0.529433 | \n",
" 1.000000 | \n",
" 0.620894 | \n",
" 0.876041 | \n",
"
\n",
" \n",
" | UNI-USD | \n",
" 0.848151 | \n",
" 0.631251 | \n",
" 0.539440 | \n",
" 0.677645 | \n",
" 0.645299 | \n",
" 0.633862 | \n",
" 0.667547 | \n",
" 0.560688 | \n",
" 0.621211 | \n",
" 0.515999 | \n",
" 0.480285 | \n",
" 0.427143 | \n",
" 0.620894 | \n",
" 1.000000 | \n",
" 0.637566 | \n",
"
\n",
" \n",
" | LINK-USD | \n",
" 0.761646 | \n",
" 0.838557 | \n",
" 0.664361 | \n",
" 0.722736 | \n",
" 0.724769 | \n",
" 0.806216 | \n",
" 0.745072 | \n",
" 0.820576 | \n",
" 0.591081 | \n",
" 0.677765 | \n",
" 0.672169 | \n",
" 0.515157 | \n",
" 0.876041 | \n",
" 0.637566 | \n",
" 1.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" BTC-USD ETH-USD BNB-USD XRP-USD ADA-USD DOGE-USD \\\n",
"BTC-USD 1.000000 0.798642 0.648279 0.745660 0.716404 0.796484 \n",
"ETH-USD 0.798642 1.000000 0.708097 0.703692 0.722342 0.851242 \n",
"BNB-USD 0.648279 0.708097 1.000000 0.588115 0.555838 0.709353 \n",
"XRP-USD 0.745660 0.703692 0.588115 1.000000 0.819921 0.745179 \n",
"ADA-USD 0.716404 0.722342 0.555838 0.819921 1.000000 0.721367 \n",
"DOGE-USD 0.796484 0.851242 0.709353 0.745179 0.721367 1.000000 \n",
"SOL-USD 0.773215 0.754658 0.635948 0.746620 0.743368 0.768260 \n",
"DOT-USD 0.718304 0.818754 0.732738 0.699519 0.704262 0.844896 \n",
"MATIC-USD 0.560222 0.555154 0.589658 0.525314 0.540452 0.582854 \n",
"LTC-USD 0.632794 0.664651 0.601664 0.611185 0.527374 0.711737 \n",
"SHIB-USD 0.627954 0.703974 0.619667 0.563438 0.546527 0.784313 \n",
"TRX-USD 0.460664 0.499010 0.486410 0.451665 0.434085 0.479165 \n",
"AVAX-USD 0.773716 0.842553 0.727404 0.718171 0.726026 0.855752 \n",
"UNI-USD 0.848151 0.631251 0.539440 0.677645 0.645299 0.633862 \n",
"LINK-USD 0.761646 0.838557 0.664361 0.722736 0.724769 0.806216 \n",
"\n",
" SOL-USD DOT-USD MATIC-USD LTC-USD SHIB-USD TRX-USD \\\n",
"BTC-USD 0.773215 0.718304 0.560222 0.632794 0.627954 0.460664 \n",
"ETH-USD 0.754658 0.818754 0.555154 0.664651 0.703974 0.499010 \n",
"BNB-USD 0.635948 0.732738 0.589658 0.601664 0.619667 0.486410 \n",
"XRP-USD 0.746620 0.699519 0.525314 0.611185 0.563438 0.451665 \n",
"ADA-USD 0.743368 0.704262 0.540452 0.527374 0.546527 0.434085 \n",
"DOGE-USD 0.768260 0.844896 0.582854 0.711737 0.784313 0.479165 \n",
"SOL-USD 1.000000 0.713353 0.510221 0.583409 0.614410 0.423638 \n",
"DOT-USD 0.713353 1.000000 0.647434 0.760903 0.768155 0.548541 \n",
"MATIC-USD 0.510221 0.647434 1.000000 0.544339 0.527678 0.554838 \n",
"LTC-USD 0.583409 0.760903 0.544339 1.000000 0.589273 0.497186 \n",
"SHIB-USD 0.614410 0.768155 0.527678 0.589273 1.000000 0.468696 \n",
"TRX-USD 0.423638 0.548541 0.554838 0.497186 0.468696 1.000000 \n",
"AVAX-USD 0.771313 0.886694 0.633262 0.734158 0.745538 0.529433 \n",
"UNI-USD 0.667547 0.560688 0.621211 0.515999 0.480285 0.427143 \n",
"LINK-USD 0.745072 0.820576 0.591081 0.677765 0.672169 0.515157 \n",
"\n",
" AVAX-USD UNI-USD LINK-USD \n",
"BTC-USD 0.773716 0.848151 0.761646 \n",
"ETH-USD 0.842553 0.631251 0.838557 \n",
"BNB-USD 0.727404 0.539440 0.664361 \n",
"XRP-USD 0.718171 0.677645 0.722736 \n",
"ADA-USD 0.726026 0.645299 0.724769 \n",
"DOGE-USD 0.855752 0.633862 0.806216 \n",
"SOL-USD 0.771313 0.667547 0.745072 \n",
"DOT-USD 0.886694 0.560688 0.820576 \n",
"MATIC-USD 0.633262 0.621211 0.591081 \n",
"LTC-USD 0.734158 0.515999 0.677765 \n",
"SHIB-USD 0.745538 0.480285 0.672169 \n",
"TRX-USD 0.529433 0.427143 0.515157 \n",
"AVAX-USD 1.000000 0.620894 0.876041 \n",
"UNI-USD 0.620894 1.000000 0.637566 \n",
"LINK-USD 0.876041 0.637566 1.000000 "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Perform similarity analysis\n",
"analyzer.similarity_analysis()\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "6ba4672c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Building anomaly detection models...\n",
"Anomaly detection models built successfully\n",
"\n",
"Detected 5 potential anomalies:\n",
" • BTC-USD: Anomaly Score = 2\n",
" • MATIC-USD: Anomaly Score = 2\n",
" • SHIB-USD: Anomaly Score = 1\n",
" • TRX-USD: Anomaly Score = 1\n",
" • LINK-USD: Anomaly Score = 1\n",
"\n",
"Model building completed\n",
"\n",
"Generating visualizations...\n",
"Available columns: ['Ticker', 'Close_Price', 'Returns', 'Volatility', 'Price_MA_Ratio', 'Volume_Ratio', 'High_Low_Ratio', 'Cluster', 'Isolation_Anomaly', 'SVM_Anomaly', 'Anomaly_Score', 'Is_Anomaly']\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAHqCAYAAAAAkLx0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA3UFJREFUeJzs3XlcVNX7B/DPzADDvskmioBouIti4pZLorjnvrS4a31/khplhZlLpWamYmqSpVmpaa6Zpom4ZaIlZuaCueDO5gLIvsz5/TExOc6ADDPDjPB597ovm3PPufeZAebceebccyRCCAEiIiIiIiIiIiIiItJKauoAiIiIiIiIiIiIiIjMGRPpRERERERERERERERlYCKdiIiIiIiIiIiIiKgMTKQTEREREREREREREZWBiXQiIiIiIiIiIiIiojIwkU5EREREREREREREVAYm0omIiIiIiIiIiIiIysBEOhERERERERERERFRGZhIJyIiIiIiIiIiIiIqAxPpRE+5zp07o3PnzqYOo0IOHToEiUSCQ4cOmSyGTz75BA0aNIBCoTBZDI+7d+8e7Ozs8PPPP5s6FCIieoREIsHs2bNNHcZT4Wm+PjE2Pz8/jB492tRhEBHRU2z27NmQSCSVcq7H+/SSz/FbtmyplPOPHj0afn5+lXIuoidhIt1MXLlyBa+++irq1q0La2trODo6on379li6dClyc3NNEtOGDRsQFRVlknMTkJKSgrfeegsNGjSAra0t7OzsEBwcjI8++gjp6emVFse8efOwY8eOSjtfZcrMzMSCBQvwzjvvQCr97+1QIpGoNqlUCm9vb3Tv3l1rwr+4uBhff/01OnfuDFdXV8jlcvj5+WHMmDE4efKk1vN+/vnnkEgkCAkJ0bq/Ro0aGD9+PN5//32DPE8iosrypPc3+k/Jh9CSTS6Xw9PTE507d8a8efOQlpZW4WPfuXMHs2fPxunTpw0XsBbnz5/H7Nmzce3aNaOeRxePv64ymQweHh4YPHgwLly4YOrwtDLH15GIyJjWrl2r9l796Pbuu+8a5ZzHjh3D7NmzK/WzdHk9/npYW1vD29sbYWFh+Oyzz/Dw4UODnKeyrg8qwpxjI3qUhakDIGD37t0YMmQI5HI5Ro4ciSZNmqCgoABHjx7FtGnTcO7cOaxatarS49qwYQPOnj2LqVOnVvq5q7s//vgDvXr1QlZWFl5++WUEBwcDAE6ePImPP/4YR44cwb59+yollnnz5mHw4MHo37+/wY/dsWNH5ObmwsrKyuDHLo81a9agqKgII0aM0NjXrVs3jBw5EkIIJCYm4vPPP8fzzz+P3bt3o2fPngCA3NxcDBw4EHv37kXHjh0xffp0uLq64tq1a/jhhx/wzTff4MaNG6hdu7basdevXw8/Pz/8/vvvuHz5MurVq6dx/tdeew2fffYZDhw4gOeff944LwARkYGV5/2N1E2ePBnPPvssiouLkZaWhmPHjmHWrFlYvHgxfvjhhwr1AXfu3MGcOXPg5+eHoKAgwwf9r/Pnz2POnDno3LmzxkixyrpOKU3J61pYWIgzZ84gOjoahw4dwtmzZ+Hl5WXS2B5X1utIRFSVffDBB/D391cra9KkiVHOdezYMcyZMwejR4+Gs7OzUc6hr5LXo7CwEMnJyTh06BCmTp2KxYsXY+fOnWjWrJmq7owZM3T+0qGi1weV0aeXFduXX35pVneQU/XGRLqJJSYmYvjw4fD19cWBAwdQs2ZN1b5Jkybh8uXL2L17d6ntFQoFCgoKYG1tXRnhmp3s7GzY2dlplAshkJeXBxsbGxNEpZ/09HQMGDAAMpkMf/75Jxo0aKC2f+7cufjyyy9NFJ1h5OXlwcrKClKp1KS/u19//TX69eunNYZnnnkGL7/8surxgAED0KxZM0RFRakS6dOmTcPevXuxZMkSjS+cZs2ahSVLlmgcNzExEceOHcO2bdvw6quvYv369Zg1a5ZGvYYNG6JJkyZYu3YtE+lE9FQo7/sbqXvuuecwePBgtbK//voL3bt3x6BBg3D+/Hm168Onham+JC/x+OsaGBiI//3vf/j222/x9ttvmzAyIiIq0bNnT7Rq1crUYeiltJxERTz+ekRGRuLAgQPo06cP+vXrhwsXLqhyHBYWFrCwMG5KLycnB7a2tibv0y0tLU16fqJHcWoXE/vkk0+QlZWF1atXa/2QVK9ePUyZMkX1WCKRIDw8HOvXr0fjxo0hl8uxZ88e+Pn54YUXXtBon5eXBycnJ7z66qsA/rvdddOmTZg+fTq8vLxgZ2eHfv364ebNm6p2nTt3xu7du3H9+nXV7UWPjpBJTU3FuHHj4OnpCWtrazRv3hzffPONxvkVCgWWLl2Kpk2bwtraGu7u7ujRo4dqyotr165BIpFg7dq1Gm0fn4e0ZA6w8+fP48UXX4SLiws6dOgAQDnXZJ8+ffDLL7+gVatWsLGxwRdffAFAmZieOnUqfHx8IJfLUa9ePSxYsEDtG82SOD799FOsWrUKAQEBkMvlePbZZ/HHH39oxJaQkIChQ4fC3d0dNjY2CAwMxHvvvQcAOHjwICQSCbZv367RbsOGDZBIJIiLi9PYV+KLL77A7du3sXjxYo0kOgB4enpixowZpbYvuS3s8duDtc1HfunSJQwaNAheXl6wtrZG7dq1MXz4cGRkZABQ/gyys7PxzTffqH4PHp3T8/bt2xg7diw8PT0hl8vRuHFjrFmzRut5N27ciBkzZqBWrVqwtbVFZmam1pg6d+6MJk2a4Pz58+jSpQtsbW1Rq1YtfPLJJxrP9fr16+jXrx/s7Ozg4eGBN954A7/88ku55l1PTEzEmTNnEBoaWma9Ek2bNoWbmxsSExMBALdu3cIXX3yBbt26ab1rQyaT4a233tI6Gt3FxQW9e/fG4MGDsX79+lLP2a1bN/z0008QQpQrRiIiUyrP+5uu/e2BAwfw3HPPwc7ODs7OznjhhRc0pucouT74559/8PLLL8PJyQnu7u54//33IYTAzZs38cILL8DR0RFeXl5YtGiRWvuCggLMnDkTwcHBcHJygp2dHZ577jkcPHiwzOerb39flubNmyMqKgrp6elYvny52r4n9b2HDh3Cs88+CwAYM2aMqv9+9FrrxIkT6NGjB5ycnGBra4tOnTrht99+04jj9u3bGDduHLy9vSGXy+Hv74///e9/KCgowNq1azFkyBAAQJcuXVTnKel/tc2RXp7rR11/R8rrueeeA6CcTvHx5/ikaxkAWLZsGRo3bgxbW1u4uLigVatW2LBhg2p/afO3PmkO2ye9jidPnkRYWBjc3NxgY2MDf39/jB07VtenT0T0VNqzZ4/qOsDBwQG9e/fGuXPn1OqcOXMGo0ePVk2T6+XlhbFjx+LevXuqOrNnz8a0adMAAP7+/qr32mvXrhksJwEA69atQ3BwMGxsbODq6orhw4er5Vkq4vnnn8f777+P69evY926dRqxPComJgYdOnSAs7Mz7O3tERgYiOnTpwN48vVByefw+Ph4dOzYEba2tqq2pa17UlxcXGZeCSh9XZBHj/mk2LT1sdnZ2XjzzTdVeZ7AwEB8+umnGp+dS3JoO3bsQJMmTVR9/d69e7W/4ERPwBHpJvbTTz+hbt26aNeuXbnbHDhwAD/88APCw8Ph5uYGf39/vPzyy/jkk09w//59uLq6qh0/MzNTbWQtoBzVLJFI8M477yA1NRVRUVEIDQ3F6dOnYWNjg/feew8ZGRm4deuWalStvb09AOV0Fp07d8bly5cRHh4Of39/bN68GaNHj0Z6erpa4n/cuHFYu3YtevbsifHjx6OoqAi//vorjh8/XuFvnocMGYL69etj3rx5am+SFy9exIgRI/Dqq69iwoQJCAwMRE5ODjp16oTbt2/j1VdfRZ06dXDs2DFERkYiKSlJYw74DRs24OHDh3j11VchkUjwySefYODAgbh69arqW9AzZ87gueeeg6WlJSZOnAg/Pz9cuXIFP/30E+bOnYvOnTvDx8cH69evx4ABA9SOv379egQEBKBt27alPr+dO3fCxsZGY3SaoRUUFCAsLAz5+fl4/fXX4eXlhdu3b2PXrl1IT0+Hk5MTvvvuO4wfPx6tW7fGxIkTAQABAQEAlHO4t2nTRtUxubu7Y8+ePRg3bhwyMzM1kssffvghrKys8NZbbyE/P7/Mb7UfPHiAHj16YODAgRg6dCi2bNmCd955B02bNlWNBs/Ozsbzzz+PpKQkTJkyBV5eXtiwYcMTEx8ljh07BgBo2bJlueo/ePAADx48UE1TsGfPHhQVFeGVV14pV/sS69evx8CBA2FlZYURI0Zg5cqV+OOPP1QXDo8KDg7GkiVLcO7cOaPd4khEZCi6vL+Vp7/dv38/evbsibp162L27NnIzc3FsmXL0L59e5w6dUrjA9WwYcPQsGFDfPzxx9i9ezc++ugjuLq64osvvsDzzz+PBQsWYP369Xjrrbfw7LPPomPHjgCU62V89dVXGDFiBCZMmICHDx9i9erVCAsLw++//17qrc/69vdPMnjwYIwbNw779u3D3LlzAZSv723YsCE++OADzJw5ExMnTlQlkEuuNQ8cOICePXsiODgYs2bNglQqxddff43nn38ev/76K1q3bg1AeYt169atkZ6ejokTJ6JBgwa4ffs2tmzZgpycHHTs2BGTJ0/GZ599hunTp6Nhw4YAoPr3cbpcPwLl+x3RRckAAxcXF1VZea9lvvzyS0yePBmDBw/GlClTkJeXhzNnzuDEiRN48cUXdY7lUWW9jqmpqejevTvc3d3x7rvvwtnZGdeuXcO2bdv0OicRkbnIyMjA3bt31crc3NwAAN999x1GjRqFsLAwLFiwADk5OVi5ciU6dOiAP//8U3UdEBMTg6tXr2LMmDHw8vJSTY177tw5HD9+HBKJBAMHDsQ///yD77//HkuWLFGdw93dvUJrkmjLScydOxfvv/8+hg4divHjxyMtLQ3Lli1Dx44d8eeff+o1ncwrr7yC6dOnY9++fZgwYYLWOufOnUOfPn3QrFkzfPDBB5DL5bh8+bLqi/InXR8AwL1799CzZ08MHz4cL7/8Mjw9PcuM60l5pfIqT2yPEkKgX79+OHjwIMaNG4egoCD88ssvmDZtGm7fvq1xZ/jRo0exbds2/N///R8cHBzw2WefYdCgQbhx4wZq1KhR7jiJAACCTCYjI0MAEC+88EK52wAQUqlUnDt3Tq384sWLAoBYuXKlWnm/fv2En5+fUCgUQgghDh48KACIWrVqiczMTFW9H374QQAQS5cuVZX17t1b+Pr6asQQFRUlAIh169apygoKCkTbtm2Fvb296rgHDhwQAMTkyZM1jlEST2JiogAgvv76a63PddasWarHs2bNEgDEiBEjNOr6+voKAGLv3r1q5R9++KGws7MT//zzj1r5u+++K2Qymbhx44ZaHDVq1BD3799X1fvxxx8FAPHTTz+pyjp27CgcHBzE9evXtT4nIYSIjIwUcrlcpKenq8pSU1OFhYWF2nPSxsXFRTRv3rzMOo/q1KmT6NSpk+rx119/LQCIxMREtXolP/uDBw8KIYT4888/BQCxefPmMo9vZ2cnRo0apVE+btw4UbNmTXH37l218uHDhwsnJyeRk5Ojdt66deuqykqLqeT5ABDffvutqiw/P194eXmJQYMGqcoWLVokAIgdO3aoynJzc0WDBg00jqnNjBkzBADx8OFDjX0AxLhx40RaWppITU0VJ06cEF27dhUAxKJFi4QQQrzxxhsCgPjzzz/LPM+jTp48KQCImJgYIYTyd6Z27dpiypQpWusfO3ZMABCbNm0q9zmIiEyhvO9vuvS3QUFBwsPDQ9y7d09V9tdffwmpVCpGjhypKiu5Ppg4caKqrKioSNSuXVtIJBLx8ccfq8ofPHggbGxs1Pq1oqIikZ+frxbngwcPhKenpxg7dqxa+ePXJvr09yV9YFn9cPPmzYWLi4vqcXn73j/++EPr9ZVCoRD169cXYWFhatctOTk5wt/fX3Tr1k1VNnLkSCGVSsUff/yhEVdJ282bN5fa5z5+fVLe60ddfke0KXld16xZI9LS0sSdO3fE3r17Rb169YREIhG///67qm55X88XXnhBNG7cuMzzjho1Sut1c8nv56N8fX3VfgdLex23b98uAGj9GRARPc1KPrNq24QQ4uHDh8LZ2VlMmDBBrV1ycrJwcnJSK3/8M6YQQnz//fcCgDhy5IiqbOHChVo/JxsiJ3Ht2jUhk8nE3Llz1cr//vtvYWFhoVFe2utR1vu9k5OTaNGihUYsJZYsWSIAiLS0tFKPUdr1gRD/fQ6Pjo7Wuu/RPl2XvNLjfV5pxywrtsf72B07dggA4qOPPlKrN3jwYCGRSMTly5dVZQCElZWVWtlff/0lAIhly5ZpnIvoSTi1iwllZmYCABwcHHRq16lTJzRq1Eit7JlnnkFISIjabdT379/Hnj178NJLL2nc8jNy5Ei18w4ePBg1a9bEzz///MTz//zzz/Dy8lJboNHS0hKTJ09GVlYWDh8+DADYunUrJBKJ1vlRy7rF9Ulee+01reX+/v4ICwtTK9u8eTOee+45uLi44O7du6otNDQUxcXFOHLkiFr9YcOGqY1UKvkm9OrVqwCAtLQ0HDlyBGPHjkWdOnVKfU4jR45Efn4+tmzZoirbtGkTioqKNO4OeFxmZqbOvxMV4eTkBAD45ZdfkJOTo1NbIQS2bt2Kvn37Qgih9tqGhYUhIyMDp06dUmszatSocn8rbW9vr/Y6WVlZoXXr1qqfAwDs3bsXtWrVQr9+/VRl1tbWpX5D/7h79+7BwsJCdafF41avXg13d3d4eHggJCQEv/32GyIiIlSj0yry97t+/Xp4enqiS5cuAJS/M8OGDcPGjRtRXFysUb/kd/HxURpEROZG1/e3J/W3SUlJOH36NEaPHq12p12zZs3QrVs3rdcr48ePV/2/TCZDq1atIITAuHHjVOXOzs4IDAxU609kMpnqLimFQoH79++jqKgIrVq10ujLHqdPf18e9vb2ePjwIYCK9b2PO336NC5duoQXX3wR9+7dU7XPzs5G165dceTIESgUCigUCuzYsQN9+/bVegdhRa7jynv9WOJJvyNPMnbsWLi7u8Pb2xs9evRARkYGvvvuO9UdErq8ns7Ozrh165ZeU8tURMnoxV27dqGwsLBSz01EVBlWrFiBmJgYtQ1QjjJPT0/HiBEj1N6fZTIZQkJC1O5CfvQzZl5eHu7evYs2bdoAwBP7xYp6PCexbds2KBQKDB06VC1eLy8v1K9fv9x3TZfl0WsCbUr6jB9//LHCC3PK5XKMGTOm3PX1ySvp4+eff4ZMJsPkyZPVyt98800IIbBnzx618tDQUNWd9YDyetLR0bHc1xREj+LULibk6OgIAGW+GWrz+KrWJUaOHInw8HBcv34dvr6+2Lx5MwoLC7VOPVG/fn21xxKJBPXq1dOYV1ub69evo379+pBK1b+HKbkV9fr16wCUc1B6e3urfQA2hNKev7byS5cu4cyZM3B3d9faJjU1Ve3x48nxkg9wDx48APDfh7cnTbPRoEEDPPvss1i/fr3qA/z69evRpk0b1dQgpXF0dNT5d6Ii/P39ERERgcWLF2P9+vV47rnn0K9fP9X8smVJS0tDeno6Vq1ahVWrVmmt8/hrW9rPTZvatWtrfEh3cXHBmTNnVI+vX7+OgIAAjXpPen3L64UXXkB4eDgkEgkcHBzQuHFjtUVkdP37LS4uxsaNG9GlSxfVPOsAEBISgkWLFiE2Nhbdu3dXayP+vU1Qny+eiIiMrSLvb0/qb0uuJQIDAzXO17BhQ/zyyy8ai3s9fkwnJydYW1urbt9+tPzReVMB4JtvvsGiRYuQkJCglrB8Ut+lT39fHllZWaoPqBXpex936dIlAMovt0uTkZGBgoICZGZmGnRasfJeP5Z40u/Ik8ycORPPPfccsrKysH37dmzcuFHt3Lq8nu+88w7279+P1q1bo169eujevTtefPFFtG/fvlyxVFSnTp0waNAgzJkzB0uWLEHnzp3Rv39/vPjii5DL5UY9NxFRZWjdurXWL2xL+qvnn39ea7uSz2KAcgDhnDlzsHHjRo1+sGTtL0N7/Prg0qVLEEJo5FlKGGKxzKysLHh4eJS6f9iwYfjqq68wfvx4vPvuu+jatSsGDhyIwYMHa/S9palVq5ZOC4vqk1fSx/Xr1+Ht7a0xqK281xSA8rqivNcURI9iIt2EHB0d4e3tjbNnz+rUrrRRvcOHD8cbb7yB9evXY/r06Vi3bh1atWql9UOouSgtQaht9FqJ0p6/tnKFQoFu3brh7bff1trmmWeeUXssk8m01itJaOpi5MiRmDJlCm7duoX8/HwcP35cY8EwbRo0aIDTp0+joKCgQqtj6/KaLlq0CKNHj8aPP/6Iffv2YfLkyZg/fz6OHz+usUjmo0q+4X755ZdL/TDerFkztce6zJFmyJ9DaWrUqIGioiI8fPhQ66jy2rVrl7kQaclCsH///Xep8+c+6sCBA0hKSsLGjRuxceNGjf3r16/XSDSVdOyPJ4GIiMxJRd7fjPE+r+2Y5TnPunXrMHr0aPTv3x/Tpk2Dh4cHZDIZ5s+fr7EwpTYV7e+fpLCwEP/8848qmV2RvvdxJcdYuHBhqX2Xvb097t+/X8GoDUff35GmTZuq+vH+/fsjJycHEyZMQIcOHeDj46PT69mwYUNcvHgRu3btwt69e7F161Z8/vnnmDlzJubMmQOgYte0TyKRSLBlyxYcP34cP/30E3755ReMHTsWixYtwvHjx0u9q46I6GlX8h793XffwcvLS2O/hcV/qayhQ4fi2LFjmDZtGoKCgmBvbw+FQoEePXqUa2S2IXISCoUCEokEe/bs0dp/6ft+fevWLWRkZJT5Jb2NjQ2OHDmCgwcPYvfu3di7dy82bdqE559/Hvv27Su1X338GIZW1utbnpgMoTLyC1R9MJFuYn369MGqVasQFxen14JUAODq6orevXtj/fr1eOmll/Dbb79pLKZZouQb3hJCCFy+fFntA1hpb3i+vr44c+YMFAqF2jebCQkJqv2AclHKX375RWMB1EeVjC5KT09XK3/8G8SKCggIQFZWVpkJUV3UrVsXAMr15cfw4cMRERGB77//Hrm5ubC0tMSwYcOe2K5v376Ii4vD1q1b1W5/Li9dX9OmTZuiadOmmDFjBo4dO4b27dsjOjoaH330EQDtvwfu7u5wcHBAcXGxwV5bXfn6+uL8+fMQQqjFePny5XK1L0mEJyYmPjHxoE3Pnj0hk8mwbt26ci04un79enh4eGDFihUa+7Zt24bt27cjOjpa7eKlZGRnaQu3ERGZg4q8vz1JybXExYsXNfYlJCTAzc1NbTS6PrZs2YK6deti27Ztav2JtqnptKlof1+euHJzc1XT1unS95Z2DVdyW7Ojo2OZx3B3d4ejo+MTr3d0uWOqvNePxvLxxx9j+/btmDt3LqKjo3W+lrGzs8OwYcMwbNgwFBQUYODAgZg7dy4iIyNhbW0NFxcXjWsvoHzXtE96Hdu0aYM2bdpg7ty52LBhA1566SVs3LhRbTojIqKqpKS/8vDwKPM9+sGDB4iNjcWcOXMwc+ZMVfnj+Q6g9PdaQ+QkAgICIISAv7+/xmA9Q/juu+8AQGMq28dJpVJ07doVXbt2xeLFizFv3jy89957OHjwIEJDQw1+p3N58kpl9Y8l+RVA92uK/fv3awyKq6xrCqreOEe6ib399tuws7PD+PHjkZKSorH/ypUrWLp0abmP98orr+D8+fOYNm0aZDIZhg8frrXet99+qzYlxZYtW5CUlISePXuqyuzs7LTeCtWrVy8kJydj06ZNqrKioiIsW7YM9vb26NSpEwBg0KBBEEKoRuo8quSbP0dHR7i5uWnMVf7555+X+zmXZejQoYiLi8Mvv/yisS89PR1FRUU6Hc/d3R0dO3bEmjVrcOPGDbV9j3+b6ebmhp49e2LdunVYv349evToUa6Rxa+99hpq1qyJN998E//884/G/tTUVFWSW5uSi45HX9Pi4mKN25YzMzM1nn/Tpk0hlUqRn5+vKrOzs9Po+GQyGQYNGoStW7dq/ZBdkZXPdRUWFobbt29j586dqrK8vDx8+eWX5Wpf8sXVyZMnK3R+Hx8fTJgwAfv27cOyZcs09isUCixatAi3bt1Cbm4utm3bhj59+mDw4MEaW3h4OB4+fKj2XAAgPj4eTk5OaNy4cYViJCIytoq+vz1JzZo1ERQUhG+++UatDzp79iz27duHXr16Gew5lIxSerQfP3HiBOLi4srVvqL9fVn++usvTJ06FS4uLpg0aZIqzvL2vSVfMjzefwcHByMgIACffvopsrKySj2GVCpF//798dNPP2ntJ0teq9LOo015rx+NJSAgAIMGDcLatWuRnJys0+v5+FRAVlZWaNSoEYQQqqmAAgICkJGRoTYNXVJSErZv3/7E2Ep7HR88eKBxfVlyJ8Gj12pERFVNWFgYHB0dMW/ePK1rRJS8R2vrwwFoHVBY2nutIXISAwcOhEwmw5w5czRiEUJo9CO6OHDgAD788EP4+/vjpZdeKrWetrvJHu8zdOm3y6M8eaWAgAAcP34cBQUFqrJdu3bh5s2basfS9ZqiuLhY4w7AJUuWQCKRqJ2fyNA4It3EAgICsGHDBgwbNgwNGzbEyJEj0aRJExQUFODYsWPYvHkzRo8eXe7j9e7dGzVq1MDmzZvRs2fPUufQcnV1RYcOHTBmzBikpKQgKioK9erVU1uoMTg4GJs2bUJERASeffZZ2Nvbo2/fvpg4cSK++OILjB49GvHx8fDz88OWLVtUI+BLvhHs0qULXnnlFXz22We4dOmS6taqX3/9FV26dEF4eDgA5eJgH3/8McaPH49WrVrhyJEjWhPIFTFt2jTs3LkTffr0wejRoxEcHIzs7Gz8/fff2LJlC65du6bzh93PPvsMHTp0QMuWLTFx4kT4+/vj2rVr2L17N06fPq1Wd+TIkRg8eDAA4MMPPyzX8V1cXLB9+3b06tULQUFBePnllxEcHAxAuVjK999/X+bdC40bN0abNm0QGRmpuhtg48aNGknzAwcOIDw8HEOGDMEzzzyDoqIifPfdd6oPliWCg4Oxf/9+LF68GN7e3vD390dISAg+/vhjHDx4ECEhIZgwYQIaNWqE+/fv49SpU9i/f7/Rbwt/9dVXsXz5cowYMQJTpkxBzZo1sX79elhbWwN48jfadevWRZMmTbB//36MHTu2QjEsWrQIV65cweTJk1WJJBcXF9y4cQObN29GQkIChg8fjp07d+Lhw4dqC6M+qk2bNnB3d8f69evVRjHGxMSgb9++nCOdiMxWRd/fymPhwoXo2bMn2rZti3HjxiE3NxfLli2Dk5MTZs+ebYDolfr06YNt27ZhwIAB6N27NxITExEdHY1GjRppTTZrU5H+vsSvv/6KvLw8FBcX4969e/jtt9+wc+dOODk5Yfv27Wq3tJe37w0ICICzszOio6Ph4OAAOzs7hISEwN/fH1999RV69uyJxo0bY8yYMahVqxZu376NgwcPwtHRET/99BMAYN68edi3bx86deqEiRMnomHDhkhKSsLmzZtx9OhRODs7IygoCDKZDAsWLEBGRgbkcjmef/55rdef5b1+NKZp06bhhx9+QFRUFD7++ONyv57du3eHl5cX2rdvD09PT1y4cAHLly9H7969VXEPHz4c77zzDgYMGIDJkycjJycHK1euxDPPPPPExe5Kex03bNiAzz//HAMGDEBAQAAePnyIL7/8Eo6Ojgb9MomIyNw4Ojpi5cqVeOWVV9CyZUsMHz4c7u7uuHHjBnbv3o327dtj+fLlcHR0RMeOHfHJJ5+gsLAQtWrVwr59+9TWbClR8pn6vffew/Dhw2FpaYm+ffuqBjbqk5MICAjARx99hMjISFy7dg39+/eHg4MDEhMTsX37dkycOBFvvfXWE4+zZ88eJCQkoKioCCkpKThw4ABiYmLg6+uLnTt3qj7ravPBBx/gyJEj6N27N3x9fZGamorPP/8ctWvXRocOHVRxlnZ9UBHlySuNHz8eW7ZsQY8ePTB06FBcuXIF69atU1v8U9fY+vbtiy5duuC9997DtWvX0Lx5c+zbtw8//vgjpk6dqnFsIoMSZBb++ecfMWHCBOHn5yesrKyEg4ODaN++vVi2bJnIy8tT1QMgJk2aVOax/u///k8AEBs2bNDYd/DgQQFAfP/99yIyMlJ4eHgIGxsb0bt3b3H9+nW1ullZWeLFF18Uzs7OAoDw9fVV7UtJSRFjxowRbm5uwsrKSjRt2lR8/fXXGucrKioSCxcuFA0aNBBWVlbC3d1d9OzZU8THx6vq5OTkiHHjxgknJyfh4OAghg4dKlJTUwUAMWvWLFW9WbNmCQAiLS1N4zy+vr6id+/eWl+Phw8fisjISFGvXj1hZWUl3NzcRLt27cSnn34qCgoKhBBCJCYmCgBi4cKFGu0fj0MIIc6ePSsGDBggnJ2dhbW1tQgMDBTvv/++Rtv8/Hzh4uIinJycRG5urtb4SnPnzh3xxhtviGeeeUZYW1sLW1tbERwcLObOnSsyMjJU9Tp16iQ6deqk1vbKlSsiNDRUyOVy4enpKaZPny5iYmIEAHHw4EEhhBBXr14VY8eOFQEBAcLa2lq4urqKLl26iP3796sdKyEhQXTs2FHY2NgIAGLUqFGqfSkpKWLSpEnCx8dHWFpaCi8vL9G1a1exatUqVZ2S37nNmzdrPMeSfSUxlTyfxo0ba9QdNWqU2u9gyXPo3bu3sLGxEe7u7uLNN98UW7duFQDE8ePHn/AKC7F48WJhb28vcnJy1MrL83dWoqioSHz11VfiueeeE05OTsLS0lL4+vqKMWPGiD///FMIIUTfvn2FtbW1yM7OLvU4o0ePFpaWluLu3btCCCEuXLggAGj8PIiIzImu72+69rf79+8X7du3FzY2NsLR0VH07dtXnD9/Xq1OadcHo0aNEnZ2dhrnebyfUSgUYt68ecLX11fI5XLRokULsWvXLq39jrYYhahYf1/SB5ZslpaWwt3dXXTs2FHMnTtXpKamam1Xnr5XCCF+/PFH0ahRI2FhYSEAqF2n/fnnn2LgwIGiRo0aQi6XC19fXzF06FARGxurdozr16+LkSNHCnd3dyGXy0XdunXFpEmTRH5+vqrOl19+KerWrStkMplan67t+qQ814+6/o6U9rpqu+4QQojOnTsLR0dHkZ6erorpSa/nF198ITp27Kh6vQICAsS0adPUrseEEGLfvn2iSZMmwsrKSgQGBop169apfj8f5evrq3Y9JYT21/HUqVNixIgRok6dOkIulwsPDw/Rp08fcfLkyTJfAyIic/f1118LAOKPP/4os97BgwdFWFiYcHJyEtbW1iIgIECMHj1a7X3w1q1bqs/mTk5OYsiQIeLOnTta+4wPP/xQ1KpVS0ilUgFAJCYmCiEMk5MQQoitW7eKDh06CDs7O2FnZycaNGggJk2aJC5evFiu16Nks7KyEl5eXqJbt25i6dKlIjMzU6PN4/1LbGyseOGFF4S3t7ewsrIS3t7eYsSIEeKff/5Ra1fa9UFpn8NL9j3ap+uSVxJCiEWLFolatWoJuVwu2rdvL06ePKn1OqG02LRdkz18+FC88cYbwtvbW1haWor69euLhQsXCoVCoVavtM/22vpiovKQCMHZ9auaN954A6tXr0ZycjJsbW3V9h06dAhdunTB5s2bVSOnyHiKiorg7e2Nvn37YvXq1aYOp1qIiorCG2+8gVu3bqFWrVpl1s3IyEDdunXxySefYNy4cZUUYflMnToVR44cQXx8PEekExGZOfb3RERERERVH+dIr2Ly8vKwbt06DBo0SCOJTpVvx44dSEtLw8iRI00dSpWUm5ur9jgvLw9ffPEF6tev/8QkOgA4OTnh7bffxsKFC8u1ontluXfvHr766it89NFHTKITET0F2N8TEREREVV9nCO9ikhNTcX+/fuxZcsW3Lt3D1OmTDF1SNXaiRMncObMGXz44Ydo0aKF0RfQqq4GDhyIOnXqICgoCBkZGVi3bh0SEhKwfv36ch/jnXfewTvvvGPEKHVXo0aNcs/LS0REpsP+noiIiIio+mAivYo4f/48XnrpJXh4eOCzzz5Trc5MprFy5UqsW7cOQUFBWLt2ranDqbLCwsLw1VdfYf369SguLkajRo2wceNGnRe0IyIiqgj290RERERE1QfnSCciompv/vz52LZtGxISEmBjY4N27dphwYIFCAwMLLPd5s2b8f777+PatWuoX78+FixYgF69eqn2CyEwa9YsfPnll0hPT0f79u2xcuVK1K9f39hPiYiIiIiIiIgMiHOkExFRtXf48GFMmjQJx48fR0xMDAoLC9G9e3dkZ2eX2ubYsWMYMWIExo0bhz///BP9+/dH//79cfbsWVWdTz75BJ999hmio6Nx4sQJ2NnZISwsDHl5eZXxtIiIiIiIiIjIQDginYiI6DFpaWnw8PDA4cOH0bFjR611hg0bhuzsbOzatUtV1qZNGwQFBSE6OhpCCHh7e+PNN9/EW2+9BQDIyMiAp6cn1q5di+HDh1fKcyEiIiIiIiIi/VWrOdIVCgXu3LkDBwcHSCQSU4dDRPRUEkLg4cOH8Pb2hlRq2Bub8vLyUFBQYJBjCSE03uvlcjnkcvkT22ZkZAAAXF1dS60TFxeHiIgItbKwsDDs2LEDAJCYmIjk5GSEhoaq9js5OSEkJARxcXFMpFcA+3EiIjJHxrw2qirYhxMRkbnSpR+vVon0O3fuwMfHx9RhEBFVCTdv3kTt2rUNdry8vDz4+7kiOSXXIMezt7dHVlaWWtmsWbMwe/bsMtspFApMnToV7du3R5MmTUqtl5ycDE9PT7UyT09PJCcnq/aXlJVWh3TDfpyIiMyZoa+NqhL24UREZO7K049Xq0S6g4MDAOUL4+joaOJoiIieTpmZmfDx8VG9pxpKQUEBklNycf3vF+HoYKXXsTIfFsC36QaN9/vyjEafNGkSzp49i6NHj+oVAxke+3EiIjJHxro2qkrYhz89CgsLsW/fPnTv3h2WlpamDofoqca/p6eDLv14tUqkl9xC5ujoyM6biEhPxrot18HBAg6O+nVPAgoAur/fh4eHY9euXThy5MgTv4n28vJCSkqKWllKSgq8vLxU+0vKatasqVYnKCio3DHRf9iPExGROTOnKUtWrFiBhQsXIjk5Gc2bN8eyZcvQunXrUutv3rwZ77//Pq5du4b69etjwYIF6NWrl1qdCxcu4J133sHhw4dRVFSERo0aYevWrahTp84T42Ef/vQoLCyEra0tHB0dmfgj0hP/np4u5enHOYEbERGZFYUQBtl0IYRAeHg4tm/fjgMHDsDf3/+Jbdq2bYvY2Fi1spiYGLRt2xYA4O/vDy8vL7U6mZmZOHHihKoOERERkaFt2rQJERERmDVrFk6dOoXmzZsjLCwMqampWusfO3YMI0aMwLhx4/Dnn3+if//+6N+/P86ePauqc+XKFXTo0AENGjTAoUOHcObMGbz//vuwtraurKdFRERkckykExFRtTdp0iSsW7cOGzZsgIODA5KTk5GcnIzc3P/max85ciQiIyNVj6dMmYK9e/di0aJFSEhIwOzZs3Hy5EmEh4cDUH6bPXXqVHz00UfYuXMn/v77b4wcORLe3t7o379/ZT9FIiIiqiYWL16MCRMmYMyYMWjUqBGio6Nha2uLNWvWaK2/dOlS9OjRA9OmTUPDhg3x4YcfomXLlli+fLmqznvvvYdevXrhk08+QYsWLRAQEIB+/frBw8Ojsp4WERGRyTGRTkREZkUBYZBNFytXrkRGRgY6d+6MmjVrqrZNmzap6ty4cQNJSUmqx+3atcOGDRuwatUqNG/eHFu2bMGOHTvUFih9++238frrr2PixIl49tlnkZWVhb1793L0FhERERlFQUEB4uPjERoaqiqTSqUIDQ1FXFyc1jZxcXFq9QEgLCxMVV+hUGD37t145plnEBYWBg8PD4SEhGDHjh1Gex5ERETmqFrNkU5EROZP/PufvsfQqX45poI5dOiQRtmQIUMwZMiQUttIJBJ88MEH+OCDD3SKh4iIiKgi7t69i+LiYnh6eqqVe3p6IiEhQWub5ORkrfWTk5MBAKmpqcjKysLHH3+Mjz76CAsWLMDevXsxcOBAHDx4EJ06ddI4Zn5+PvLz81WPMzMzASjnCy4sLNTrOZJxlfx8+HMi0h//np4Ouvx8mEgnIiIiIiIiIq0UCuUi7i+88ALeeOMNAEBQUBCOHTuG6OhorYn0+fPnY86cORrl+/btg62trXEDJoOIiYkxdQhEVQb/nsxbTk5OuesykU5ERGZFAd0XC9V2DCIiIqLqxs3NDTKZDCkpKWrlKSkp8PLy0trGy8urzPpubm6wsLBAo0aN1Oo0bNgQR48e1XrMyMhIREREqB5nZmbCx8cH3bt3h6Ojo87PiypPYWEhYmJi0K1bN1haWpo6HKKnGv+eng4ld02VBxPpRERkVhT/bvoeg4iIiKi6sbKyQnBwMGJjY1WLmysUCsTGxqoWRH9c27ZtERsbi6lTp6rKYmJi0LZtW9Uxn332WVy8eFGt3T///ANfX1+tx5TL5ZDL5RrllpaWTCY9JfizIjIc/j2ZN11+NkykExEREREREVURERERGDVqFFq1aoXWrVsjKioK2dnZGDNmDABg5MiRqFWrFubPnw8AmDJlCjp16oRFixahd+/e2LhxI06ePIlVq1apjjlt2jQMGzYMHTt2RJcuXbB371789NNPWteQISIiqqqYSCciIrOigNB7ahZO7UJERETV1bBhw5CWloaZM2ciOTkZQUFB2Lt3r2pB0Rs3bkAqlarqt2vXDhs2bMCMGTMwffp01K9fHzt27ECTJk1UdQYMGIDo6GjMnz8fkydPRmBgILZu3YoOHTpU+vMjIiIyFSbSiajaEkJAIpGYOgx6jPj3P32PQUREVNUJAfBShrQJDw8vdSoXbaPIhwwZgiFDhpR5zLFjx2Ls2LGGCI+IiOipxEQ6EVUrD3Jzse/qZRxIvIIHeXnwtLNDt7r10NU/AHZWVqYOj4iIiKhMd+8CO3YAP/0E3L8P1K4NvPAC0LcvYGdn6uiIiIiIqi4m0omo2kh6+BAfHDmAS/fuwUomg1xmgUv37iHh7l38euMa3u/4PBy1LIpElYtTuxAREWl34wYweTKQkABYWwNyOXD2LPDXX8D+/cDixYCjo6mjJCIiIqqapE+uQkT09BNCIDr+d/xz7y5qOzrB28ERNWxtUdvRCV529jiVlIR1Z06bOkwCIAAo9NyYRicioqpGCGDuXODCBcDfH/DxATw8AD8/wNsbOHoU+PJLU0dJREREVHUxkU5E1cK1jHT8mZyEGja2sJCqv/XJLSzgYGWFw9cTkZGXZ6IIiYiIiEqXkACcPAl4egIWj91XbGMD2Nsrp3vJzDRNfERERERVHad2IaJq4Xp6OnIKCuDu5Kx1v6PcGmk52biVmQEna+vKDY7UlIwq1/cYREREVcnly0B2NlCzpvb9zs5AWhpw/TrQtGmlhkZERFQt5eTkICEhodT9Wbn5OPb3Fbi4nYS9TenTyDZo0AC2trbGCJEMjIl0IqoWZFIJJBJAIQRkEonG/mKFAlKJBDIpb9QxNYVQbvoeg4iIqCqxsIDyWkYByGSa+4uLAakUsLSs/NiIiIiqo4SEBAQHBz+x3idP2B8fH4+WLVsaJigyKibSiahaaOLuCRdrGzzIy4WbrZ3G/gd5ufB2cERdF1cTREdERERUtuBgwMUFuHdPOTf64+7dA+rWBerVq/zYiIiIqqMGDRogPj6+1P0Xk9IRsflvLB7SFIE1ncs8Dj0dmEgnomrBxcYG3QPqY9O5v2GVnwcHKzkkEgmEELifl4tiIdAvsAGstA3xokoloP9ioRyQTkREVY2HB/DCC8DXXwNWVoCTk3KEuhDKKV2EAF56SXP+dCIiIjIOW1vbMkeSS6/fg/zXXDRs0hxBvjUqMTIyFl5mEVG18UqzIGTk5+HgtUTcy81VldtbWWF4k6bo8wy/BTYHnCOdiIhIuylTgPR0YO9eIDX1v0S6kxPw6qvA4MGmjpCIiIio6mIinYiqDbmFBSLatEev+oE4fusmHubnwdXGFu3r+MLf2cXU4RERERGVydoamDcPGDYMOHQIyMgAPD2Bbt2AgABTR0dERERUtTGRTkTVikQiQUM3dzR0czd1KFQKLjZKRERUOokECApSbkRERERUeZhIJyIis6KABApI9D4GEREREREREZGhSE0dABERERERERERERGROeOIdCIiMisckU5ERERERERE5oaJdCIiMitCSCCEfolwfdsTERERERERET2KU7sQEREREREREREREZWBI9KJiMisFP+76XsMIiIiIiIiIiJDYSKdiIjMioAUCj1vmBK84YqIiIiIiIiIDIiZBiIiIiIiIiIiIiKiMnBEOhERmRXx76bvMYiIiIiIiIj0kXg3G9n5RRVqeyUtW/WvhUXFUrB2cgv4u9lVqC0ZHhPpRERkVhSQQAGJ3scgIiIiIiIiqqjEu9no8ukhvY/z5pa/9Wp/8K3OTKabCSbSiYiIiIiIiIiIiB5RMhI9algQ6nnY694+Nx+7DsWhT+e2sLOR69z+cmoWpm46XeER8WR4TKQTEZFZUQgJFELPEel6ticiIiIiIiICgHoe9mhSy0nndoWFhUh2B1r6usDS0tIIkVFlYyKdiIjMigJSKPRcC1vf9kREREREREREj2KmgYiIiIiIiIiIiIioDByRTkREZoWLjRIRERERERGRuWEinYiIzArnSCciIiIiIiIic8OpXYiIiIiIiIiIiIiIysAR6UREZFYEJBB6Ts2ib3siIiIiIiIiokcxkU5ERGaFc6QTERERERERkbnh1C5ERERERERERERERGVgIp2IiMxKyYh0fTddHDlyBH379oW3tzckEgl27NhRZv3Ro0dDIpFobI0bN1bVmT17tsb+Bg0aVOQlISIiIiIiIiITYyKdiIiqvezsbDRv3hwrVqwoV/2lS5ciKSlJtd28eROurq4YMmSIWr3GjRur1Tt69KgxwiciIiIiIiIiI+Mc6UREZFYEpFDo+T2v0LF9z5490bNnz3LXd3JygpOTk+rxjh078ODBA4wZM0atnoWFBby8vHSKhYiIiIiIiIjMD0ekExGRWVEIQCEkem6VG/Pq1asRGhoKX19ftfJLly7B29sbdevWxUsvvYQbN25UbmBEREREREREZBAckU5ERFVWZmam2mO5XA65XG7Qc9y5cwd79uzBhg0b1MpDQkKwdu1aBAYGIikpCXPmzMFzzz2Hs2fPwsHBwaAxEBEREREREZFxcUQ6ERGZFUMuNurj46OahsXJyQnz5883eLzffPMNnJ2d0b9/f7Xynj17YsiQIWjWrBnCwsLw888/Iz09HT/88IPBYyAiIiIiIiIi42IinYiIzIoQEoNsAHDz5k1kZGSotsjISAPHKrBmzRq88sorsLKyKrOus7MznnnmGVy+fNmgMRARERE9bsWKFfDz84O1tTVCQkLw+++/l1l/8+bNaNCgAaytrdG0aVP8/PPPpdZ97bXXIJFIEBUVZeCoiYiIzBundiEioirL0dERjo6ORjv+4cOHcfnyZYwbN+6JdbOysnDlyhW88sorRouHiIiIaNOmTYiIiEB0dDRCQkIQFRWFsLAwXLx4ER4eHhr1jx07hhEjRmD+/Pno06cPNmzYgP79++PUqVNo0qSJWt3t27fj+PHj8Pb2rqynQ0RkUhKLTCRmXoTU2l7ntkVFRbhTdAcX7l+AhYXuKdjEzCxILDKfXJEqzVOTSJ8/fz62bduGhIQE2NjYoF27dliwYAECAwNNHRoRERlQMaQo1vOGKV3bZ2VlqY0UT0xMxOnTp+Hq6oo6deogMjISt2/fxrfffqvWbvXq1QgJCdH4kAkAb731Fvr27QtfX1/cuXMHs2bNgkwmw4gRIyr2pJ5y7MeJiIgqx+LFizFhwgSMGTMGABAdHY3du3djzZo1ePfddzXqL126FD169MC0adMAAB9++CFiYmKwfPlyREdHq+rdvn0br7/+On755Rf07t27cp4MEZGJWTqfwPTf5+l1jM/3fq7H+bsC6KXX+clwnppE+uHDhzFp0iQ8++yzKCoqwvTp09G9e3ecP38ednZ2pg6PiIgMRPHvpu8xdHHy5El06dJF9TgiIgIAMGrUKKxduxZJSUm4ceOGWpuMjAxs3boVS5cu1XrMW7duYcSIEbh37x7c3d3RoUMHHD9+HO7u7jpGVzWwHyciIjK+goICxMfHq01nJ5VKERoairi4OK1t4uLiVNc+JcLCwrBjxw7VY4VCgVdeeQXTpk1D48aNjRI7EZE5KkwPwaLeLyLAo2Ij0n87+hvad2hfoRHpV1KzMHn9FZ3bkfE8NYn0vXv3qj1eu3YtPDw8EB8fj44dO5ooKiIiqgo6d+4MIUSp+9euXatR5uTkhJycnFLbbNy40RChVRnsx4mIiIzv7t27KC4uhqenp1q5p6cnEhIStLZJTk7WWj85OVn1eMGCBbCwsMDkyZPLFUd+fj7y8/NVjzMzlVMTFBYWorCwsFzHINMo+fnw50SkTISLIkf42AagfgWmDC0sLESiRSLqOdSDpaWlzu0LsjIhitJQVFTEv0kj0uW1fWoS6Y/LyMgAALi6upZap7TOm4iIzJeAFELPqV30bU/Gx36ciIjo6RAfH4+lS5fi1KlTkEgk5Wozf/58zJkzR6N83759sLW1NXSIZAQxMTGmDoHI5G5mAYAFjh49iuu6D0hXqejfk6HOT2Ura4Dc457KRLpCocDUqVPRvn17rfPSliit8yYiIvOlEBIoRPk+pJV1DDJf7MeJiIiMw83NDTKZDCkpKWrlKSkp8PLy0trGy8urzPq//vorUlNTUadOHdX+4uJivPnmm4iKisK1a9c0jhkZGak2XUxmZiZ8fHzQvXt3oy4ET/orLCxETEwMunXrVqERtERVybk7mfj07+Po0KEDGntXbES6Pn9P+p6fykeXAVtPZSJ90qRJOHv2LI4ePVpmvdI6byIiIjId9uNERETGYWVlheDgYMTGxqJ///4AlF9gx8bGIjw8XGubtm3bIjY2FlOnTlWVxcTEoG3btgCAV155BaGhoWptwsLC8Morr6gWNH2cXC6HXC7XKLe0tGRy9inBnxURVPOaW1hY6PX3UNG/J0Odn8qmy2v71CXSw8PDsWvXLhw5cgS1a9cus25pnTcREZkvBSRQQM8R6Xq2J+NhP05ERGRcERERGDVqFFq1aoXWrVsjKioK2dnZqqT3yJEjUatWLcyfPx8AMGXKFHTq1AmLFi1C7969sXHjRpw8eRKrVq0CANSoUQM1atRQO4elpSW8vLwQGBhYuU+OiIjIhJ6aRLoQAq+//jq2b9+OQ4cOwd/f39QhERGREQgDTO0iOLWL2WE/TkREVDmGDRuGtLQ0zJw5E8nJyQgKCsLevXtVC4reuHEDUul/68m0a9cOGzZswIwZMzB9+nTUr18fO3bsKHP6NSIiouroqUmkT5o0CRs2bMCPP/4IBwcH1QriTk5OsLGxMXF0REREVBb240RERJUnPDy81KlcDh06pFE2ZMgQDBkypNzH1zYvOhERUVUnfXIV87By5UpkZGSgc+fOqFmzpmrbtGmTqUMjIiIDUkBqkI3MC/txIiIiIiIiepo9NSPShRCmDoGIiCqBEMpN32OQeWE/TkRERERERE8zDtkjIiIiIiIiIiIiIirDUzMinYiIqgdDTM3CqV2IiIiIiIiIyJCYSCciIrOigAQKSPQ+BhERERERERGRoXDIHhERERERERERERFRGTginYiIzApHpBMRERERERGRuWEinYiIzIoQEgihXyJc3/ZERERERERERI/i1C5ERERERERERERERGXgiHQiIjIrnNqFiIiIiIiIiMwNE+lERGRWFAJQ6Dk1i0IYKBgiIiIiIiIiInBqFyIiIiIiIiIiIiKiMnFEOhERmRUFpFDo+T2vvu2JiIiIiIioesstLAYAnL2dUaH22bn5OJkGeF1/ADsbuc7tL6dmVei8ZDxMpBMRkVkRkEDoOce5vu2JiIiIiIioervybyL73W1/63EUC3x3+Q+94rCTM31rLviTICIiIiIiIiIiInpE98ZeAIAAD3vYWMp0bn8xKQNvbvkbiwY3RWBNpwrFYCe3gL+bXYXakuExkU5ERGZFCInei40KPdsTERERERFR9eZqZ4XhretUuH1RUREAIMDdDk1qVSyRTuaFiXQiIjIrCgMk0vVtT0RERERERET0KK7GRkRERERERERERERUBo5IJyIis6KABAo9FwvVtz0RERERERER0aOYSCciIrMiIIHQMxGub3siIiIiIiIiokdxahciIiIiIiIiIiIiojJwRDoREZkVTu1CREREREREROaGiXQiIjIrCiGBQuiZSNezPRERERERERHRozi1CxERERERERERERFRGTginYiIzIoQEgg9R5Tr256IiIiIiIiI6FFMpBMRkVlhIp2IiIiIiIiIzA2ndiEiIiIiIiIiIiIiKgNHpBMRkVkphgTF0G9Eub7tiYiIiIiIiIgexUQ6ERGZFfHvpu8xiIiIiIiIiIgMhVO7EBERERERERERERGVgSPSiYjIrAhIIYR+3/MKfk9MRERERERERAbETAMREZkVAUCh56br1C5HjhxB37594e3tDYlEgh07dpRZ/9ChQ5BIJBpbcnKyWr0VK1bAz88P1tbWCAkJwe+//65jZERERERERERkDphIJ6qi8ooKcezmDfx86R/8dvM68ooKTR0SkdnKzs5G8+bNsWLFCp3aXbx4EUlJSarNw8NDtW/Tpk2IiIjArFmzcOrUKTRv3hxhYWFITU01dPhERGZFoQD++APYuhXYvRtISzN1RERERERE+tN5apdvv/0Ww4YNg1wuVysvKCjAxo0bMXLkSIMFR0QVE5t4Bd/9dRpJWQ+hEAJSiQSe9vZ4pWkQugXUM3V4RGVSCAkUQqL3MXTRs2dP9OzZU+fzeHh4wNnZWeu+xYsXY8KECRgzZgwAIDo6Grt378aaNWvw7rvv6nwuQ2E/TkTGdPYsMG8ecP48kJ+vLHN1BYYMAf7v/wArK9PGR0RERERUUTqPSB8zZgwyMjI0yh8+fKhKFhCR6fx6/RqWHo9DclYWPO3s4evkDE87e6RlZ+Oz3+Nw8NpVU4dIVCYBqUG2yhAUFISaNWuiW7du+O2331TlBQUFiI+PR2hoqKpMKpUiNDQUcXFxlRJbadiPE5GxXL0KTJ0KnDoFuLgA9eoB/v5AYSGwahWwZImpIyQiIiIiqjidMw1CCEgkmiP9bt26BScnJ4MERUQVU6RQ4PuzZ5BXVIjajo6wkskAAFYyGWo5OKKguBgbz55BYXGxiSMlqhyZmZlqW37J8Eg91axZE9HR0di6dSu2bt0KHx8fdO7cGadOnQIA3L17F8XFxfD09FRr5+npqTGPemVjP05ExvL998DNm0BAAGBvryyTyQBPT8DJSTnVy7VrJg2RiIiIiKjCyj21S4sWLVSLqXXt2hUWFv81LS4uRmJiInr06GGUIImofP65dxfXMh7A3dZO6343W1vczMhAwr27aOrhqbUOkakphHLT9xgA4OPjo1Y+a9YszJ49W7+DAwgMDERgYKDqcbt27XDlyhUsWbIE3333nd7HNwb240RkTPn5wL59gKMjINUyVMfVFbhyBTh8GPDzq/TwiIiIiIj0Vu5Eev/+/QEAp0+fRlhYGOxLhpkAsLKygp+fHwYNGmTwAImo/LILC1BUrFCNRH+cXGaBQoUCWQYalUtkDAKAgH5zpJfk4W/evAlHR0dV+ePzghtS69atcfToUQCAm5sbZDIZUlJS1OqkpKTAy8vLaDGUhf04ERlTTo4ymV7a26xUqtwePqzcuIiqqxUrVmDhwoVITk5G8+bNsWzZMrRu3brU+ps3b8b777+Pa9euoX79+liwYAF69eoFACgsLMSMGTPw888/4+rVq3ByckJoaCg+/vhjeHt7V9ZTIiIiMrlyJ9JnzZoFAPDz88OwYcNgbW1ttKDIPAkhcCMjA3nFRfC0s4OztY2pQ6LHuNnawdrCAjmFhXDQ8kk2p7AA1hYWcLfTPmKdqKpxdHRUS6Qb0+nTp1GzZk0AysR0cHAwYmNjVQlshUKB2NhYhIeHV0o8j2M/TkZx6xaQng7UqAH8+/tP1ZODA+DsDKSkKOdHf1xxMSCEcpoXIjKuTZs2ISIiAtHR0QgJCUFUVBTCwsJw8eJFeHh4aNQ/duwYRowYgfnz56NPnz7YsGED+vfvj1OnTqFJkybIycnBqVOn8P7776N58+Z48OABpkyZgn79+uHkyZMmeIZERESmUe5EeolRo0YBUC6klpqaCoVCoba/Tp06homMzMrRG9ex9cJZXLl/H0VCATtLK3T09cOIJs3hZmtr6vDoX35Ozmji4YkTt2/BzsoK0kfmQVYIgbScHLTy9kaAi6sJoyQqmxASCKHniHQd22dlZeHy5cuqx4mJiTh9+jRcXV1Rp04dREZG4vbt2/j2228BAFFRUfD390fjxo2Rl5eHr776CgcOHMC+fftUx4iIiMCoUaPQqlUrtG7dGlFRUcjOzjb5gp7sx8kg/voL+PJL4PffgYIC5TDk9u2BV18FHpn2iKoPCwtgwABg8WLtI9OTkgB3d6BrV9PER1SdLF68GBMmTFBdc0RHR2P37t1Ys2YN3n33XY36S5cuRY8ePTBt2jQAwIcffoiYmBgsX74c0dHRcHJyQkxMjFqb5cuXo3Xr1rhx4wavHYiIqNrQOZF+6dIljB07FseOHVMrL1m8rJiLGFY5v1y5hBW/H0duURFq2NjCUipFVkEBtiecR8LdNHzYJRSuNkymmwOJRILRQS1xPSMd1zMewMXaBtYWlsgrKsKDvFx42NlhdFCw1oUGicyFAhIo9JzaRdf2J0+eRJcuXVSPIyIiACiTzmvXrkVSUhJu3Lih2l9QUIA333wTt2/fhq2tLZo1a4b9+/erHWPYsGFIS0vDzJkzkZycjKCgIOzdu1djAdLKxn6c9BYfD0ydCqSmKjOjjo5Abi6wa5cywb58OdCwoamjJBMYOlQ5B3p8vPLXwtERKCoC0tIAGxtg8mTlXOlEZDwFBQWIj49HZGSkqkwqlSI0NBRxcXFa28TFxamufUqEhYVhx44dpZ4nIyMDEokEzs7OhgibiIjoqaBzIn306NGwsLDArl27ULNmTSbkqrjM/HysPX0KRQoFfJ2cVeVyCws4yuVIuHsXP168gDFBwaYLktQ8U8MNH3Tuik3n/sYfd27jQV4urGQydPGri+FNmqKeaw1Th0hkdjp37gwhSl/hdO3atWqP3377bbz99ttPPG54eLjJpnIpDftx0osQyiHHaWlA/fpAye+PjY1yXo9Ll5SJ9BUrTBommYaLi/LH/9VXwO7dwL17ypHqwcHAyJFAt26mjpCo6rt79y6Ki4s1vrj39PREQkKC1jbJycla6ycnJ2utn5eXh3feeQcjRowodQq9/Px85D+yLlNmZiYA5XzrhYWF5X4+VPlKfj78ORHpr6ioSPUv/6bMly4/G50T6adPn0Z8fDwaNGiga1N6Ch2/dQN3c3JQy0HzAslSJoOtpSVir17Fi02aQ26h868TGUmAaw1Mf64z0rKzkZGfB0e5HB529k9uSGQGTDG1S3XCfpz0cuYMcP68cj70x7+EkUqVE2D//juQmAj4+5smRjIpV1fg7beVs/wkJSmnePHz0/x1IaKnU2FhIYYOHQohBFauXFlqvfnz52POnDka5fv27YMtpwZ9Kjw+nQ8R6e5mFgBY4Pjx47h91tTRUGlycnLKXVfnzGejRo1w9+5dXZvRU+pebi4kACykUq37bS0skVWYj4cFBUykmyF3OzsuLEpPHcW/m77HIO3Yj5NeUlOV07jUqqV9v50d8OCBsh4T6dWak5NyI6LK5ebmBplMhpSUFLXylJQUeHl5aW3j5eVVrvolSfTr16/jwIEDZS7oHhkZqTZdTGZmJnx8fNC9e/dKWwieKqawsBAxMTHo1q0bLC0tTR0O0VPtrxv3gb9Pok2bNmheh/PbmauSu6bKQ+fM54IFC/D2229j3rx5aNq0qcYbKzvFqsXO0hICyoUqpVqGEuUXF6tGphMRkfljP056cXAALC2Vq0laW2vuz88HrKyU9YiIqNJZWVkhODgYsbGx6N+/PwBAoVAgNja21Onm2rZti9jYWEydOlVVFhMTg7Zt26oelyTRL126hIMHD6JGjbKni5TL5ZA/vuowAEtLSyZnnxL8WRHpz+LfAacWFhb8ezJjuvxsdE6kh4aGAgC6du2qVs5Fyqqm1rVqw8HKCg9yc1HjsVvwFEIgsyAfLwQ2YCKdiAyGU7sYF/tx0kvLlsp5Oq5dU/77KCGA5GSgRQuAUwcREZlMREQERo0ahVatWqF169aIiopCdnY2xowZAwAYOXIkatWqhfnz5wMApkyZgk6dOmHRokXo3bs3Nm7ciJMnT2LVqlUAlEn0wYMH49SpU9i1axeKi4tV86e7urrCysrKNE+UiIiokumcSD948KAx4iAz5WXvgL6BDfD932dQnK1ADRtbyKRS5BQWIjU7C972DnghsKGpwySiKoSJdONiP056sbICJk4EZs0Crl9XzpVuZQXk5SknxHZwUE6OXcqUcEREZHzDhg1DWloaZs6cieTkZAQFBWHv3r2qBUVv3LgB6SPv0+3atcOGDRswY8YMTJ8+HfXr18eOHTvQpEkTAMDt27exc+dOAEBQUJDauQ4ePIjOnTtXyvMiIiIyNZ0T6Z06dTJGHGTGXmnWAlZSGXb+k4BbD5XzBlnJZGjs4YnXWrWGn7OLiSMkIqLyYj9OeuvTB1AogJUrgZs3lf8vkynnRJ88GeDvGBGRyYWHh5c6lcuhQ4c0yoYMGYIhQ4Zore/n5wchhCHDIxPKyclBQkJCqfuzcvNx7O8rcHE7CXsbzel5SjRo0IALxxJRtVOh1SF//fVXfPHFF7h69So2b96MWrVq4bvvvoO/vz86dOhg6BjJxCykUrzULAh9nmmA08lJyC8uQk0HRzR299A6bzoRkT4UkEAB/d5b9G1f1bEfJ71IJMALLwDduwPHjwPp6YCbGxASohydTkRERGYrISEBwcHBT6z3yRP2x8fHo2XLloYJiojoKaFzIn3r1q145ZVX8NJLL+HUqVPIz88HAGRkZGDevHn4+eefDR4kmQcna2t08vM3dRhEVMUJodz0PQZpx36cDMbGBujSxdRREBERkQ4aNGiA+Pj4UvdfTEpHxOa/sXhIUwTWdC7zOERE1Y3OifSPPvoI0dHRGDlyJDZu3Kgqb9++PT766CODBkdERESGxX6ciIiIqPqytbUtcyS59Po9yH/NRcMmzRHkW6MSIyMiMn86J9IvXryIjh07apQ7OTkhPT3dEDEREVE1JgwwtYvg1C6lYj9OREREREREpDvpk6uo8/LywuXLlzXKjx49irp16xokKCIiqr6EkBhkI+3YjxMRERERERHpTucR6RMmTMCUKVOwZs0aSCQS3LlzB3FxcXjrrbfw/vvvGyNGIiIiMhD240RERERERPrLyclBQkJCqfsvJqUjP/kyLpy1geKec6n1GjRoAFtbWyNESIamcyL93XffhUKhQNeuXZGTk4OOHTtCLpfjrbfewuuvv26MGImIqBoR/276HoO0Yz9ORERERESkv4SEBAQHBz+x3ovflL0/Pj6+zLULyHzonEiXSCR47733MG3aNFy+fBlZWVlo1KgR7O3tjREfEZFZKSoswo0Lt1GYXwiPOm5w8XQ2dUhVjkJIoNBzahZ921dl7MeJiEjNgwfA1auATAYEBgI2NqaOiIiI6KnQoEEDxMfHl7o/Kzcfuw/GoXeXtrC3kZd5HHo66JxIL2FlZYVGjRoZMhYiIrMlhMDRbSewf90RJF9LhaJYARt7a7To2hT9w3syoU5PHfbjRETV3MOHwOefA7t3K5PpUing5QUMGwaMHAlYVPijIhERUbVga2tb5kjywsJCPLibiratW8HS0rISIyNj0fnqKDs7Gx9//DFiY2ORmpoKhUKhtv/q1asGC46IyFz8svYQtkXtghCAs7sjZJYy5GTm4PAPcbh58Q6mfD4BTm6Opg6zSjDEYqFcbLR07MeJiAi5ucCbbwKHDwNOTkDNmoBCAaSmAp9+CiQlAdOnAxL2p0REREQldE6kjx8/HocPH8Yrr7yCmjVrQsKLKyKq4u4lPcDPX+6HhaUFani7qMqd3Bxh52iLxDPXcWRzHPr+L8yEUVYdnCPduNiPExER9u4Fjh4FfHzUp3KpXRu4fx/Ytg3o2xdo1sx0MRIRERGZGZ0T6Xv27MHu3bvRvn17Y8RDRGR2Th84i6wHWahZ11Njn4WVBeS2cvz24x/oNSEUMguZCSIkKj/240REhJ9+Uo421zYfuosLcOkSsG8fE+lEREREj5Dq2sDFxQWurq7GiIWIyCxl3M0EJBJIZdrfMq1t5cjJzEFeTn4lR1Y1CUgMspF27MeJiAh37pS+qKhEolx4NCWlcmMiIiIiMnM6J9I//PBDzJw5Ezk5OcaIh4jI7Ng720EIAaHQPmFIQV4h5LZyWNuWvgo3lZ9CSAyykXbsx4mICG5uQF5e6fsVCqBGjcqLh4iIiOgpoPPULosWLcKVK1fg6ekJPz8/jVVnT506ZbDgiIjMQfPOjbHz81+QcTcTzh5OavuKi4qRm5WLri8/x2ld6KnAfpyIiNCnDxAfD+TnA/LHBgJkZgLW1kDXrqaJjYiIiMhM6ZxI79+/vxHCICIyX56+7ug8vB32rD6AosJiOHs4QWYhRU5mLh6kpMO7Xk10GtLW1GFWHUKi3PQ9BmnFfpyIiNCrF7BzpzKZ7uYGODsDQgB37yoT6f36AcHBpo6SiIiIyKzonEifNWuWMeIgIjJrA17vBVt7Gxz4/ihSb9yFolgBG3s5mndujGFv94dbLd7+bCgKodz0PQZpx36ciIjg6AhERQELFwKHDwNXrijnRnd1BcaOBV5/HZDqPAsoERERUZWmcyK9RHx8PC5cuAAAaNy4MVq0aGGwoEpz5MgRLFy4EPHx8UhKSsL27ds5su5foug6UPAbRPFdSKT2gFVrwKIxJBKOyiQyBJmFDL0mhKLz8Pa4dOoqCvOL4OnrhtrPePPvjJ5K7MeriKtXgX37gORkZWKsY0egZUsmwIjoyTw8lIn0a9eAS5eU7xvNmytHqBMRERGRBp0T6ampqRg+fDgOHToEZ2dnAEB6ejq6dOmCjRs3wt3d3dAxqmRnZ6N58+YYO3YsBg4caLTzPE2EEBA5G4DcbYDIUpZBALk/AlbtAYfXIZHYmDhKoqrD1sEGzTs1NnUYVZqABAL6fTmhb/uqjP14FSEEsGoVsGYNkJ6uHEkqBPDtt0BoKDBnDmBnZ+ooiehp4Oen3IiIiIioTDoPV3r99dfx8OFDnDt3Dvfv38f9+/dx9uxZZGZmYvLkycaIUaVnz5746KOPMGDAAKOe56mSvw/I/R6ABJD5AhZ+gMwPkNgB+bEQ2V+bOEAiIt0IITHIRtqxH68idu4EVqxQJs/r1/9vc3ICdu0CPv3U1BESERERERFVKTon0vfu3YvPP/8cDRs2VJU1atQIK1aswJ49ewwaHJVNiCKI3J0ABCCroRyNBij/lToAUkcg/xBEcapJ4yQiIvPBfrwKKC4G1q0DFArA01O9/3d0BFxcgD17gNu3TRsnERERERFRFaLz1C4KhQKWlpYa5ZaWllAoFAYJylDy8/ORn5+vepyZmWnCaIyg+CZQfBuQuGrfL3FW1ik8B8g8KjU0IqKKEkK56XsM0o79eBVw/bpybvTS5jF2dVXuP3kSqFWrcmMjIiIiIiKqonQekf78889jypQpuHPnjqrs9u3beOONN9C1a1eDBqev+fPnw8nJSbX5+PiYOiQDKwagACSl/RhLpjYoqqR4iIj0Jwy0kXbsx6uAwkLlaHSZTPv+khHqhYWVFxMREREREVEVp3Miffny5cjMzISfnx8CAgIQEBAAf39/ZGZmYtmyZcaIscIiIyORkZGh2m7evGnqkAxL6gVInQBFKSP0RDYgsVbOnV7JCoqLcTo5Cb9ev4ZzqSlQcHgoEZFZYD9eBdSurRx1np6uff/Dh4C1tXLOdDNUUADExQH79gGnTyu/EyAiIiIiIjJ3Ok/t4uPjg1OnTmH//v1ISEgAADRs2BChoaEGD05fcrkccrnc1GEYjURqDyHvCuR8D4g8ZdK8hCgCFHcBq2cBi8r9IH3w2lWsP/MXbj3MRFFxMawsZKjnUgNjglqiRU3vSo2FiJ4+AhII6LdYqL7tqzL241WAnR0wYACwfDmQkwPY2v63r6gISE4G2rUDmjUzXYxaCKFcB3XVKuDaNeWAeWtroFEj4I03gGefNXWEREREREREpdM5kQ4AEokE3bp1Q7du3QwdT5mysrJw+fJl1ePExEScPn0arq6uqFOnTqXGYi4kNkMgiq4ABScBSAGJDYACQOQDFnUhsf8fJJLKSygdvHYVS+J+Q35xMTxs7WAlkyG3qAgX7qZi7q+HMbNTFzTz9Kq0eIjoKSQkEELP9y1921dx7MergDFjgHPngMOHlVO52Nkph3rn5QGBgcDMmf9N8WImdu4E5sxRJtC9vAC5HMjOBk6dAiIigGXLgKAgU0dJRERERESknc5TuwBAbGws+vTpo7olvE+fPti/f7+hY9Nw8uRJtGjRAi1atAAAREREoEWLFpg5c6bRz22uJFI7SBzfg8RhMmDZAJBYAbJakNiNg8RpLiSyyltkLL+oCOvOnEZBcTF8HJ0gt7CARCKBraUl6jg6Iz0vF9//fQaC07wQEZkU+/EqwM4OWLIE+OADoGVL5dBuX19lRvqrrwB/f1NHqCY3F1i5Ujlg3s9PGa5EAtjbA/XqAampwBdfcKFgIiIiIiIyXzqPSP/8888xZcoUDB48GFOmTAEAHD9+HL169cKSJUswadIkgwdZonPnzkzCaiGRWAPWPSGx7mnSOM6kJuN2Zibcbe009kkkEtSwscW5u6m4mZmBOk7OlR8gET0VhNA/mcauonTsx6sQa2tg8GDlZuZOnABu3gRqafl+XyIB3N2BkyeVdXhzAhERERERmSOdE+nz5s3DkiVLEB4eriqbPHky2rdvj3nz5hn1AziZt4f5BSgSCsgttP9ayS0skFmQj8z8/EqOjIieJuLfTd9jkHbsx8kUMjKUi4qWNuW9jY1yjdT0dCbSiYiIiIjIPOk8tUt6ejp69OihUd69e3dkZGQYJCh6Orna2MBSKkNeUZHW/blFhZDLZHCxsankyIiIqAT7cTKFGjUACwvlFO7a5OQoB9i7uVVuXEREREREROWlcyK9X79+2L59u0b5jz/+iD59+hgkKHo6NfHwhK+TM1KzszRu3VcIgfu5uQjyqolaDo4mipCInhpCot9GpWI/TqbQurVy2vY7dzSnXlIogLQ0oH17wNvbNPERERERERE9ic5TuzRq1Ahz587FoUOH0LZtWwDKuVV/++03vPnmm/jss89UdSdPnmy4SMnsWUilGBPUEh//dgTXM9LhZmsHuUyG3KIi3MvNgYedPV5qGmTqMInIzCmEBAo9k+G6tj9y5AgWLlyI+Ph4JCUlYfv27ejfv3+p9bdt24aVK1fi9OnTyM/PR+PGjTF79myEhYWp6syePRtz5sxRaxcYGIiEhASdYjM09uNkClZWwJQpwPTpwJUrgKencgR6djaQkgL4+ACvvmrqKImIiIiIiEqncyJ99erVcHFxwfnz53H+/HlVubOzM1avXq16LJFI+AG8Ggqp7YP3nuuMDX//hUv37yE9rxhyCwu0re2DV5q3QP0aNUwdIhGRhuzsbDRv3hxjx47FwIEDn1j/yJEj6NatG+bNmwdnZ2d8/fXX6Nu3L06cOIEWLVqo6jVu3Bj79+9XPbYoZQ2JysR+nEyla1dg4ULgiy+ACxeAu3eVc6N36waEhwOBgaaOkIiIiIiIqHQ6f6JPTEw0RhxUhbTyroXgmt64+uA+HhYUwNXGBj6OTpBION0CEZWDCVYb7dmzJ3r27Fnu+lFRUWqP582bhx9//BE//fSTWiLdwsICXl5eugVjZOzHyZQ6dgSeew5ISAAyM5Uj0/38TB0VERERERHRk5l+aBxVSRKJBAGuHH1ORLoTkEBAvy/e9G2vK4VCgYcPH8LV1VWt/NKlS/D29oa1tTXatm2L+fPno06dOpUaG5G5kUiAhg1NHQUREREREZFudE6kCyGwZcsWHDx4EKmpqVAoFGr7t23bZrDgiIiI9JGZman2WC6XQy6XG/w8n376KbKysjB06FBVWUhICNauXYvAwEAkJSVhzpw5eO6553D27Fk4ODgYPIbyYj9OREREREREpDudE+lTp07FF198gS5dusDT05PTdRARkUEJodz0PQYA+Pj4qJXPmjULs2fP1u/gj9mwYQPmzJmDH3/8ER4eHqryR6eKadasGUJCQuDr64sffvgB48aNM2gMumA/TkRERERERKQ7nRPp3333HbZt24ZevXoZIx4iIiKDuXnzJhwdHVWPDT0afePGjRg/fjw2b96M0NDQMus6OzvjmWeeweXLlw0ag67YjxMRERERERHpTqprAycnJ9StW9cYsRARERmUo6Oj2mbIRPr333+PMWPG4Pvvv0fv3r2fWD8rKwtXrlxBzZo1DRZDRbAfJyIiqvpWrFgBPz8/WFtbIyQkBL///nuZ9Tdv3owGDRrA2toaTZs2xc8//6y2XwiBmTNnombNmrCxsUFoaCguXbpkzKdARERkdnROpM+ePRtz5sxBbm6uMeIhIqJqTgiJQTZdZGVl4fTp0zh9+jQAIDExEadPn8aNGzcAAJGRkRg5cqSq/oYNGzBy5EgsWrQIISEhSE5ORnJyMjIyMlR13nrrLRw+fBjXrl3DsWPHMGDAAMhkMowYMUL/F0kP7MeJiIiqtk2bNiEiIgKzZs3CqVOn0Lx5c4SFhSE1NVVr/WPHjmHEiBEYN24c/vzzT/Tv3x/9+/fH2bNnVXU++eQTfPbZZ4iOjsaJEydgZ2eHsLAw5OXlVdbTIiIiMjmdE+lDhw7FgwcP4OHhgaZNm6Jly5ZqGxER0dPm5MmTaNGiBVq0aAEAiIiIQIsWLTBz5kwAQFJSkiqpDgCrVq1CUVERJk2ahJo1a6q2KVOmqOrcunULI0aMQGBgIIYOHYoaNWrg+PHjcHd3r9wn9xj240RERFXb4sWLMWHCBIwZMwaNGjVCdHQ0bG1tsWbNGq31ly5dih49emDatGlo2LAhPvzwQ7Rs2RLLly8HoByNHhUVhRkzZuCFF15As2bN8O233+LOnTvYsWNHJT4zIiIi09J5jvRRo0YhPj4eL7/8MhcpIyKiKqFz584QZaxwunbtWrXHhw4deuIxN27cqGdUxsF+nIiIqOoqKChAfHw8IiMjVWVSqRShoaGIi4vT2iYuLg4RERFqZWFhYaokeWJiIpKTk9XWg3FyckJISAji4uIwfPhwjWPm5+cjPz9f9TgzMxMAUFhYiMLCwgo/PzK+oqIi1b/8WRHpp+RviH9L5k2Xn4/OifTdu3fjl19+QYcOHXRtSkRE9EQVmZpF2zFIO/bjREREVdfdu3dRXFwMT09PtXJPT08kJCRobZOcnKy1fnJysmp/SVlpdR43f/58zJkzR6N83759sLW1Ld+TIZO4mQUAFjh+/Dhun31SbSIqj5iYGFOHQGXIyckpd12dE+k+Pj5wdHTUtRkREVG5CKHc9D0Gacd+nIiIiIwtMjJSbZR7ZmYmfHx80L17d16HmLm/btwH/j6JNm3aoHkdV1OHQ/RUKywsRExMDLp16wZLS0tTh0OlKLlrqjx0TqQvWrQIb7/9NqKjo+Hn56drcyIiIjIh9uNERERVl5ubG2QyGVJSUtTKU1JS4OXlpbWNl5dXmfVL/k1JSUHNmjXV6gQFBWk9plwuh1wu1yi3tLRkMsnMWVhYqP7lz4rIMPjeZ950+dnovNjoyy+/jIMHDyIgIAAODg5wdXVV24iIiMh8sR8nIiKquqysrBAcHIzY2FhVmUKhQGxsLNq2bau1Tdu2bdXqA8ppCErq+/v7w8vLS61OZmYmTpw4UeoxiYiIqiKdR6RHRUUZIQwiIqJ/CYly0/cYpBX7cSIioqotIiICo0aNQqtWrdC6dWtERUUhOzsbY8aMAQCMHDkStWrVwvz58wEAU6ZMQadOnbBo0SL07t0bGzduxMmTJ7Fq1SoAgEQiwdSpU/HRRx+hfv368Pf3x/vvvw9vb2/079/fVE+TiIio0umcSB81apQx4iAiIqJKwH6ciIioahs2bBjS0tIwc+ZMJCcnIygoCHv37lUtFnrjxg1Ipf/dnN6uXTts2LABM2bMwPTp01G/fn3s2LEDTZo0UdV5++23kZ2djYkTJyI9PR0dOnTA3r17YW1tXenPj4iIyFR0TqQDQHFxMXbs2IELFy4AABo3box+/fpBJpMZNDgiIqp+uNio8bEfJyIiqtrCw8MRHh6udd+hQ4c0yoYMGYIhQ4aUejyJRIIPPvgAH3zwgaFCJCIieuronEi/fPkyevXqhdu3byMwMBAAMH/+fPj4+GD37t0ICAgweJBERFSNiH83fY9BWrEfJyIiIiIiItKdzouNTp48GQEBAbh58yZOnTqFU6dO4caNG/D398fkyZONESMREREZCPtxIiIiIiIiIt3pPCL98OHDOH78OFxdXVVlNWrUwMcff4z27dsbNDgiIqp+BCQQ0G+xUH3bV2Xsx4mIiIiIiIh0p3MiXS6X4+HDhxrlWVlZsLKyMkhQRERUjXFqF6NiP05ERERERESkO52ndunTpw8mTpyIEydOQAgBIQSOHz+O1157Df369TNGjERERGQg7MeJiIiIiIiIdKdzIv2zzz5DQEAA2rZtC2tra1hbW6N9+/aoV68eli5daowYiYioOhEG2kgr9uNEREREREREutN5ahdnZ2f8+OOPuHz5Mi5cuAAAaNiwIerVq2fw4IiIiMiw2I8TERERERER6U6nRHpmZibs7e0hlUpRr1491YduhUKBzMxMODo6GiVIIiIi0h/7cSIiIqKqL/FuNrLziyrU9kpatupfCwudx17CTm4Bfze7Cp2biMjclftdcfv27XjnnXdw+vRp2Nraqu3Lzc3Fs88+i08//RR9+/Y1eJBERFSdSP7d9D0GPYr9OBEREVHVl3g3G10+PaT3cd7c8neF2x58qzOT6URUJZU7kb5y5Uq8/fbbGh++AcDOzg7vvPMOli9fzg/gRFQuQghIJEx2khaGmOOcc6RrYD9ORFR+4t9+hJcqRPS0KRmJHjUsCPU87HVvn5uPXYfi0KdzW9jZyHVqezk1C1M3na7waHgiInNX7kT62bNn8fnnn5e6v2PHjpgxY4ZBgiKiqinpagqObj+B+H1nkJ9XAJ9Ab7Tv3xqtujeHzEJm6vCIqjT240REZRMC+PVXYNs24M8/AQsLoGNHYOBAoGlTU0dHRKSbeh72aFLLSed2hYWFSHYHWvq6wNLS0giRERE9vcqdSH/w4AGKikr/VrGwsBAPHjwwSFBEVPVc/OMyVr39He4nPYC1vTUsLGQ4fywBF47/g4QTl/Dy+4OZTCcljkg3CvbjRESlEwL4/HPgyy+B/HzAwQFQKIDvvwf27AFmzQJ69jR1lERERERkStLyVvTz88PJkydL3X/y5En4+voaJCgiqlrycvLxzaxNSE/NQK16NeHm7QpnDyfUrOsFBxd7HN12AnE/lf7+QtWNxEAbPYr9OBFR6eLigK++AqytgXr1AE9PoGZN5f/n5ADz5gFJSaaOkoiIiIhMqdyJ9IEDB+K9995DSkqKxr7k5GTMmDEDgwYNMmhwRFQ1/HXoHFKup8HDxw0SqXqC087JFkII/Lr1OITgMGIiY2E/TkRUuh9/BPLyAHd39XKJBPDxAdLSlCPTiYiIiKj6KvfULu+++y5+/PFH1K9fHy+//DICAwMBAAkJCVi/fj18fHzw7rvvGi1QInp63bmcDCEACyvtbzl2znZIupqCvOw82NjbVHJ0ZG6E+G+RN32OQerYjxMRle7MGUDLWswAAKlUmVC/eLFyYyIiIiIi81LuRLqDgwN+++03REZGYtOmTap5VJ2dnfHyyy9j7ty5cHBwMFqgRPT0klnIysxsKooVkMqknCOdlDhHulGwHyciKp2VlXJO9NIIAcjllRcPEREREZmfcifSAcDJyQmff/45VqxYgbt370IIAXd3d0gknIuWiEoX+GwALOWWyM3Kg429tdo+IQSy0rPRrm8rWFlbmShCouqB/TgRkXadOwPR0cpkuvSxyS8LCpRlrVubJDQiIiIiMhPlniP9URKJBO7u7vDw8OCHbyJ6ovrBdRHYuh7u3r6PvOx8VbmiWIG0m/dg52iDjkPbmTBCMitCYpiNSsV+nIhIXf/+ysVFr10Dior+K8/PV5Y1aAB06WKi4IiIiIjILFQokU5EpAupVIqxc0egcftApKdl4NY/d3Dr0h0kXU2BrYMNXpoxGIGtAkwdJpkJiYE2IiKi8vL3B+bPB7y9lYnzS5eAf/4Bbt8GmjUDPv0UsLMzdZREREREZEo6Te1CRFRRzu5OiFj1Gi4c/wfn4/5BYX4RPHzd0CosCC4eTqYOj4iIiKq5tm2BLVuAmBggIQGQyYDgYKBjR8Da+sntiYiIiKhqYyKdiCqNzEKGJh0aokmHhqYOhcwZFxslIiITcXICBg82dRREREREZI44tQsRERERERERERERURnKNSL9s88+K/cBJ0+eXOFgiIiIAHBEuYGxHyciIiIiIiLST7kS6UuWLCnXwSQSCT+AExERmRn240RERERERET6KVciPTEx0dhxEBERkZGwHyciIiIiIiLSDxcbJSIi88LFRomIiIiIiIjIzFQokX7r1i3s3LkTN27cQEFBgdq+xYsXGyQwIiKqpphINzr240RERERERES60TmRHhsbi379+qFu3bpISEhAkyZNcO3aNQgh0LJlS2PESERERAbCfpyIiIiIiIhId1JdG0RGRuKtt97C33//DWtra2zduhU3b95Ep06dMGTIEGPESERE1YrEQBtpw36ciIiIiIiISHc6J9IvXLiAkSNHAgAsLCyQm5sLe3t7fPDBB1iwYIHBAyQiompGGGgjrdiPExEREREREelO50S6nZ2daj7VmjVr4sqVK6p9d+/eNVxkREREZHDsx4mIiIiIiIh0p3MivU2bNjh69CgAoFevXnjzzTcxd+5cjB07Fm3atDF4gEREVM2YYET6kSNH0LdvX3h7e0MikWDHjh1PbHPo0CG0bNkScrkc9erVw9q1azXqrFixAn5+frC2tkZISAh+//133QIzAvbjRERERERERLrTOZG+ePFihISEAADmzJmDrl27YtOmTfDz88Pq1asNHiAREZGxZWdno3nz5lixYkW56icmJqJ3797o0qULTp8+jalTp2L8+PH45ZdfVHU2bdqEiIgIzJo1C6dOnULz5s0RFhaG1NRUYz2NcmE/TkRERERERKQ7C10b1K1bV/X/dnZ2iI6ONmhAREREla1nz57o2bNnuetHR0fD398fixYtAgA0bNgQR48exZIlSxAWFgZAmbCeMGECxowZo2qze/durFmzBu+++67hn0Q5sR8nIiIiIiIi0p3OifQSJ0+exIULFwAAjRo1QnBwsMGCIiKi6ksilJu+xwCAzMxMtXK5XA65XK7fwQHExcUhNDRUrSwsLAxTp04FABQUFCA+Ph6RkZGq/VKpFKGhoYiLi9P7/IbAfpyIiIiIiIio/HROpN+6dQsjRozAb7/9BmdnZwBAeno62rVrh40bN6J27dqGjpGIiKoVyb+bvscAfHx81EpnzZqF2bNn63lsIDk5GZ6enmplnp6eyMzMRG5uLh48eIDi4mKtdRISEvQ+vz7YjxMRERERERHpTuc50sePH4/CwkJcuHAB9+/fx/3793HhwgUoFAqMHz/eGDESERFVyM2bN5GRkaHaHh0hXl2xHyciIiIiIiLSnc6J9MOHD2PlypUIDAxUlQUGBmLZsmU4cuSIQYMjIqJqSBhoA+Do6Ki2GWJaFwDw8vJCSkqKWllKSgocHR1hY2MDNzc3yGQyrXW8vLwMEkNFsR8nIiKquu7fv4+XXnoJjo6OcHZ2xrhx45CVlVVmm7y8PEyaNAk1atSAvb09Bg0apHYN89dff2HEiBHw8fGBjY0NGjZsiKVLlxr7qRAREZkdnRPpPj4+KCws1CgvLi6Gt7e3QYIiIqJqzICJdGNp27YtYmNj1cpiYmLQtm1bAICVlRWCg4PV6igUCsTGxqrqmAr7cSIioqrrpZdewrlz5xATE4Ndu3bhyJEjmDhxYplt3njjDfz000/YvHkzDh8+jDt37mDgwIGq/fHx8fDw8MC6detw7tw5vPfee4iMjMTy5cuN/XSIiIjMis5zpC9cuBCvv/46VqxYgVatWgFQLlg2ZcoUfPrppwYPkIiIyNiysrJw+fJl1ePExEScPn0arq6uqFOnDiIjI3H79m18++23AIDXXnsNy5cvx9tvv42xY8fiwIED+OGHH7B7927VMSIiIjBq1Ci0atUKrVu3RlRUFLKzszFmzJhKf36PYj9ORERUNV24cAF79+7FH3/8oerjly1bhl69euHTTz/V+oV5RkYGVq9ejQ0bNuD5558HAHz99ddo2LAhjh8/jjZt2mDs2LFqberWrYu4uDhs27YN4eHhxn9iREREZkLnRPro0aORk5ODkJAQWFgomxcVFcHCwgJjx45V62Tv379vuEiJiKhaMNxSo+V38uRJdOnSRfU4IiICADBq1CisXbsWSUlJuHHjhmq/v78/du/ejTfeeANLly5F7dq18dVXXyEsLExVZ9iwYUhLS8PMmTORnJyMoKAg7N27V2MB0srGfpyIiKhqiouLg7OzsyqJDgChoaGQSqU4ceIEBgwYoNEmPj4ehYWFCA0NVZU1aNAAderUQVxcHNq0aaP1XBkZGXB1dS01lvz8fOTn56seZ2ZmAgAKCwu13hlHhlNUVKT6tyKvdUmbirTV99xEVY0+f09UeXT5+eicSI+KitK1CRERUfkZYmoWHdt37twZQpTeaO3atVrb/Pnnn2UeNzw83OxGarEfJyIiqpqSk5Ph4eGhVmZhYQFXV1ckJyeX2sbKygrOzs5q5Z6enqW2OXbsGDZt2qR2J97j5s+fjzlz5miU79u3D7a2tk94JqSPm1kAYIGjR4/iun3FjxMTE2OycxNVNRX5e6LKk5OTU+66OifSR40apWsTIiIiMhPsx4mIiJ4u7777LhYsWFBmnQsXLlRKLGfPnsULL7yAWbNmoXv37qXWi4yMVN3hByhHpPv4+KB79+5wdHSsjFCrrXN3MvHp38fRoUMHNPbW/bUuLCxETEwMunXrBktLy0o9N1FVo8/fE1WekrumyqNcifTMzExVZ/ekgxu7U1yxYgUWLlyI5ORkNG/eHMuWLUPr1q2Nek4iIqpEJhiRXtWxHyciInp6vfnmmxg9enSZderWrQsvLy+kpqaqlRcVFeH+/fvw8vLS2s7LywsFBQVIT09XG5WekpKi0eb8+fPo2rUrJk6ciBkzZpQZj1wuh1wu1yi3tLRkMsnISqbus7Cw0Ou1rsjPylDnJqpq+N5n3nT52ZQrke7i4oKkpCR4eHjA2dkZEonm7LNCCEgkEhQXF5c/Uh1t2rQJERERiI6ORkhICKKiohAWFoaLFy9q3MJGRERESuzHiYiInl7u7u5wd3d/Yr22bdsiPT0d8fHxCA4OBgAcOHAACoUCISEhWtsEBwfD0tISsbGxGDRoEADg4sWLuHHjBtq2bauqd+7cOTz//PMYNWoU5s6da4BnRURE9PQpVyL9wIEDqoVEDh48aNSAyrJ48WJMmDABY8aMAQBER0dj9+7dWLNmDd59912TxUVERGTO2I8TERFVfQ0bNkSPHj0wYcIEREdHo7CwEOHh4Rg+fDi8vb0BALdv30bXrl3x7bffonXr1nBycsK4ceMQEREBV1dXODo64vXXX0fbtm1VC42ePXsWzz//PMLCwhAREaGaO10mk5UrwU9ERFRVlCuR3qlTJ63/X5kKCgoQHx+PyMhIVZlUKkVoaCji4uK0tiltpXAiIjJjnNrF4NiPExERVQ/r169HeHg4unbtCqlUikGDBuGzzz5T7S8sLMTFixfVFlZbsmSJqm5+fj7CwsLw+eefq/Zv2bIFaWlpWLduHdatW6cq9/X1xbVr1yrleREREZkDqa4Nvv76a2zevFmjfPPmzfjmm28MEpQ2d+/eRXFxMTw9PdXKy1pNfP78+XByclJtPj4+RouPiIgMRBhoI63YjxMREVVdrq6u2LBhAx4+fIiMjAysWbMG9vb2qv1+fn4QQqBz586qMmtra6xYsQL3799HdnY2tm3bpjY/+uzZsyGE0NiYRCcioupG50T6/Pnz4ebmplHu4eGBefPmGSQoQ4mMjERGRoZqu3nzpqlDIiIiMin240RERERERES6K9fULo+6ceMG/P39Ncp9fX1x48YNgwSljZubG2QyGVJSUtTKta0mXqK0lcKJiMh8SYRy0/cYpB37cSIiIiIiIiLd6Twi3cPDA2fOnNEo/+uvv1CjRg2DBKWNlZUVgoODERsbqypTKBSIjY1VW02ciIiISsd+nIiIiIiIiEh3Oo9IHzFiBCZPngwHBwd07NgRAHD48GFMmTIFw4cPN3iAj4qIiMCoUaPQqlUrtG7dGlFRUcjOzsaYMWOMel4iIqKqgv04ERERERERke50TqR/+OGHuHbtGrp27QoLC2VzhUKBkSNHGn1u1WHDhiEtLQ0zZ85EcnIygoKCsHfvXo2Fy4iI6OnFqV2Mi/04ERERERERke50TqRbWVlh06ZN+PDDD/HXX3/BxsYGTZs2ha+vrzHi0xAeHo7w8PBKORcREZmA+HfT9xikFftxIiIiIiIiIt3pnEgv8cwzz+CZZ54xZCxERERUSdiPExEREREREZWfzon04uJirF27FrGxsUhNTYVCoVDbf+DAAYMFR0RERIbFfpyIiIiIiIhIdzon0qdMmYK1a9eid+/eaNKkCSQSiTHiIiKiaopzpBsX+3EiIiIiIiIi3emcSN+4cSN++OEH9OrVyxjxEBERkRGxHyciIiIiIiLSnVTXBlZWVqhXr54xYiEiIiIjYz9OREREREREpDudE+lvvvkmli5dCiF43zwRERmBMNBGWrEfJyIiIiIiItKdzlO7HD16FAcPHsSePXvQuHFjWFpaqu3ftm2bwYIjIiIiw2I/TkRERERERKQ7nRPpzs7OGDBggDFiISIiIiNjP05ERERERESkO50T6V9//bUx4iAiIlIyxNQsnLWkVOzHiYiIiIiIiHSn8xzpRERERERERERERETVSblGpLds2RKxsbFwcXFBixYtIJFISq176tQpgwVHRETVEEekGxz7cSIiIiIiIiL9lCuR/sILL0AulwMA+vfvb8x4iIiompMAkOiZCC89TVw9sR8nIiIiIiIi0k+5EumzZs0CABQXF6NLly5o1qwZnJ2djRkXERERGQj7cSIiIiIiIiL96DRHukwmQ/fu3fHgwQNjxUNERERGwn6ciIiIiIiIqGJ0Xmy0SZMmuHr1qjFiISIigkQYZiPt2I8TERERERER6U7nRPpHH32Et956C7t27UJSUhIyMzPVNiIiIjJf7MeJiIiIiIiIdFeuOdIf1atXLwBAv379IJH8t5ybEAISiQTFxcWGi46Iqo37yQ9wfNcpnD7wN/JzC1CnYS207dsKDds8o/ZeQ9WA+HfT9xikFftxIqKKKyoCDh4Edu0Crl0DXFyAHj2Anj0BJydTR0dERERExqRzIv3gwYPGiIOIqrHEszfwxVvfIuVaKizllpBZyHAz4Tb+2Hsa3Ud1xoDJvZhMJzIQ9uNERBVTUAC8/z7w88/KhLqNDXD5MnD8OLBtG7BkCVCrlqmjJCIiIiJj0SmRLoSAt7c3CgoKEBgYCAsLnfPwRERqCvIK8PV73yP1ehq8A7wglf0341TG3YfYu+YAfBrUwrNhQaYLkqiKYD9ORFRx69YBO3cCHh6Ao+N/5QUFwF9/AR98AERHA/zun4iIiKhqKvcc6YmJiWjWrBkaNGiAZs2aISAgACdPnjRmbERUDfx1+DxuX06GRx03tSQ6ADi5OaC4qBhHtx03UXRkEsJAG6lhP05EVHH5+cCWLYBcrp5EBwArK8DLCzh5Ejh/3jTxEREREZHxlTuRPm3aNBQVFWHdunXYsmULateujVdffdWYsRFRNXDzwm0IhQKWckut++2c7HDt7E3k5+ZXcmRkMkykGwX7cSKiirt5E0hOVs6Jro2DA5CTw0Q6ERERUVVW7nu6jx49ii1btqBDhw4AgDZt2qB27drIzs6GnZ2d0QIkoqpNIpWUmfMUQkAilUAiLff3fkSkBftxIqKKk0qVU7aIMi5ahFDWIyIiIqKqqdyXeqmpqahfv77qcc2aNWFjY4PU1FSjBEZE1UNAkB8sLGXIzy3Quj87IxuBrerBqpQR60RUPuzHiYgqrk4d5Xbvnvb96enKUelBQZUZFRERERFVpnIn0iUSCbKyspCZmanapFIpHj58qFZGRKSLxu0C4d+0DtJu3kVhQZGqXAiBu3fuw9pWjk5D25kwQqpsEmGYjdSxHyciqjgLC2DECOWo87t31Uem5+QAaWlA585AQIDJQiQiIiIiIyv31C5CCDzzzDMaZS1atFD9v0QiQXFxsWEjJKIqTWYhw7h5L+GLt77F9fM3IYSAVCpFcVEx7J3tMGBKbzRuF2jqMImeeuzHiYj0M3iwcq70DRuAy5eVyfWiIuW/nToB06ebOkIiIiIiMqZyJ9IPHjxozDiIqBrz9HXHtLWT8Gfs3zh3NAH5eQWoVb8mQnq1hHeAl6nDo8pmiMVCK9h+xYoVWLhwIZKTk9G8eXMsW7YMrVu31lq3c+fOOHz4sEZ5r169sHv3bgDA6NGj8c0336jtDwsLw969eysWoB7YjxMR6UcqBSIigNBQ4JdfgBs3AGdnoEsX4LnnACsrU0dIRERERMZU7kR6p06djBkHEVVzNnbWaNfvWbTr96ypQyETM8TULBVpv2nTJkRERCA6OhohISGIiopCWFgYLl68CA8PD43627ZtQ0HBf3P737t3D82bN8eQIUPU6vXo0QNff/216rFcLtc9OANgP05EpD+JBGjeXLkRERERUfXCdeWJiIgALF68GBMmTMCYMWPQqFEjREdHw9bWFmvWrNFa39XVFV5eXqotJiYGtra2Gol0uVyuVs/FxaUyng4RERERERERGRAT6URkchl3M3HnSjKy0rNNHQpVMY8uopmZmYn8/Hyt9QoKChAfH4/Q0FBVmVQqRWhoKOLi4sp1rtWrV2P48OGws7NTKz906BA8PDwQGBiI//3vf7h3717FnxAREZmEEMCtW8DVq0BenqmjISIiIiJTKPfULkREhnb9wi3s+/ogzvx6AUUFRbCysULL0KboMeZ5ePq6l9quqLAI+Tn5sLazhsxCVokRU6Uw4BzpPj4+asWzZs3C7NmzNarfvXsXxcXF8PT0VCv39PREQkLCE0/3+++/4+zZs1i9erVaeY8ePTBw4ED4+/vjypUrmD59Onr27Im4uDjIZPzdJSIyd0IA+/YB69cDFy4ACgVQowYwYAAwciTw2HenpcrLAwoLAXt75fQwRERERPT0YSKdiEzi8ulErHxjLe4lPYBTDQfYOdkiPycfB7//DRd/v4zXV4xHTX/1pObd2/dwcNMxnNgdj4KcAtg62aJdv2fRaWhbOLk5muiZkDm7efMmHB3/+90w1vzkq1evRtOmTTUWJh0+fLjq/5s2bYpmzZohICAAhw4dQteuXY0SCxERGc769cCiRUB+PuDmBshkwN27wNKlwJkzwJIlgLV16e3j44FNm4DfflMm4evUAQYPBvr3BywtK+1pEBEREZEBcGoXIqp0CoUCmz/diQfJ6ahdryYcazjAxt4azh5OqFXPC3eupGDnir1qbZKupmDJq19g9xcxyMnIhdRCiozUDGz/bDeW/t+XeJCSbponQ2bN0dFRbSstke7m5gaZTIaUlBS18pSUFHh5eZV5juzsbGzcuBHjxo17Yjx169aFm5sbLl++XP4nQUREJnH7NrBiBSCVAgEBgJOTckR5rVrK7fBh4McfS2+/Zw/wf/8H7NwJFBcrj3PuHDB7NjBzJlBUVGlPhaqR+/fv46WXXoKjoyOcnZ0xbtw4ZGVlldkmLy8PkyZNQo0aNWBvb49BgwZpXBOVuHfvHmrXrg2JRIL09HQjPAMiIiLzVa4R6QMHDiz3Abdt21bhYIioerh65jqun7sF15oukEjV72+WyqRwcnPA378m4O7te3CrVQNCCGxcsB13LifDu54XZDLld4AOLvYoKijC1b+uY8fyPRjz4f+3d+dxNpb/H8ffZ87suzHMwljHWrbGNqjIWKKkKPXrW0gqUWmUKCEtSkJKKaHlS7QSlWiyJVuyhxCNMLYxM2Yw27l/f0zO1zSLOTNnnDMzr+fjcT84933d1/25z3Fc1/mc61zXPY64HdibHad2KSp3d3dFRUUpLi5OvXv3lpTzhU9cXJyGDRtW6Lmff/650tPT9Z///OeK1/n777915swZhYWF2RZgCdGOA4Dtli+Xzp7NSaL/m7d3TmJ80SKpX7+8x0+fll59VbpwQYqM/N90LkFBUkqKtGSJ1LatdNttpXoLqIDuvfdeHT9+XCtWrFBmZqYGDhyohx56SPPnzy/wnCeffFLffvutPv/8cwUEBGjYsGG64447tG7dujxlBw0apKZNm+ro0aOleRsAADilIo1IDwgIsG7+/v6Ki4vTr7/+aj2+ZcsWxcXFKSAgoNQCBVB+JB5PUvqFDHn65D862MvPS+kX0pWYkCRJOrLvmPZv+VOVQgKtSfRLXN1d5R/kq61xu3T2ZHJph45yLDY2VrNmzdJHH32kPXv2aMiQIUpLS9PAgQMlSffff79Gjx6d57zZs2erd+/eqly5cq79qampevrpp7VhwwYdPnxYcXFxuu222xQZGalu3bpdlXu6hHYcAGx3/HjOny4FfGLy9ZWOHMkZbf5vK1ZIJ05I1avnnRPd3z9n7nW+t4S97dmzR8uWLdMHH3ygNm3aqEOHDnrrrbe0YMECHTt2LN9zkpOTNXv2bE2ZMkU33XSToqKiNHfuXP3yyy/asGFDrrLvvvuukpKS9NRTT12N2wEAwOkUaUT63LlzrX9/5plndNddd2nmzJnWhdKys7P16KOP5pqHFgAK4unjIbOri7Iys+Xmnve/oaz0TJldzfL0yZl09MThk7qQlq6gsEr51ucd4K0zxxJ1Mv60KlUlEVjWmf7ZSlqHrfr166dTp05p7NixSkhIUPPmzbVs2TLrAqTx8fFy+Vc2Zd++ffr555+1fPnyPPWZzWbt2LFDH330kZKSkhQeHq6uXbvqxRdfLLW52gtCOw4Atru0kKhh5L9AaEZGznQv+SXa//or58+C1pX285MOHsyZ3sWVVatgJ+vXr1dgYKBatmxp3RcTEyMXFxdt3LhRt99+e55ztmzZoszMTMXExFj3NWzYUDVq1ND69evVtm1bSdLvv/+uCRMmaOPGjfrzzz9L/2YAAHBCNnfb5syZo59//tn64VvKSRbExsaqXbt2ev311+0aIIDyp37LuqpcLUhnE5JUtUZwrmOGYSjxZLIim9VS9fo501+4e7rLxcVF2VkWubrl/USanZkts9ksdw8+iZYLDpja5ZJhw4YVOJXLqlWr8uxr0KCBDCP/i3l5eemHH34oXiCliHYcAIrmhhukDz/MmYrl3z/Yyc6W0tKk/v3zT7Jf6fvSrKyc6WEKSrQDxZGQkKCqVavm2ufq6qqgoCAlJCQUeI67u7sCAwNz7Q8JCbGek56ernvuuUevv/66atSoUaREenp6utLT062PU1JSJEmZmZnKzMy05bZgo6x/FmDIysoq1nN96ZzinFvSawPlTUneT7h6bHl9bM46ZWVlae/evWrQoEGu/Xv37pXFYrG1OgAVkKe3h7oPvEmfTvxKp/8+o0qhgTK7mpWZkaUzx87Ky9tD3Qd1to7+rRdVR5VCApR0KlnB4UF56ks6lazwuqGq0aj61b4VoMyhHQeAomneXOrcWVq6NCfxXalSzujztLSchUhr15b69s3/3OjonCR8amrOFDCXs1ikc+ekPn3yT8ID/zZq1Ci99tprhZbZs2dPqV1/9OjRatSoUZHWg7lk4sSJeuGFF/LsX758uby9ve0ZHv7lSKokuernn3/WX75XKl2wFStWOOzaQHlTnPcTrp7z588XuazNifSBAwdq0KBBOnjwoFq3bi1J2rhxo1599VXrPLIAcCUd+7VTdla2vp8dpxN/nZJhSC4uJlWuFqQ7Hu+h6zo3sZb19vPSTfd00Jdvfqukk8kKCPaXycUkS7ZFZ08ky2Qyqcv9N8rsyrCucsGBI9IrAtpxACgak0l64YWckeM//CBdGoTr7i5FRUljx0rVquV/bqtWUps20urVUmhozlQuJlPOdDBHjuTsKygJD/zbiBEjNGDAgELL1KlTR6GhoTp58mSu/VlZWUpMTFRoaGi+54WGhiojI0NJSUm5RqWfOHHCes5PP/2knTt36osvvpAk66/xgoOD9dxzz+WbMB89erRiY2Otj1NSUhQREaGuXbsylVwp230sRZN3blCHDh10Tbjtz3VmZqZWrFihLl26yM3N7apeGyhvSvJ+wtVz6VdTRWFzIn3y5MkKDQ3VG2+8oeP/rMATFhamp59+WiNGjLC1OgAVlMlkUsx/blD0rVHa9fNepSadV2BVf13TvqE8vfP+HrrbwE46n3pBqxb+omMHE2QymWQYhvyCfHXbsO5q37u1A+4CpcFRc6RXFLTjAFB0Pj7ShAnSgw9KmzZJmZlS3bpSy5YFL0Iq5UzZMnGi9Pzz0vr1OQuPmkw5W40a0vjxUr16V+02UMZVqVJFVapUuWK56OhoJSUlacuWLYqKipKUkwS3WCxq06ZNvudERUXJzc1NcXFx6tOnj6ScNWDi4+MVHR0tSfryyy914cIF6zmbN2/WAw88oLVr16pu3br51uvh4ZHvmjBubm4kk0qZ6z8LL7i6upbouS7Oa2WvawPlDf/3OTdbXhubE+kuLi4aOXKkRo4cac3Y840ygOLyCfBRm55RVyxndjWr75O36oY+bbVt5W6lJZ9XQLCfWnRuokohgaUfKFBO0I4DgO1q1MjZbFG5sjRjhrR1q7R5c85o9Dp1pI4d/7eQKWBPjRo1Uvfu3TV48GDNnDlTmZmZGjZsmO6++26Fh4dLko4eParOnTvr448/VuvWrRUQEKBBgwYpNjZWQUFB8vf312OPPabo6GjrQqP/TpafPn3aer1/z60OAEB5VqKV+fjgDeBqq1qjirr27+joMFCamNrlqqEdB4DSZTJJ112XswFXw7x58zRs2DB17pyz3lCfPn00ffp06/HMzEzt27cv13ywU6dOtZZNT09Xt27d9M477zgifAAAnJrNifQTJ07oqaeeUlxcnE6ePGmdH+2S7OxsuwUHAKiADMlEIr3U0I4DAFB+BQUFaf78+QUer1WrVp6239PTUzNmzNCMGTOKdI2OHTvmqQMAgIrA5kT6gAEDFB8fr+eff15hYWEysdQ8AABlBu04AAAAAAC2szmR/vPPP2vt2rVq3rx5KYQDAKjwmNqlVNGOAwAAAABgu0LWms9fREQEP+MCAKCMoh0HAAAAAMB2NifSp02bplGjRunw4cOlEA4AAChNtOMAAAAAANjO5qld+vXrp/Pnz6tu3bry9vaWm5tbruOJiYl2Cw4AUAExtUupoh0HAAAAAMB2NifSp02bVgphAADwDxLppYp2HAAAAAAA29mcSO/fv39pxAEAAK4C2nEAAAAAAGxncyJdkrKzs7Vo0SLt2bNHknTNNdeoV69eMpvNdg0OAFDxmP7ZSloHCkY7DgAAUH6ZXFN0KGWfXDx9bT43KytLx7KOaU/iHrm62pYyOpSSKpNris3XBICywuZE+oEDB9SjRw8dPXpUDRo0kCRNnDhRERER+vbbb1W3bl27BwkAqECY2qVU0Y4DAACUb26BG/XspldKVMc7y94p5rU7S+pRomsDgLOyOZH++OOPq27dutqwYYOCgoIkSWfOnNF//vMfPf744/r222/tHiQAALAP2nEAAIDyLTOpjd7o+X+qW7V4I9LX/bxO7Tu0t3lE+sGTqXp83kGbrwkAZYXNifTVq1fn+vAtSZUrV9arr76q9u3b2zU4AEDFY5JkKuGIcqZ2KRjtOAAAQPlmZPmrtn8DNa4cYPO5mZmZOuR6SI2CGsnNzc2mcy0Xk2VknbL5mgBQVrjYeoKHh4fOnTuXZ39qaqrc3d3tEhQAACgdtOMAAAAAANjO5kT6LbfcooceekgbN26UYRgyDEMbNmzQI488ol69epVGjAAAwE5oxwEAAAAAsJ3NifTp06erbt26io6Olqenpzw9PdW+fXtFRkbqzTffLI0YAQAViWGnDfmiHQcAAAAAwHY2z5EeGBioxYsX68CBA9qzZ48kqVGjRoqMjLR7cACACsgeiXAS6QWiHQcAAAAAwHY2J9IviYyM5EM3AABlFO04AAAAAABFZ/PULn369NFrr72WZ/+kSZN055132iUoAEDFZTLssyF/tOMAAAAAANjO5kT6mjVr1KNHjzz7b775Zq1Zs8YuQQEAgNJBOw4AAAAAgO1sTqSnpqbK3d09z343NzelpKTYJSgAAFA6aMcBAAAAALCdzYn0Jk2aaOHChXn2L1iwQI0bN7ZLUACAioupXUoX7TgAAAAAALazebHR559/XnfccYcOHjyom266SZIUFxenTz/9VJ9//rndAwQAVDDGP1tJ60C+aMcBAAAAALCdzSPSb731Vi1atEgHDhzQo48+qhEjRujvv//Wjz/+qN69e5dCiDlefvlltWvXTt7e3goMDCy16wAAUJ7RjgMAAAAAYDubR6RLUs+ePdWzZ097x1KojIwM3XnnnYqOjtbs2bOv6rUBAChPaMcBAAAAALBNsRLpSUlJ+uKLL/Tnn3/qqaeeUlBQkH777TeFhISoWrVq9o5RkvTCCy9Ikj788MNSqR8A4CQMI2craR0oEO04AAAAAAC2sTmRvmPHDsXExCggIECHDx/Wgw8+qKCgIH311VeKj4/Xxx9/XBpxAgAAO6AdBwAAAADAdjbPkR4bG6sBAwZo//798vT0tO7v0aOH1qxZY9fgSio9PV0pKSm5NgCAczMZ9tmQP9pxAAAAAABsZ3MiffPmzXr44Yfz7K9WrZoSEhJsqmvUqFEymUyFbnv37rU1RKuJEycqICDAukVERBS7LgAAygPacQAAAAAAbGfz1C4eHh75jgj7448/VKVKFZvqGjFihAYMGFBomTp16thU5+VGjx6t2NhY6+OUlBQ+hAMAKjTacQAAAAAAbGdzIr1Xr16aMGGCPvvsM0mSyWRSfHy8nnnmGfXp08emuqpUqWLzh3ZbeHh4yMPDo9TqBwDYn8mSs5W0DuSPdhwAAAAAANvZPLXLG2+8odTUVFWtWlUXLlzQjTfeqMjISPn5+enll18ujRglSfHx8dq2bZvi4+OVnZ2tbdu2adu2bUpNTS21awIAHMCw04Z80Y4DAAAAAGA7m0ekBwQEaMWKFVq3bp22b9+u1NRUXXfddYqJiSmN+KzGjh2rjz76yPq4RYsWkqSVK1eqY8eOpXptAADKC9pxAAAAAABsZ/OI9Evat2+vRx99VCNHjiz1D9+S9OGHH8owjDwbH74BoHwx2WkrjhkzZqhWrVry9PRUmzZttGnTpgLLfvjhh3kW1vT09MxVxjAMjR07VmFhYfLy8lJMTIz2799fzOjsi3YcAAAAAICiK3Iiff369Vq6dGmufR9//LFq166tqlWr6qGHHlJ6errdAwQAVDCGYZ/NRgsXLlRsbKzGjRun3377Tc2aNVO3bt108uTJAs/x9/fX8ePHrdtff/2V6/ikSZM0ffp0zZw5Uxs3bpSPj4+6deumixcv2hxfSdGOAwAAAABQfEVOpE+YMEG7d++2Pt65c6cGDRqkmJgYjRo1SkuWLNHEiRNLJUgAAErblClTNHjwYA0cOFCNGzfWzJkz5e3trTlz5hR4jslkUmhoqHULCQmxHjMMQ9OmTdOYMWN02223qWnTpvr444917NgxLVq06CrcUW604wAAAAAAFF+RE+nbtm1T586drY8XLFigNm3aaNasWYqNjdX06dP12WeflUqQAIAKxI6LjaakpOTaChpxnZGRoS1btuSa4sTFxUUxMTFav359gaGmpqaqZs2aioiI0G233ZYrUX3o0CElJCTkqjMgIEBt2rQptM7SQjsOAAAAAEDxFXmx0bNnz+Yaabd69WrdfPPN1setWrXSkSNH7BsdgAorOztbKafPyeRiUkCwv0ym4s56jculX0jX9lW/69DOeBmGoVrXRKhZp2vk5eN55ZPLoIiIiFyPx40bp/Hjx+cpd/r0aWVnZ+dq5yQpJCREe/fuzbfuBg0aaM6cOWratKmSk5M1efJktWvXTrt371b16tWVkJBgrePfdV46djXRjgNA6TAM6dSpnL8HB0suxV6FCldDSor044/S/v05r1VUlNShg+Tu7ujIAACAsytyIj0kJESHDh1SRESEMjIy9Ntvv+mFF16wHj937pzc3NxKJUgAFUd2VrbWfLFBa79crxPxp2WSSTWvqa5Od3dQVJemJNRLIH7vUc0ePU9//3FMFkvOsG0XFxeF1QnRoIn3qva1NRwdot0dOXJE/v7+1sceHh52qzs6OlrR0dHWx+3atVOjRo303nvv6cUXX7TbdeyFdhwA7MswpG++kRYulA4cyNkXGSnddZfUqxcJdWe0YYP0/PPS339LFkvOvo8+kq69Vpo0SapR/rpCAADAjorcvevRo4dGjRqltWvXavTo0fL29tb1119vPb5jxw7VrVu3VIIEUDFkZ2Xrkwmfa95LX+jIvmPy8HSXq7ur9m7cr1nPfKIf5q50dIhlVkriOb331MeK3/O3qlSvrOr1wlS9XriqRATr6IEEvf/0x0o6lezoMCVJJsM+m5SzGOjlW0GJ9ODgYJnNZp04cSLX/hMnTig0NLRIcbu5ualFixY68E825dJ5JanTnmjHAcB+DEOaNk0aM0bavl3y8MjZtm/PSdROnVqsda9Rig4dkkaNko4elWrWlOrXz9lCQ6WtW6Wnn5YcsBa43SUmJuree++Vv7+/AgMDNWjQIKWmphZ6zsWLFzV06FBVrlxZvr6+6tOnT57+iyR9+OGHatq0qTw9PVW1alUNHTq0tG4DAACnVORE+osvvihXV1fdeOONmjVrlmbNmiX3y37/NmfOHHXt2rVUggRQMWxbuUvrFm2Wf2U/hdaqKp8Ab/lV8lF43VC5urlq6Xsr9Pf+444Os0z6ddk2HT+YoLA6IXLz+N+oYzd3V4XXCVHC4VPa9N1WB0Z4GTvOkV5U7u7uioqKUlxcnHWfxWJRXFxcrlHnhcnOztbOnTsVFhYmSapdu7ZCQ0Nz1ZmSkqKNGzcWuU57oh0HAPv57Tfpk08kX1+pTh0pMDBnq1NH8vOT5s2Tfv3V0VHicosWScePS7VrS5f/AMvLKyexvnOntGqVo6Kzn3vvvVe7d+/WihUrtHTpUq1Zs0YPPfRQoec8+eSTWrJkiT7//HOtXr1ax44d0x133JGrzJQpU/Tcc89p1KhR2r17t3788Ud169atNG8FAACnU+SpXYKDg7VmzRolJyfL19dXZrM51/HPP/9cvr6+dg8QQMWxYckWWbKz5RPgnedYpZAAHd1/XL/+sE3V64U5ILqybde6vXIxu8jsas5zzMXsIldXs3as/V1d+3e8+sE5idjYWPXv318tW7ZU69atNW3aNKWlpWngwIGSpPvvv1/VqlXTxIkTJUkTJkxQ27ZtFRkZqaSkJL3++uv666+/9OCDD0qSTCaThg8frpdeekn16tVT7dq19fzzzys8PFy9e/e+6vdHOw4A9vPdd9L581J4eN5jlSvnzL/97bdSq1ZXPzbk76efJG/v/Kfc8fCQsrOlTZuk7t2vfmz2smfPHi1btkybN29Wy5YtJUlvvfWWevToocmTJys8n3+wycnJmj17tubPn6+bbrpJkjR37lw1atRIGzZsUNu2bXX27FmNGTNGS5YsybVwedOmTa/OjQEA4CSKnEi/JCAgIN/9QUFBJQ7GGaVmZGht/GH9evSoLmRlqk6lIHWqVVt1gyo7OjSg3Dl64Lg8vPOfesNkMsnFbNaJv05d5ajKh4yLmXIxF/wjJBezizIuZF7FiApm+mcraR226tevn06dOqWxY8cqISFBzZs317Jly6wLdMbHx8vlsk/fZ8+e1eDBg5WQkKBKlSopKipKv/zyixo3bmwtM3LkSKWlpemhhx5SUlKSOnTooGXLlsnT03GLu1a0dvzfDh/OSW7t3JkzIrFt25ykSWWadQA2OHgwJ/la0NItHh7/mzcdziE9XTLnHU9g5eJS9qd2Wb9+vQIDA61JdEmKiYmRi4uLNm7cqNtvvz3POVu2bFFmZqZiYmKs+xo2bKgaNWpo/fr1atu2rVasWCGLxaKjR4+qUaNGOnfunNq1a6c33ngjz8LuAACUZzYn0iuSI8nJemntKv15NlGSZDaZtPHo31r6x17d16yF7mjYmIUPATvy8vPS6aOJBR63WCzy8nFcArIsq3lNhHav2yvDMPL8v2UYhjIuZqp2Eyf5IFSMqVnyraMYhg0bpmHDhuV7bNW/fu89depUTZ06tdD6TCaTJkyYoAkTJhQvINjVkiXSK69IiYk5SXSLRVqxImd6hkmTJAbWASgqPz8ps5Dvn7OypMvWuoYTuPZa6fvv8z9mseTMaV+//tWNyd4SEhJUtWrVXPtcXV0VFBSkhISEAs9xd3dXYGBgrv0hISHWc/78809ZLBa98sorevPNNxUQEKAxY8aoS5cu2rFjR66p4i5JT09Xenq69XFKSookKTMzU5mFvXlQYllZWdY/i/NcXzqnOOeW9NpAeVOS9xOuHlteHxLpBcjMztakX9boQOIZVffzl9s/wxcMw9Dp8+c1d+tvivAPUOtq1R0cKVB+RHVppj+3/6XsrOw8U5CkX8iQ2eyia69v5KDoyra2Pa/T6oW/KPH4WVUOzz3y+OyJZHn7e6ltzygHRQeUvl27pJdeyhltWK/e/0aRZmX9bwG6BQtIfAEomk6dpB9/lDIypH/nEDMycpKy/8ySASfRu3fO9C5nzuT+FZJhSEeOSFWqSM465feoUaP02muvFVpmz549pXZ9i8WizMxMTZ8+3bqeyqeffqrQ0FCtXLky37nSJ06cqBdeeCHP/uXLl8vbO+80jrCfI6mS5Kqff/5Zf5Vg1r4VK1Y47NpAeVOc9xOunvPnzxe5LIn0Amw5fkz7z5xRmK+fNYku5YwurOLjo7+Sk/Tt/n0k0gE7iu7VUusWbdKxg8cVXK2yPL09ZBiGzp+7oMTjSbqmXQM1ub6ho8MskyIaVNMdT/TQF1OW6u/9x+Xjn/MB5nzKeXl4e+j2x3uodpOaDo7yHw4ckY7y6+uvpaSk3El0SXJ1lWrVypnyZcUKqU8fBwUIoEzp0iXny7ft23PmSffxydmfliYdO5bzCxdnTcpWVNdfL/XvL334oXT2bM4XpxaLlJIiVaokjR4thTnpMjwjRozQgAEDCi1Tp04dhYaG6uTJk7n2Z2VlKTExUaGhofmeFxoaqoyMDCUlJeUalX7ixAnrOZcWUr98+roqVaooODhY8fHx+dY7evRoxcbGWh+npKQoIiJCXbt2lT/fWpeq3cdSNHnnBnXo0EHXhNv+XGdmZmrFihXq0qWL3C5fmfcqXBsob0ryfsLVc+lXU0VBIr0Ae0+fUpbFIk/X/J8iP3cP7T51UulZWfIooAwA21SqGqAhU/rrw7ELFb/nb53JzJYMQx7eHmrRuYkGTOgnN3can+K66f+uV1jdUK39cr32bDwgGYZa97hOHe5oo2vaNXB0eP9jGDlbSesALrN+veTrm/98xpemedm2jUQ6gKLx85OmTJGef17aulW6NGuGh4cUHS29+GJOGTgPk0kaPjznS46vvsr5EsRslm6+Werb17mn96pSpYqqVKlyxXLR0dFKSkrSli1bFBWV80vDn376SRaLRW3atMn3nKioKLm5uSkuLk59/mkE9+3bp/j4eEVHR0uS2rdvb91fvXrOQLLExESdPn1aNWvmPxDDw8NDHh551z5yc3MjmVTKXP/JT7i6upbouS7Oa2WvawPlDf/3OTdbXhsywIUpZP5zkyQZksGwR8CuqtcP1+j/Pq69mw7oyN6jcjG7KLJFbdVuUoM1CeygUZt6atSmniwWiyTlWjwTKM/++SdfKL5/AWCL6tWlOXOkLVtypo+SpGuukaKichauhPMxmaTOnXO27Oyc16k8dS8bNWqk7t27a/DgwZo5c6YyMzM1bNgw3X333QoPD5ckHT16VJ07d9bHH3+s1q1bKyAgQIMGDVJsbKyCgoLk7++vxx57TNHR0Wrbtq0kqX79+rrtttv0xBNP6P3335e/v79Gjx6thg0bqlOnTo68ZQAArioS6QWoGxQks8lU4IjzcxnpahleTZ6ufKME2JvZ1axr2jVwrlHS5YzTJ9BJaMLOWrWSPv88J1n+76RJVlbOvmuvdUxsAMouk0lq2TJnQ9liNl+5TFk0b948DRs2TJ07d5aLi4v69Omj6dOnW49nZmZq3759ueaDnTp1qrVsenq6unXrpnfeeSdXvR9//LGefPJJ9ezZUy4uLrrxxhu1bNkyRlgCACoUEukFaB1eXbUDK+lA4hlF+AfI/E/SyTAMnb14Qa5mF91cr4wv6w4ATshk5GwlrQO43O23S8uWSceP58yBeymZbrFIf/2VM7KU+YwBAGVdUFCQ5s+fX+DxWrVqyfjXT7A8PT01Y8YMzZgxo8Dz/P39NXv2bM2ePdtusQIAUNY4+ZBEx/FwddVT7TqoRkCgjpxL1t8pyTqeek6Hk5OUabHo7muaqkOEkyzMBwAACnXdddKIETkjEPfvl44cyUmgHzwohYZKL7+cs9gcAAAAAAD5YUR6ISKDKmty1+5aefiQ1h+J18XsLNWtFKTOteuqSdUQ5msGgFJhqORzuzAkHXndfXfO9C1LluQsLOruLl1/vdSzp1StmqOjAwAAAAA4MxLpVxDk5a0+ja5Rn0bXODoUAKgQmNoFpenaa5kLHQAAAABgO6Z2AQAAAAAAAACgEIxIBwA4F2Z2AQAAAAAAToZEOoAKJ/1Cus6eSJa7p5sqhQSy3oHTIZMOAEChUlKkxETJ318KCnJ0NAAAABUCiXQAFUZaynmt+Hi1flm8Waln0+RidlFki1qK+c8NurZDI0eHBwAAULgjR6QPP5R++EG6cCFn1eQbb5QGDJAaNnR0dAAAAOUaiXQAFcL5cxf0zhNz9fv6ffL09ZSPv7eyMrO1Y/Xv2v/bId039k61vSXK0WFCkiz/bCWtAwCA8uTwYWnoUGn/fikwMGc0+sWL0ldfSRs3Sm++KTVt6ugoAQAAyi0WGwVQIaxa+Iv2bPhDVWsEKzg8SF6+nvKr5KPwyFBlpmfqiynfKDUpzdFhQpLJsM8GAEC58s47OUn0unWlkBDJ11cKDpbq1ZOOH5def10yaAABAABKC4l0AOVedla21i3aJDdPN7l7uuc6ZjKZFFwtSIkJydr60y4HRQgAAFCIY8ek1atzEueu//pRsYuLFBYm7dol7djhmPgAAAAqABLpAMq98+cuKOXMOXn5euV73OxqlskkJR4/e5UjAwAAKILjx6Xz5yU/v/yP+/jkzJl+7NjVjQsAAKACIZEOoNzz8HKXq5tZWRlZ+R43DEOGxZCHt8dVjgwAAKAIvL0lNzcpIyP/45mZktmck1AHAABAqSCRDqDcc/d0V4vOTZSWnCbDknfu0HOJqfLy9VST6xs6IDrkYRj22QAAKC8aNJDq15dOnMj/+IkTUrVqUsuWVzcuAACACoREOoAK4aZ7OigorJKO/ZmgjAs5o7ksFkPJp1N0LjFVbW6JUrXIMAdHCYnFRgEAyMPFRXrwwZyR6X/99b+R6VlZ0tGjksUiDRiQcxwAAAClgkQ6gAqhev1wPTz5fkU0qKbEE0k6diBBxw8myLAYirnvBt39TG9HhwgAAFCwmBhp7FipalXp77+lgwdzkup+ftKIEdI99zg6QgAAgHLN9cpFAKB8qB9VV89/Fqvf1/+hE3+dkoeXuxq1ra8q1Ss7OjTkYvyzlbQOAADKmV69pM6dpbVrpVOnpMBAqUMHqVIlR0cGAABQ7pFIB1ChuLq5qukNjR0dBgphsuRsJa0DAIByycdH6t7d0VEAAABUOEztAgAAAAAAAABAIRiRDgAAAAAAUA5cyMyWJO06mlys89MupOvXU1LoX2fl4+Vh07kHTqYW65oAUFaQSAcAOBemSAcAAACK5eA/yexRX+0sQS2u+uTA5mKf7eNBqglA+cT/bgAAAAAAAOVA12tCJUl1q/rKy81s8/n7jidrxBc79UbfJmoQFmDz+T4erqod7GPzeQBQFpBIBwA4F8PI2UpaBwAAAFDBBPm46+7WNYp9flZWliSpbhUfXVvN9kQ6AJRnJNIBAM6FRDoAAAAAAHAyLo4OAAAAAAAAAAAAZ8aIdACAc2GxUQAAAAAA4GRIpAMAnIrJyNlKWgcAAAAAAIC9MLULAAAAAAAAAACFYEQ6AMDJMLcLAAAAAABwLiTSAQDOxTBytpLWAQAAAAAAYCdM7QIAAAAAAAAAQCEYkQ4AcC7M7AIAAAAAAJwMI9IBAE7FJMlkGCXbinntGTNmqFatWvL09FSbNm20adOmAsvOmjVL119/vSpVqqRKlSopJiYmT/kBAwbIZDLl2rp3717M6AAAAAAAgKOQSAcAQNLChQsVGxurcePG6bffflOzZs3UrVs3nTx5Mt/yq1at0j333KOVK1dq/fr1ioiIUNeuXXX06NFc5bp3767jx49bt08//fRq3A4AAAAAALAjEukAAOdi2Gmz0ZQpUzR48GANHDhQjRs31syZM+Xt7a05c+bkW37evHl69NFH1bx5czVs2FAffPCBLBaL4uLicpXz8PBQaGiodatUqZLtwQEAAAAAAIcikQ4AcC6GYZ/NBhkZGdqyZYtiYmKs+1xcXBQTE6P169cXqY7z588rMzNTQUFBufavWrVKVatWVYMGDTRkyBCdOXPGptgAAAAAAIDjsdgoAKDcSklJyfXYw8NDHh4eecqdPn1a2dnZCgkJybU/JCREe/fuLdK1nnnmGYWHh+dKxnfv3l133HGHateurYMHD+rZZ5/VzTffrPXr18tsNhfjjgAAAAAAgCOQSAcAOJlizs2Spw4pIiIi195x48Zp/PjxJaw7r1dffVULFizQqlWr5Onpad1/9913W//epEkTNW3aVHXr1tWqVavUuXNnu8cBAAAAAABKB1O7AACci8VOm6QjR44oOTnZuo0ePTrfSwYHB8tsNuvEiRO59p84cUKhoaGFhjt58mS9+uqrWr58uZo2bVpo2Tp16ig4OFgHDhwotBwAAEBxJCYm6t5775W/v78CAwM1aNAgpaamFnrOxYsXNXToUFWuXFm+vr7q06dPnj7R5s2b1blzZwUGBqpSpUrq1q2btm/fXpq3AgCA0yGRDgAot/z9/XNt+U3rIknu7u6KiorKtVDopYVDo6OjC6x/0qRJevHFF7Vs2TK1bNnyivH8/fffOnPmjMLCwmy/GQAAgCu49957tXv3bq1YsUJLly7VmjVr9NBDDxV6zpNPPqklS5bo888/1+rVq3Xs2DHdcccd1uOpqanq3r27atSooY0bN+rnn3+Wn5+funXrpszMzNK+JQAAnAZTuwAAICk2Nlb9+/dXy5Yt1bp1a02bNk1paWkaOHCgJOn+++9XtWrVNHHiREnSa6+9prFjx2r+/PmqVauWEhISJEm+vr7y9fVVamqqXnjhBfXp00ehoaE6ePCgRo4cqcjISHXr1s1h9wkAAMqnPXv2aNmyZdq8ebP1C/633npLPXr00OTJkxUeHp7nnOTkZM2ePVvz58/XTTfdJEmaO3euGjVqpA0bNqht27bau3evEhMTNWHCBOu0eePGjVPTpk31119/KTIy8urdJAAADsSIdACAczEM+2w26tevnyZPnqyxY8eqefPm2rZtm5YtW2ZdgDQ+Pl7Hjx+3ln/33XeVkZGhvn37KiwszLpNnjxZkmQ2m7Vjxw716tVL9evX16BBgxQVFaW1a9cWODIeAACguNavX6/AwMBcv5KLiYmRi4uLNm7cmO85W7ZsUWZmZq7F0hs2bKgaNWpo/fr1kqQGDRqocuXKmj17tjIyMnThwgXNnj1bjRo1Uq1atUr1ngAAcCaMSAcA4B/Dhg3TsGHD8j22atWqXI8PHz5caF1eXl764Ycf7BQZAABA4RISElS1atVc+1xdXRUUFGT95Vx+57i7uyswMDDX/pCQEOs5fn5+WrVqlXr37q0XX3xRklSvXj398MMPcnXNP6WQnp6u9PR06+OUlBRJUmZmJtPBOLmsrCzrn7xWQMlceg/xXnJutrw+JNIBAM6lmCPK89QBAABQDowaNUqvvfZaoWX27NlTate/cOGCBg0apPbt2+vTTz9Vdna2Jk+erJ49e2rz5s3y8vLKc87EiRP1wgsv5Nm/fPlyeXt7l1qsKLkjqZLkqg0bNujoLkdHA5QPK1ascHQIKMT58+eLXJZEOgDAuRj/bCWtAwAAoBwYMWKEBgwYUGiZOnXqKDQ0VCdPnsy1PysrS4mJiQoNDc33vNDQUGVkZCgpKSnXqPQTJ05Yz5k/f74OHz6s9evXy8XFxbqvUqVKWrx4se6+++489Y4ePVqxsbHWxykpKYqIiFDXrl3l7+9flNuGg2yPT5R2/qq2bduqWY0gR4cDlGmZmZlasWKFunTpIjc3N0eHgwJc+tVUUZBIBwAAAADASVWpUkVVqlS5Yrno6GglJSVpy5YtioqKkiT99NNPslgsatOmTb7nREVFyc3NTXFxcerTp48kad++fYqPj1d0dLSknJF6Li4uMplM1vMuPbZYLPnW6+Hhke+aMG5ubiSTnNyl6XpcXV15rQA74f8+52bLa8NiowAA5+KgxUYBAADKskaNGql79+4aPHiwNm3apHXr1mnYsGG6++67FR4eLkk6evSoGjZsqE2bNkmSAgICNGjQIMXGxmrlypXasmWLBg4cqOjoaLVt21aS1KVLF509e1ZDhw7Vnj17tHv3bg0cOFCurq7q1KmTw+4XAICrjUQ6AMC5kEgHAAAolnnz5qlhw4bq3LmzevTooQ4dOuj999+3Hs/MzNS+fftyzQc7depU3XLLLerTp49uuOEGhYaG6quvvrIeb9iwoZYsWaIdO3YoOjpa119/vY4dO6Zly5YpLCzsqt4fAACOxNQuAAAAAACUA0FBQZo/f36Bx2vVqiXjXwMOPD09NWPGDM2YMaPA87p06aIuXbrYLU4AAMqiMjEi/fDhwxo0aJBq164tLy8v1a1bV+PGjVNGRoajQwMA2Bsj0ssd2nEAAAAAQFlXJkak7927VxaLRe+9954iIyO1a9cuDR48WGlpaZo8ebKjwwMA2JM9EuEk0p0K7TgAAAAAoKwrE4n07t27q3v37tbHderU0b59+/Tuu+/yARwAACdHOw4AAAAAKOvKRCI9P8nJyQoKCiq0THp6utLT062PU1JSSjssAECJGf9sJa0Dzox2HAAAAABQlpSJOdL/7cCBA3rrrbf08MMPF1pu4sSJCggIsG4RERFXKUIAQLFZ7LTBadGOAwAAAADKGocm0keNGiWTyVTotnfv3lznHD16VN27d9edd96pwYMHF1r/6NGjlZycbN2OHDlSmrcDAECFQjsOAAAAAKgoHDq1y4gRIzRgwIBCy9SpU8f692PHjqlTp05q166d3n///SvW7+HhIQ8Pj5KGCQC4qpjapaygHQcAAAAAVBQOTaRXqVJFVapUKVLZo0ePqlOnToqKitLcuXPl4lImZ6UBAFyJYeRsJa0DpY52HAAAAABQUZSJxUaPHj2qjh07qmbNmpo8ebJOnTplPRYaGurAyAAAwJXQjgMAAAAAyroykUhfsWKFDhw4oAMHDqh69eq5jhmMOgSA8oWZXcod2nEAAAAAQFlXJn5XPWDAABmGke8GAChnDIt9NjgN2nEAAAAAQFlXJhLpAAAAAAAAAAA4SpmY2gUAUIGw2CgAAAAAAHAyJNJRoItZmdr49986kpIsNxcXNQ0NU8PKwTKZTI4ODUB5Rx4ccC6GIW3dKm3ZImVlSZGR0g03SB4ejo4MAAAAAK4KEunI17aE45q+cb3+Tkn+Z90/Q56ubmoVXk1Ptm0nfw9PR4cIAACuhtOnpTFjpI0bpYsXc/a5uOQk0194QWre3KHhAQAAAMDVQCIdeRxKOqtX161R4vnzCvX1k7vZLMMwlJqRoTV/HVa2xdD4jjfJhZHpAEoDU7sAziMrSxo5Ulq3TgoLk6pVk0wmKT1d+uMPacQIae5cqUYNR0cKAAAAAKWKxUaRx/f7/9CptDRV9w+Qu9ksSTKZTPLz8FBVbx9tOX5Uu06ecHCUAMqtS4n0km4ASu6XX6TNm6Xq1SU/v5wkupQzpUudOtLff0tff+3YGAEAAADgKmBEOnIxDEM/H/lLvm7u+Y4493Zz06nzafrt+DE1DQl1QIQAAOCqWb9eysiQvL3zHnNxydm/fLn0xBNXPzYAAGCz8+fPa+/evQUe33c8SekJB7Rnl5csZwILLNewYUN559c/AIByjEQ6csmyWJSRnS2zS/4/Vri00OjFrKyrGRaAioSpXQDnceHC/0ah58fNTUpLu3rxAACAEtm7d6+ioqKuWO7/Pir8+JYtW3TdddfZKSoAKBtIpCMXN7NZEf7++v3UKQV5eeU5nm2xSCapmr+/A6IDUCEYskMi3S6RAKhRI+f9aLHkjED/t9RUFhsFAKAMadiwobZs2VLg8dQL6fp25Xr17BQtXy+PQusBgIqGRDry6Fq3nnafOqm0jAz5uLtb9xuGoYS0VFX28lGHiJoOjBAAAFwV3bpJH3wgHTv2v4VGL0lOzkmu9+7tsPAAAIBtvL29Cx1JnpmZqbOnTyq6dUu5ubldxcgAwPmx2Cjy6Fy7rjrWrK0zFy/o75RkJadfVOKFC/orOUkerq56OKqVKuUzWh0A7ILFRgHnUa2aNGKEZDZLBw5Ip09LZ89Khw5JZ85It98ude3q6CgBAAAAoNQxIh15uJvNeqrd9bq2aoiWHdiv46nnZDaZ1Kl2Hd1Sv6GascgogNLEHOmAc+nTRwoLkxYskDZvlrKypGuukfr2zUmku9KdBAAAAFD+8ckH+XI3m9WrQSPdUr+hzqWny81sljc/6wIAoGJq1y5nO3cuJ5EeGFj4IqQAAAAAUM6QSEehXEwmBXh6OjoMABWIYRgySjiivKTnAyiAn5+jIwAAAAAAhyCRDgBwLkztAgAAAAAAnAyLjQIAAAAAAAAAUAhGpAMAnAsj0gEAAAAAgJMhkQ4AcC4k0gEAAAAAgJNhahcAAAAAAAAAAArBiHQAgFMxLIYMS8lGlJf0fAAAAAAAgMsxIh0A4GQMO222mzFjhmrVqiVPT0+1adNGmzZtKrT8559/roYNG8rT01NNmjTRd999l/tODENjx45VWFiYvLy8FBMTo/379xcrNgAAAAAA4Dgk0gEAkLRw4ULFxsZq3Lhx+u2339SsWTN169ZNJ0+ezLf8L7/8onvuuUeDBg3S1q1b1bt3b/Xu3Vu7du2ylpk0aZKmT5+umTNnauPGjfLx8VG3bt108eLFq3VbAAAAAADADkikAwCci8Wwz2ajKVOmaPDgwRo4cKAaN26smTNnytvbW3PmzMm3/Jtvvqnu3bvr6aefVqNGjfTiiy/quuuu09tvvy0pZzT6tGnTNGbMGN12221q2rSpPv74Yx07dkyLFi0qyTMEAAAAAACuMhLpAAAnc/WndsnIyNCWLVsUExNj3efi4qKYmBitX78+33PWr1+fq7wkdevWzVr+0KFDSkhIyFUmICBAbdq0KbBOAAAAAADgnCrUYqOGkZNYSUlJcXAkAFB2Xfo/9NL/qfaWnpVutzr+/f+9h4eHPDw88pQ/ffq0srOzFRISkmt/SEiI9u7dm+81EhIS8i2fkJBgPX5pX0FlYBvacQCAMyrtvlF5QBtedmRmZur8+fNKSUmRm5ubo8MByjTeT2WDLe14hUqknzt3TpIUERHh4EgAoOw7d+6cAgIC7Fafu7u7QkNDNf3HV+1Sn6+vb57/78eNG6fx48fbpX5cfbTjAABnZu++UXlCGw4AcHZFaccrVCI9PDxcR44ckZ+fn0wm0xXLp6SkKCIiQkeOHJG/v/9ViNAxKsp9ShXnXrnP8seZ7tUwDJ07d07h4eF2rdfT01OHDh1SRkaGXeozDCPP//X5jUaXpODgYJnNZp04cSLX/hMnTig0NDTfc0JDQwstf+nPEydOKCwsLFeZ5s2b23QvyGFrO345Z3oPOSueoyvjOboynqMr4zm6srL2HJVW36g8KUkbjqurrL3/AGfG+6lssKUdr1CJdBcXF1WvXt3m8/z9/SvEP/iKcp9SxblX7rP8cZZ7La3RVp6envL09CyVugvj7u6uqKgoxcXFqXfv3pIki8WiuLg4DRs2LN9zoqOjFRcXp+HDh1v3rVixQtHR0ZKk2rVrKzQ0VHFxcdbEeUpKijZu3KghQ4aU5u2UW8Vtxy/nLO8hZ8ZzdGU8R1fGc3RlPEdXVpaeI0aiF84ebTiurrL0/gOcHe8n51fUdrxCJdIBAChIbGys+vfvr5YtW6p169aaNm2a0tLSNHDgQEnS/fffr2rVqmnixImSpCeeeEI33nij3njjDfXs2VMLFizQr7/+qvfff1+SZDKZNHz4cL300kuqV6+eateureeff17h4eHWZD0AAAAAACgbSKQDACCpX79+OnXqlMaOHauEhAQ1b95cy5Ytsy4WGh8fLxcXF2v5du3aaf78+RozZoyeffZZ1atXT4sWLdK1115rLTNy5EilpaXpoYceUlJSkjp06KBly5Y5ZNQ9AAAAAAAoPhLphfDw8NC4ceMKnFO3vKgo9ylVnHvlPsufinSvjjRs2LACp3JZtWpVnn133nmn7rzzzgLrM5lMmjBhgiZMmGCvEFFMvIeujOfoyniOrozn6Mp4jq6M5whwHN5/gP3wfip/TIZhGI4OAgAAAAAAAAAAZ+Vy5SIAAAAAAAAAAFRcJNIBAAAAAAAAACgEiXQAAAAAAAAAAApBIr2IevXqpRo1asjT01NhYWG67777dOzYMUeHZVeHDx/WoEGDVLt2bXl5ealu3boaN26cMjIyHB1aqXj55ZfVrl07eXt7KzAw0NHh2NWMGTNUq1YteXp6qk2bNtq0aZOjQ7K7NWvW6NZbb1V4eLhMJpMWLVrk6JBKxcSJE9WqVSv5+fmpatWq6t27t/bt2+fosIAyrSK06SVR0foDxVWe+xHFVRH6HyVRUfouxUWfBwAAODsS6UXUqVMnffbZZ9q3b5++/PJLHTx4UH379nV0WHa1d+9eWSwWvffee9q9e7emTp2qmTNn6tlnn3V0aKUiIyNDd955p4YMGeLoUOxq4cKFio2N1bhx4/Tbb7+pWbNm6tatm06ePOno0OwqLS1NzZo104wZMxwdSqlavXq1hg4dqg0bNmjFihXKzMxU165dlZaW5ujQgDKrIrTpJVHR+gPFVV77EcVVUfofJVFR+i7FRZ8HAIDcDMNwdAj4F5PBq1Is33zzjXr37q309HS5ubk5OpxS8/rrr+vdd9/Vn3/+6ehQSs2HH36o4cOHKykpydGh2EWbNm3UqlUrvf3225Iki8WiiIgIPfbYYxo1apSDoysdJpNJX3/9tXr37u3oUErdqVOnVLVqVa1evVo33HCDo8MByoWK0qaXREXoDxRXeetHFFdF7H+UREXquxQXfR4AQEVmGIZMJpMkKTMzk88pToIR6cWQmJioefPmqV27duX+H3JycrKCgoIcHQaKKCMjQ1u2bFFMTIx1n4uLi2JiYrR+/XoHRgZ7SU5OliTel4CdVKQ2vSToD6Aw9D9QGujzAAAqsktJ9A8//FAvvfSSJEaoOwMS6TZ45pln5OPjo8qVKys+Pl6LFy92dEil6sCBA3rrrbf08MMPOzoUFNHp06eVnZ2tkJCQXPtDQkKUkJDgoKhgLxaLRcOHD1f79u117bXXOjocoEyraG16SdAfwJXQ/4C90ecByo5Lib0NGzZo48aNDo4GKF8sFot+/PFHxcXFScpJrpNMd6wKnUgfNWqUTCZTodvevXut5Z9++mlt3bpVy5cvl9ls1v33318m/gHbep+SdPToUXXv3l133nmnBg8e7KDIbVecewXKiqFDh2rXrl1asGCBo0MBnE5FadNLoiL1B4qLfgTgHOjzAGXDpaknvv76a912222aN2+eTp065eiwgHLBYrHIxcVFEydO1B9//KHZs2dL+t9IdTiGq6MDcKQRI0ZowIABhZapU6eO9e/BwcEKDg5W/fr11ahRI0VERGjDhg2Kjo4u5UhLxtb7PHbsmDp16qR27drp/fffL+Xo7MvWey1vgoODZTabdeLEiVz7T5w4odDQUAdFBXsYNmyYli5dqjVr1qh69eqODgdwOhWlTS+JitQfKK6K3o8oLvofsCf6PEDZYTKZtHz5cv3nP//R22+/rb59+8rPz8/RYQHlgotLztjnypUrq1evXvr55581aNAga4IdjlGhE+lVqlRRlSpVinWuxWKRJKWnp9szpFJhy30ePXpUnTp1UlRUlObOnVvm3pwleU3LA3d3d0VFRSkuLs66eJXFYlFcXJyGDRvm2OBQLIZh6LHHHtPXX3+tVatWqXbt2o4OCXBKFaVNL4mK1B8ororejygu+h+wB/o8QNmTlZWlxYsX68EHH9TAgQN17tw5bd26VR9//LGqV6+uTp066brrrnN0mIDTuzw5Pn36dB04cECPPfaY6tatK29vb/Xq1Ut9+/bV4MGD1a5dOwdHW7FV6ER6UW3cuFGbN29Whw4dVKlSJR08eFDPP/+86tatW65Grh09elQdO3ZUzZo1NXny5Fw/ySqPo4ni4+OVmJio+Ph4ZWdna9u2bZKkyMhI+fr6Oja4EoiNjVX//v3VsmVLtW7dWtOmTVNaWpoGDhzo6NDsKjU1VQcOHLA+PnTokLZt26agoCDVqFHDgZHZ19ChQzV//nwtXrxYfn5+1rlmAwIC5OXl5eDogLKnorTpJVHR+gPFVV77EcVVUfofJVFR+i7FRZ8HKHvMZrP+/vtvJSUlKT4+XmPHjtWRI0d09uxZnTp1Sjt37tQHH3wgV1dST0BhLiXR16xZI1dXV3399df67bffFBwcrEmTJqlr164aMmSIZs6cqWbNmsnHx8fBEVdgBq5ox44dRqdOnYygoCDDw8PDqFWrlvHII48Yf//9t6NDs6u5c+cakvLdyqP+/fvne68rV650dGgl9tZbbxk1atQw3N3djdatWxsbNmxwdEh2t3Llynxfv/79+zs6NLsq6D05d+5cR4cGlEkVpU0viYrWHyiu8tyPKK6K0P8oiYrSdyku+jyA87NYLHn2bdq0yQgPDzf8/f2Nvn37Gl988YVhGIYxZ84co3nz5kZycvLVDhMoMz777DPj+eefNwzDMIYPH250797dMAzDOHfunLFgwQKjW7duRq1atYw777zT6Ny5s3HDDTcYCQkJhmEYRnZ2tsPirshMhlHOV9YCAAAAAABAsRn/LCy6evVq/fDDDwoLC1N0dLRatmyppKQk7du3T23atLGWj42N1f79+7VgwQJGzwL5sFgsmjVrloYMGaLrr79ev/32m9atW6emTZvmKvfFF19o165dmjp1qs6dO6dhw4Zp+vTpDooaJNIBAAAAAABQqG+++Ub9+vVTy5YtderUKbm7u2vcuHHq06ePtcyvv/6qL774QjNnztSaNWvyJAWBiu7ee+/VxIkTrdO6dejQQb/88ouGDBmiGTNm6FKa1jCMXOsUHThwQG+//bZ27typhQsXKjg42CHxV3QVY+UoAAAAAAAAFEtCQoK2bdumt99+W2vXrtV///tftWvXTsOHD9fXX38tSfr999/13nvvadmyZSTRgXykpKTIMAyFhIRY98XExGjUqFF67733NH78eJlMJplMJv173HNkZKSGDh2qDRs2aPXq1Vc7dPyDFR8AAAAAAACQr99//1133323zGazZs6cKUlq2bKldcqWxx9/XK6urrr11lv15JNPqlKlSgoLC3NkyIDTSUtLk7+/v+bPny9Jevfdd9WpUyeNHz9eklSjRg0NGzZMkjR+/HiZzWZJ0s8//6wOHTrIYrGoXr16atOmjXVBblx9JNIBAAAAAABgdWlO9C1btmjTpk2qX7++vv/+e509e9ZaplGjRnriiSdkNpvVr18/ff755+rZs6cDowac0x133KH69etr9OjRCggI0MWLF/XGG29oypQp+u6771SvXj0NGjRIJpNJjz32mDIyMvToo49qyJAh8vDwUPv27eXi4qJ58+Zp1apV1i+0cPWRSAcAAAAAAICVyWTS999/r/79++uLL75Q06ZNdeHCBT3xxBOaNWuWbrjhBkk5yfRLyb769es7OGrAObVq1UpjxoxRQECAhgwZosDAQG3cuFG33HKLevXqpW+++Ub16tXTAw88IC8vLz344INatGiR3N3dtXnzZplMJknSzTffrL179/JecyAWGwUAAAAAAIBVYmKiXnrpJYWGhmrkyJGSpF9++UXTpk3TH3/8obfeekvXX3+9tXxGRobc3d0dFS7glDZt2qTWrVtLkt555x0NGzZML774ooYOHarAwEAlJiaqe/fuOnfunDWZLkl//vmnDh48qJtuuklms1lZWVkymUzW6V7gOCw2CgAAAAAAAEnSli1b1KBBA61YscKa2JOkdu3a6fHHH1f9+vX15JNP6qeffrIeI4kO5PbAAw9o1qxZys7OliQ9+uijmjZtmp5//nnNmDFDSUlJCgoK0rJly+Tn56fbbrtN+/fvlyTVqVNHXbp0kdlsVnZ2tlxdXUmiOwkS6QAAAAAAAJAkRUVFqV27dtq9e7f27NmjjIwM67EOHTroiSeeUHBwsMaNG6cLFy6IiQ6AvCZOnKh33nlHZrNZBw4ckJSzMG9ByfSAgABFR0fryJEjueohge5cSKTD7jp27Kjhw4c7OowCrVq1SiaTSUlJSXar02QyadGiRXarT5IGDBig3r1727VOAADKC/ob9kF/AwBwyc6dO7V+/XpJ0uLFi3X77bfr9ddf148//qisrCxrufbt22v8+PFasGCBvLy8rPM3A8iRkZGhkJAQubm5ac6cOerbt6+WLVsmqeBk+pIlS9S7d2+Fh4c7OHoUhkQ6imXAgAEymUx5tgMHDuirr77Siy++WKL6i/pB8fJrBwQEqH379rl+Xpafdu3a6fjx4woICChRjJc7fvy4br75ZrvVV1SGYej9999XmzZt5Ovrq8DAQLVs2VLTpk3T+fPnr3o8zqo0khkAgNJHfyM3+hvOjf4GgLLKMAydOnVKd911l6ZOnaqNGzdKkr788ku1b99eAwYM0IoVK3Il09u2batq1ao5KmTAqV2a6ujUqVPq0aOHJGnKlCn64YcfJOVOpr/77rtKTExUcHCwPvjgA+t0LnBOJNJRbN27d9fx48dzbbVr11ZQUJD8/PwKPO/yn4XZw9y5c3X8+HGtW7dOwcHBuuWWW/Tnn3/mWzYzM1Pu7u4KDQ2167fmoaGh8vDwsFt9RXXfffdp+PDhuu2227Ry5Upt27ZNzz//vBYvXqzly5df9XgAALA3+hv/Q38DAFAaTCaTqlSpoldeeUX79u3TO++8ow0bNkiSli5dqtatW+vBBx/Ut99+myuZDiC3r776SnPnzpUkPfnkk4qNjVVoaKiWLl2qxMRETZo0KVcyffr06Xruuee0ZMmSXPUwnYsTM4Bi6N+/v3Hbbbfle+zGG280nnjiCevjmjVrGhMmTDDuu+8+w8/Pz+jfv7+Rnp5uDB061AgNDTU8PDyMGjVqGK+88oq1vCTrVrNmzQLjkGR8/fXX1sdHjx41JBkzZ860Hn/nnXeMW2+91fD29jbGjRtnrFy50pBknD171jAMw5g7d64REBBgLFu2zGjYsKHh4+NjdOvWzTh27Fiua82ePdto3Lix4e7uboSGhhpDhw7NN45Dhw4ZkoxPP/3UiI6ONjw8PIxrrrnGWLVqlbV8VlaW8cADDxi1atUyPD09jfr16xvTpk0r8nNsGIaxcOFCQ5KxaNGiPMcsFouRlJRkGIZhZGdnGy+88IJRrVo1w93d3WjWrJnx/fffW8teinfhwoVGhw4dDE9PT6Nly5bGvn37jE2bNhlRUVGGj4+P0b17d+PkyZN54hs/frwRHBxs+Pn5GQ8//LCRnp5uLXPx4kXjscceM6pUqWJ4eHgY7du3NzZt2mQ9fum1+PHHH42oqCjDy8vLiI6ONvbu3ZvrfhYtWmS0aNHC8PDwMGrXrm2MHz/eyMzMzPX8z5o1y+jdu7fh5eVlREZGGosXL851f5dv/fv3L/B5BQA4D/ob9DfobwBA6bBYLIZhGMaFCxdy7V+yZInRuHFj4/777zc2btxo3d+hQwejXr16Rmpq6lWNEygr0tLSjBEjRhhms9no2bOn4ePjY2zbts16/MiRI0ZUVJRx0003GcuWLbPu/+yzz3L1N+DcSKSjWGz9YOvv729MnjzZOHDggHHgwAHj9ddfNyIiIow1a9YYhw8fNtauXWvMnz/fMAzDOHnypCHJmDt3rnH8+PFcH6b+7d8fbBMTEw1JxvTp063Hq1atasyZM8c4ePCg8ddff+X7wdbNzc2IiYkxNm/ebGzZssVo1KiR8X//93/Wet955x3D09PTmDZtmvUD39SpU/ON49IHqerVqxtffPGF8fvvvxsPPvig4efnZ5w+fdowDMPIyMgwxo4da2zevNn4888/jf/+97+Gt7e3sXDhwiI9x4ZhGL169TIaNGhQ4PFLpkyZYvj7+xuffvqpsXfvXmPkyJGGm5ub8ccff+SKt2HDhsayZcuM33//3Wjbtq0RFRVldOzY0fj555+N3377zYiMjDQeeeSRXPH5+voa/fr1M3bt2mUsXbrUqFKlivHss89ayzz++ONGeHi48d133xm7d+82+vfvb1SqVMk4c+aMYRj/+2Dbpk0bY9WqVcbu3buN66+/3mjXrp21jjVr1hj+/v7Ghx9+aBw8eNBYvny5UatWLWP8+PG5nv/q1asb8+fPN/bv3288/vjjhq+vr3HmzBkjKyvL+PLLLw1Jxr59+4zjx49bP/QDAJwb/Q36G/Q3AKD0rFy50hg+fLixf//+XPu/+eYbIyIiwrjrrrtyfTEZHx9/tUMEypTk5GSjadOmhslkMl588UXDMHIGG1waAHDkyBGjZcuWRkxMTJ5BCiTTywYS6SiW/v37G2az2fDx8bFuffv2NQwj/w+2vXv3znX+Y489Ztx0003Wb8H/7d8fWAtyebm0tDTj0UcfNcxms7F9+3br8eHDh+c6J78PtpKMAwcOWMvMmDHDCAkJsT4ODw83nnvuuSLFcemD4quvvmo9npmZaVSvXt147bXXCqxj6NChRp8+fayPr/TBtlGjRkavXr0KPH557C+//HKufa1atTIeffTRXPF+8MEH1uOffvqpIcmIi4uz7ps4cWKuD9L9+/c3goKCjLS0NOu+d9991/D19TWys7ON1NRUw83NzZg3b571eEZGhhEeHm5MmjTJMIzcI8Qu+fbbbw1J1pERnTt3to4evOSTTz4xwsLCrI8lGWPGjLE+Tk1NNSRZR8L9+zUHAJQN9DcKjoP+Bv0NACiOS8m6rKws47PPPjN8fX2NkSNHGgcPHsxVbtasWYafn5/Rt2/fXCPTARQsMTHReOCBB4z77rvP8Pf3N+bMmWM9dvHiRcMwcpLptWrVyvWrQ5QdrrZNBAP8T6dOnfTuu+9aH/v4+BRYtmXLlrkeDxgwQF26dFGDBg3UvXt33XLLLeratWux4rjnnntkNpt14cIFValSRbNnz1bTpk0LvHZ+vL29VbduXevjsLAwnTx5UpJ08uRJHTt2TJ07d7YprujoaOvfXV1d1bJlS+3Zs8e6b8aMGZozZ47i4+N14cIFZWRkqHnz5kWu3zCMK5ZJSUnRsWPH1L59+1z727dvr+3bt+fad/lzFhISIklq0qRJrn2XnpNLmjVrJm9vb+vj6Ohopaam6siRI0pOTlZmZmaua7u5ual169a5nod/XzssLExSzvNeo0YNbd++XevWrdPLL79sLZOdna2LFy/q/Pnz1utfXoePj4/8/f3zxAsAKHvobxSO/gb9DQAoioMHDyo7O1v169fXl19+qe+//14ffPCBzp07p7Fjxyo7O1tDhgyxtlNBQUGKjIxUQkKCIiIiHBw94JwsFotcXP63/GSlSpU0e/ZsJSQkKDQ0VE888YQkaeDAgfLw8JBhGPL19dW2bdvk6+vrqLBRAiTSUWw+Pj6KjIwsctnLXXfddTp06JC+//57/fjjj7rrrrsUExOjL774wuY4pk6dqpiYGAUEBKhKlSpXvHZ+3Nzccj02mUzWD45eXl42x3QlCxYs0FNPPaU33nhD0dHR8vPz0+uvv25dHb0o6tevr71799otpsufg0sLo/17n8Visdv1rnTtS9dKTU3VCy+8oDvuuCPPeZ6envnWcame0ooXAHD10N8oPvobV742/Q0AFUFmZqaee+45ffnll5o8ebKefPJJffjhh5KkBx54QJI0duxYGYah//znP2rRooW2bt2qgQMH6v7771dAQIADowec0+VJ9JUrVyotLU0mk0k9e/ZUaGiohg4dKpPJpOHDhysrK0uDBg1S7969VaNGDb399tuScr60Z2HRssXlykWA0uHv769+/fpp1qxZWrhwob788kslJiZKyvmQkp2dXaR6QkNDFRkZme+HWnvw8/NTrVq1FBcXZ9N5l1Y5l6SsrCxt2bJFjRo1kiStW7dO7dq106OPPqoWLVooMjJSBw8etKn+//u//9Mff/yhxYsX5zlmGIaSk5Pl7++v8PBwrVu3LtfxdevWqXHjxjZdLz/bt2/XhQsXrI83bNggX19fRUREqG7dunJ3d8917czMTG3evNmma1933XXat2+fIiMj82yXf/NbGHd3d0kq8r8pAED5QX+D/kZR0N8AUJ65ubnpo48+UuPGjTVy5Ei98soruv/++5WRkSEpJ5n+8ssva8WKFerbt6/atGmjN998Ux07diSJDuTDMAxr/+DZZ5/V4MGD9eSTT+rpp59Wnz59JEk1a9bU0KFD9fjjj+vhhx9WkyZNtH//fk2dOtVaD0n0socR6XCIKVOmKCwsTC1atJCLi4s+//xzhYaGKjAwUJKsHyTbt28vDw8PVapUyaHxjh8/Xo888oiqVq2qm2++WefOndO6dev02GOPFXjOjBkzVK9ePTVq1EhTp07V2bNnrd/216tXTx9//LF++OEH1a5dW5988ok2b96s2rVrFzmmu+66S19//bXuuecejRkzRl27dlWVKlW0c+dOTZ06VY899ph69+6tp59+WuPGjVPdunXVvHlzzZ07V9u2bdO8efNK/LxkZGRo0KBBGjNmjA4fPqxx48Zp2LBhcnFxkY+Pj4YMGaKnn35aQUFBqlGjhiZNmqTz589r0KBBRb7G2LFjdcstt6hGjRrq27evXFxctH37du3atUsvvfRSkeqoWbOmTCaTli5dqh49esjLy4ufUQFABUB/g/5GUdHfAFDeZWRkyGKxqGbNmpo6dapuu+02NWrUSJmZmXJzc1P//v1Vt25dbd++XadOndInn3yi+vXrOzpswCld+mXba6+9pjlz5mjx4sVq3bq1Jk2apNGjR6tHjx769ttvVaNGDY0aNUo9e/bU/v379X//938ym83KysqSqysp2bKIVw0O4efnp0mTJmn//v0ym81q1aqVvvvuO+s3em+88YZiY2M1a9YsVatWTYcPH3ZovP3799fFixc1depUPfXUUwoODlbfvn0LPefVV1/Vq6++qm3btikyMlLffPONgoODJUkPP/ywtm7dqn79+slkMumee+7Ro48+qu+//77IMZlMJs2fP1/vv/++5syZo5dfflmurq6qV6+e7r//fnXr1k2S9Pjjjys5OVkjRozQyZMn1bhxY33zzTeqV69e8Z+Qf3Tu3Fn16tXTDTfcoPT0dN1zzz0aP358rufAYrHovvvu07lz59SyZUv98MMPNiUqunXrpqVLl2rChAl67bXX5ObmpoYNG+rBBx8sch3VqlXTCy+8oFGjRll/nnjpp4wAgPKL/gb9jaKivwGgvPPz89PPP/8ss9msPn366MYbb9Tq1atzJdNbtGihDh06ODpUwCl9+umnio6OVq1atSRJf/75p3799VfNmjVLbdq00bfffquJEyfqqaee0n//+1/deuut+uabb+Tj46O2bduqbdu2knJ+uUYSvewyGUVZQQhAkR0+fFi1a9fW1q1bbVrMq6wZMGCAkpKStGjRIkeHAgBAhUN/AwBQGMMwZDKZ9Ouvv+r3339XcnKy2rZtq1atWikxMVH33nuvtm7dqp9++kmNGzfW5MmT9ccff+jtt9+Wm5ubdcQtAGnp0qXq3bu3nn32WT300EOqXr26JOmTTz5Rt27d9Oeff+quu+7Ss88+q0ceeUTPPfecJk6cqFatWmn9+vVFniYOzo+vQAAAAAAAAMoRk8mkL7/8Ug899JCuv/56xcfH66OPPlLXrl31yiuvaNasWRo6dKiaNGmim2++WcuXL9emTZus6z0A+J9bbrlFb7zxht544w0ZhqFBgwapVq1auu+++yRJs2bNUtu2ba2Pw8LCdM8990iSGL9cvvCVCAAAAAAAQDmyc+dOPf7443rllVe0aNEizZ49W7t377aONK9evboWLVqkSZMmqVmzZtqxY0e5/oUTUFwWi0WS9MQTTyg2NlZz587V7NmzFR8fby2zZ88eHThwQD4+Prpw4YLi4uLUqlUrzZs3T2azmYXIyxGmdgEAAAAAAChHvvzyS02ePFnr16/XoUOH1KlTJ3Xr1k3vvfeepJxEe5MmTSTlzNlsNpsdGS7g1C5fHHTq1Kl64403NHDgQA0ePFg1atTQunXrdMsttyg0NFRubm6yWCzatm0bc6GXQ7yiAAAAAAAAZdSRI0e0fPlyWSwWNWzYUNdff73c3NwUEhKiI0eO6IYbblCPHj30zjvvSJLWrl2r5cuXq3LlygoPDyeJDuTj8i+YLn+PPPnkk8rOzta0adNkGIaGDBmi9u3b6/vvv9fnn3+uoKAgPfPMM3J1deVLqnKIRDoAAAAAAEAZtGPHDvXq1UshISE6ePCgAgMDNWXKFDVt2lTfffedvv/+ez3yyCN68803red89tlnOnz4sHx8fBwYOeC8LBaLNQH+/vvva/PmzTKbzWrYsKGGDx+up556SlLO6HRJGjJkiNq2bau2bdta67h8FDvKD+ZIBwAAAAAAKGN27Nih6Oho3XPPPVq5cqUWLFigCxcuaObMmapVq5beffddGYah6tWrKz4+XgcPHtTIkSM1b948vfrqqwoICHD0LQBOZ9euXXJxyUmXjhw5Us8995zMZrMOHTqkN998UzExMZKkp556SrGxsfrkk080adIkJSQk5KqHJHr5xBzpAAAAAAAAZciRI0d03XXXqVOnTvrss8+s+1u3bq2kpCRt3rxZrq6uWrhwoYYOHaqQkBB5e3vLZDLpv//9r1q0aOHA6AHntH//fjVo0EBLly5VgwYN1LFjR33yySfq2LGjMjMztXbtWg0aNEjXXnutlixZIkl66aWX9Ouvv+rrr7+2LuaL8ouvRwAAAAAAAMqQ7Oxs1a5dW+np6Vq3bp3at2+viRMn6tdff1XLli11//33q3Llyrrlllv07bff6sKFC6pZs6aqVKmikJAQR4cPOKXQ0FB16dJFS5YsUVpami5evGhdlNfNzU033HCDpk6dqlGjRmn16tW68cYbNWbMGBmGIZPJZP0T5ReJdAAAAAAAgDKkVq1amjdvnh5//HFNmjRJVatW1eLFi/XZZ5+pdevW2rJli3bt2qVHHnlEPj4+uu666/Tll186OmzAqfn5+enGG2/U22+/rfvuu08hISH68ccf1a9fP0k507W0aNFCJ0+ezDWVC0n0ioOpXQAAAAAAAMqgP/74Q8OGDdPatWv14osvWhdBvOTMmTNauXKlmjVrpnr16jkoSsA5XT6SXMpJiFssFjVp0kQNGzZUamqq/P399cQTT6hDhw6SpMTERHXu3Fljx47V7bff7sjw4QAk0gEAAAAAAMqogwcP6tFHH5XZbNazzz5rTfhlZmbKzc3NwdEBzispKUmBgYHWx1lZWTKZTHruuee0e/duPfzwwxo7dqwqVaqk9u3bq0WLFpoxY4bOnDmjX3/9VWaz2XHBwyFcHB0AAAAAAAAAiqdu3bp6++23ZRiGXnrpJa1bt06SSKIDhVi2bJliYmI0Y8YMnTx5UlLO1C1ms1kPPvigVqxYoeTkZC1ZskSNGjXSJ598ookTJ8rLy0ubNm2S2WxWdna2g+8CVxsj0gEAAAAAAMq4/fv3KzY2VqdPn9bUqVPVtm1bR4cEOK3du3dr6tSpmjdvnpo0aaJWrVrp+eefl6+vr3x9fTVy5EitXbtWy5Ytk6+vrzIyMnT+/HkFBQXJZDIpKytLrq4sPVnRMCIdAAAAAACgjKtXr55ef/11Va9eXeHh4Y4OB3Bq11xzjT744ANt375dMTExiouLU6tWrfTEE09o69atiomJ0aFDh7Rjxw6ZzWZ5eXmpcuXK1jnVSaJXTIxIBwAAAAAAKCcyMjLk7u7u6DCAMiM7O1tZWVl6/fXXtXr1av3000967LHHNH36dHXo0EE//PCDvLy8HB0mnAAj0gEAAAAAAMoJkuiAbVxcXOTh4aExY8Zo6dKlWrBggf766y/re8nT09PBEcJZMCIdAAAAAAAAQIVlGIZMJpP1cXJyso4fP6569erJbDbLYrHIxYXxyBUdiXQAAAAAAAAAyEd2drbMZrOjw4ATIJEOAAAAAAAAAEAh+E0CAAAAAAAAAACFIJEOAAAAAAAAAEAhSKQDAAAAAAAAAFAIEukAAAAAAAAAABSCRDoAAAAAAAAAAIUgkQ4AAAAAAAAAQCFIpAMAAAAAAAAAUAgS6QAAAAAAAAAAFIJEOgAAAAAAAAAAhSCRDgAAAAAAAABAIUikAwAAAAAAAABQCBLpAAAAAAAAAAAU4v8BLlLcxNbuBIcAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Visualizations completed\n",
"\n"
]
}
],
"source": [
"# Build anomaly detection models\n",
"analyzer.build_anomaly_detection_models()\n",
"\n",
"# Visualize results\n",
"analyzer.visualize_results()\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "4ea5b20c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"============================================================\n",
"CRYPTOCURRENCY ANALYSIS REPORT\n",
"============================================================\n",
"\n",
"1. DATA SUMMARY:\n",
" • Total cryptocurrencies analyzed: 15\n",
" • Time period: 1 year\n",
" • Features analyzed: Close_Price, Returns, Volatility, Price_MA_Ratio, Volume_Ratio, High_Low_Ratio\n",
"\n",
"2. SIMILARITY ANALYSIS:\n",
" • Correlation matrix generated for all pairs\n",
" • Top similar pairs identified\n",
"\n",
"3. ANOMALY DETECTION:\n",
" • Anomalies detected: 5\n",
" - BTC-USD\n",
" - MATIC-USD\n",
" - SHIB-USD\n",
" - TRX-USD\n",
" - LINK-USD\n",
"\n",
"4. CLUSTERING:\n",
" • Cluster 0: 8 cryptocurrencies\n",
" • Cluster 1: 6 cryptocurrencies\n",
" • Cluster 2: 1 cryptocurrencies\n",
"============================================================\n",
"Example: Detecting anomaly for new data point...\n",
"Detecting anomalies in new data...\n",
"New data point analysis:\n",
" Cluster: 1\n",
" Isolation Forest: Anomaly\n",
" One-Class SVM: Anomaly\n",
" Overall: ANOMALY\n"
]
},
{
"data": {
"text/plain": [
"{'Cluster': np.int32(1),\n",
" 'Isolation_Prediction': 'Anomaly',\n",
" 'SVM_Prediction': 'Anomaly',\n",
" 'Anomaly_Score': np.True_,\n",
" 'Is_Anomaly': np.True_}"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Generate report\n",
"analyzer.generate_report()\n",
"\n",
"# Example of detecting new anomalies\n",
"print(\"Example: Detecting anomaly for new data point...\")\n",
"# Example new data point (features in the same order as numerical_features)\n",
"example_new_point = [40000, 0.02, 0.05, 1.1, 1.5, 1.02] # BTC-like features\n",
"analyzer.detect_new_anomalies(example_new_point)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}