| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- # evolve the RGEs of the standard model from electroweak scale up
- # by dpgeorge
- import math
- class RungeKutta(object):
- def __init__(self, functions, initConditions, t0, dh, save=True):
- self.Trajectory, self.save = [[t0] + initConditions], save
- self.functions = [lambda *args: 1.0] + list(functions)
- self.N, self.dh = len(self.functions), dh
- self.coeff = [1.0/6.0, 2.0/6.0, 2.0/6.0, 1.0/6.0]
- self.InArgCoeff = [0.0, 0.5, 0.5, 1.0]
- def iterate(self):
- step = self.Trajectory[-1][:]
- istep, iac = step[:], self.InArgCoeff
- k, ktmp = self.N * [0.0], self.N * [0.0]
- for ic, c in enumerate(self.coeff):
- for if_, f in enumerate(self.functions):
- arguments = [ (x + k[i]*iac[ic]) for i, x in enumerate(istep)]
- try:
- feval = f(*arguments)
- except OverflowError:
- return False
- if abs(feval) > 1e2: # stop integrating
- return False
- ktmp[if_] = self.dh * feval
- k = ktmp[:]
- step = [s + c*k[ik] for ik,s in enumerate(step)]
- if self.save:
- self.Trajectory += [step]
- else:
- self.Trajectory = [step]
- return True
- def solve(self, finishtime):
- while self.Trajectory[-1][0] < finishtime:
- if not self.iterate():
- break
- def solveNSteps(self, nSteps):
- for i in range(nSteps):
- if not self.iterate():
- break
- def series(self):
- return zip(*self.Trajectory)
- # 1-loop RGES for the main parameters of the SM
- # couplings are: g1, g2, g3 of U(1), SU(2), SU(3); yt (top Yukawa), lambda (Higgs quartic)
- # see arxiv.org/abs/0812.4950, eqs 10-15
- sysSM = (
- lambda *a: 41.0 / 96.0 / math.pi**2 * a[1]**3, # g1
- lambda *a: -19.0 / 96.0 / math.pi**2 * a[2]**3, # g2
- lambda *a: -42.0 / 96.0 / math.pi**2 * a[3]**3, # g3
- lambda *a: 1.0 / 16.0 / math.pi**2 * (9.0 / 2.0 * a[4]**3 - 8.0 * a[3]**2 * a[4] - 9.0 / 4.0 * a[2]**2 * a[4] - 17.0 / 12.0 * a[1]**2 * a[4]), # yt
- lambda *a: 1.0 / 16.0 / math.pi**2 * (24.0 * a[5]**2 + 12.0 * a[4]**2 * a[5] - 9.0 * a[5] * (a[2]**2 + 1.0 / 3.0 * a[1]**2) - 6.0 * a[4]**4 + 9.0 / 8.0 * a[2]**4 + 3.0 / 8.0 * a[1]**4 + 3.0 / 4.0 * a[2]**2 * a[1]**2), # lambda
- )
- def drange(start, stop, step):
- r = start
- while r < stop:
- yield r
- r += step
- def phaseDiagram(system, trajStart, trajPlot, h=0.1, tend=1.0, range=1.0):
- tstart = 0.0
- for i in drange(0, range, 0.1 * range):
- for j in drange(0, range, 0.1 * range):
- rk = RungeKutta(system, trajStart(i, j), tstart, h)
- rk.solve(tend)
- # draw the line
- for tr in rk.Trajectory:
- x, y = trajPlot(tr)
- print(x, y)
- print()
- # draw the arrow
- continue
- l = (len(rk.Trajectory) - 1) / 3
- if l > 0 and 2 * l < len(rk.Trajectory):
- p1 = rk.Trajectory[l]
- p2 = rk.Trajectory[2 * l]
- x1, y1 = trajPlot(p1)
- x2, y2 = trajPlot(p2)
- dx = -0.5 * (y2 - y1) # orthogonal to line
- dy = 0.5 * (x2 - x1) # orthogonal to line
- #l = math.sqrt(dx*dx + dy*dy)
- #if abs(l) > 1e-3:
- # l = 0.1 / l
- # dx *= l
- # dy *= l
- print(x1 + dx, y1 + dy)
- print(x2, y2)
- print(x1 - dx, y1 - dy)
- print()
- def singleTraj(system, trajStart, h=0.02, tend=1.0):
- tstart = 0.0
- # compute the trajectory
- rk = RungeKutta(system, trajStart, tstart, h)
- rk.solve(tend)
- # print out trajectory
- for i in range(len(rk.Trajectory)):
- tr = rk.Trajectory[i]
- print(' '.join(["{:.4f}".format(t) for t in tr]))
- #phaseDiagram(sysSM, (lambda i, j: [0.354, 0.654, 1.278, 0.8 + 0.2 * i, 0.1 + 0.1 * j]), (lambda a: (a[4], a[5])), h=0.1, tend=math.log(10**17))
- # initial conditions at M_Z
- singleTraj(sysSM, [0.354, 0.654, 1.278, 0.983, 0.131], h=0.5, tend=math.log(10**17)) # true values
|