| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182 |
- /*
- * This file is part of the MicroPython project, http://micropython.org/
- *
- * The MIT License (MIT)
- *
- * Copyright (c) 2013-2017 Damien P. George
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
- #include <stdbool.h>
- #include <stdint.h>
- #include <stdio.h>
- #include <unistd.h> // for ssize_t
- #include <assert.h>
- #include <string.h>
- #include "py/lexer.h"
- #include "py/parse.h"
- #include "py/parsenum.h"
- #include "py/runtime.h"
- #include "py/objint.h"
- #include "py/objstr.h"
- #include "py/builtin.h"
- #if MICROPY_ENABLE_COMPILER
- #define RULE_ACT_ARG_MASK (0x0f)
- #define RULE_ACT_KIND_MASK (0x30)
- #define RULE_ACT_ALLOW_IDENT (0x40)
- #define RULE_ACT_ADD_BLANK (0x80)
- #define RULE_ACT_OR (0x10)
- #define RULE_ACT_AND (0x20)
- #define RULE_ACT_LIST (0x30)
- #define RULE_ARG_KIND_MASK (0xf000)
- #define RULE_ARG_ARG_MASK (0x0fff)
- #define RULE_ARG_TOK (0x1000)
- #define RULE_ARG_RULE (0x2000)
- #define RULE_ARG_OPT_RULE (0x3000)
- // (un)comment to use rule names; for debugging
- //#define USE_RULE_NAME (1)
- enum {
- // define rules with a compile function
- #define DEF_RULE(rule, comp, kind, ...) RULE_##rule,
- #define DEF_RULE_NC(rule, kind, ...)
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- RULE_const_object, // special node for a constant, generic Python object
- // define rules without a compile function
- #define DEF_RULE(rule, comp, kind, ...)
- #define DEF_RULE_NC(rule, kind, ...) RULE_##rule,
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- };
- // Define an array of actions corresponding to each rule
- STATIC const uint8_t rule_act_table[] = {
- #define or(n) (RULE_ACT_OR | n)
- #define and(n) (RULE_ACT_AND | n)
- #define and_ident(n) (RULE_ACT_AND | n | RULE_ACT_ALLOW_IDENT)
- #define and_blank(n) (RULE_ACT_AND | n | RULE_ACT_ADD_BLANK)
- #define one_or_more (RULE_ACT_LIST | 2)
- #define list (RULE_ACT_LIST | 1)
- #define list_with_end (RULE_ACT_LIST | 3)
- #define DEF_RULE(rule, comp, kind, ...) kind,
- #define DEF_RULE_NC(rule, kind, ...)
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- 0, // RULE_const_object
- #define DEF_RULE(rule, comp, kind, ...)
- #define DEF_RULE_NC(rule, kind, ...) kind,
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- #undef or
- #undef and
- #undef and_ident
- #undef and_blank
- #undef one_or_more
- #undef list
- #undef list_with_end
- };
- // Define the argument data for each rule, as a combined array
- STATIC const uint16_t rule_arg_combined_table[] = {
- #define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t)
- #define rule(r) (RULE_ARG_RULE | RULE_##r)
- #define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r)
- #define DEF_RULE(rule, comp, kind, ...) __VA_ARGS__,
- #define DEF_RULE_NC(rule, kind, ...)
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- #define DEF_RULE(rule, comp, kind, ...)
- #define DEF_RULE_NC(rule, kind, ...) __VA_ARGS__,
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- #undef tok
- #undef rule
- #undef opt_rule
- };
- // Macro to create a list of N identifiers where N is the number of variable arguments to the macro
- #define RULE_EXPAND(x) x
- #define RULE_PADDING(rule, ...) RULE_PADDING2(rule, __VA_ARGS__, RULE_PADDING_IDS(rule))
- #define RULE_PADDING2(rule, ...) RULE_EXPAND(RULE_PADDING3(rule, __VA_ARGS__))
- #define RULE_PADDING3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, ...) __VA_ARGS__
- #define RULE_PADDING_IDS(r) PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r,
- // Use an enum to create constants specifying how much room a rule takes in rule_arg_combined_table
- enum {
- #define DEF_RULE(rule, comp, kind, ...) RULE_PADDING(rule, __VA_ARGS__)
- #define DEF_RULE_NC(rule, kind, ...)
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- #define DEF_RULE(rule, comp, kind, ...)
- #define DEF_RULE_NC(rule, kind, ...) RULE_PADDING(rule, __VA_ARGS__)
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- };
- // Macro to compute the start of a rule in rule_arg_combined_table
- #define RULE_ARG_OFFSET(rule, ...) RULE_ARG_OFFSET2(rule, __VA_ARGS__, RULE_ARG_OFFSET_IDS(rule))
- #define RULE_ARG_OFFSET2(rule, ...) RULE_EXPAND(RULE_ARG_OFFSET3(rule, __VA_ARGS__))
- #define RULE_ARG_OFFSET3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, ...) _13
- #define RULE_ARG_OFFSET_IDS(r) PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, PAD0_##r,
- // Use the above enum values to create a table of offsets for each rule's arg
- // data, which indexes rule_arg_combined_table. The offsets require 9 bits of
- // storage but only the lower 8 bits are stored here. The 9th bit is computed
- // in get_rule_arg using the FIRST_RULE_WITH_OFFSET_ABOVE_255 constant.
- STATIC const uint8_t rule_arg_offset_table[] = {
- #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff,
- #define DEF_RULE_NC(rule, kind, ...)
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- 0, // RULE_const_object
- #define DEF_RULE(rule, comp, kind, ...)
- #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff,
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- };
- // Define a constant that's used to determine the 9th bit of the values in rule_arg_offset_table
- static const size_t FIRST_RULE_WITH_OFFSET_ABOVE_255 =
- #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule :
- #define DEF_RULE_NC(rule, kind, ...)
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- #define DEF_RULE(rule, comp, kind, ...)
- #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule :
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- 0;
- #if USE_RULE_NAME
- // Define an array of rule names corresponding to each rule
- STATIC const char *const rule_name_table[] = {
- #define DEF_RULE(rule, comp, kind, ...) #rule,
- #define DEF_RULE_NC(rule, kind, ...)
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- "", // RULE_const_object
- #define DEF_RULE(rule, comp, kind, ...)
- #define DEF_RULE_NC(rule, kind, ...) #rule,
- #include "py/grammar.h"
- #undef DEF_RULE
- #undef DEF_RULE_NC
- };
- #endif
- typedef struct _rule_stack_t {
- size_t src_line : 8 * sizeof(size_t) - 8; // maximum bits storing source line number
- size_t rule_id : 8; // this must be large enough to fit largest rule number
- size_t arg_i; // this dictates the maximum nodes in a "list" of things
- } rule_stack_t;
- typedef struct _mp_parse_chunk_t {
- size_t alloc;
- union {
- size_t used;
- struct _mp_parse_chunk_t *next;
- } union_;
- byte data[];
- } mp_parse_chunk_t;
- typedef struct _parser_t {
- size_t rule_stack_alloc;
- size_t rule_stack_top;
- rule_stack_t *rule_stack;
- size_t result_stack_alloc;
- size_t result_stack_top;
- mp_parse_node_t *result_stack;
- mp_lexer_t *lexer;
- mp_parse_tree_t tree;
- mp_parse_chunk_t *cur_chunk;
- #if MICROPY_COMP_CONST
- mp_map_t consts;
- #endif
- } parser_t;
- STATIC const uint16_t *get_rule_arg(uint8_t r_id) {
- size_t off = rule_arg_offset_table[r_id];
- if (r_id >= FIRST_RULE_WITH_OFFSET_ABOVE_255) {
- off |= 0x100;
- }
- return &rule_arg_combined_table[off];
- }
- STATIC void *parser_alloc(parser_t *parser, size_t num_bytes) {
- // use a custom memory allocator to store parse nodes sequentially in large chunks
- mp_parse_chunk_t *chunk = parser->cur_chunk;
- if (chunk != NULL && chunk->union_.used + num_bytes > chunk->alloc) {
- // not enough room at end of previously allocated chunk so try to grow
- mp_parse_chunk_t *new_data = (mp_parse_chunk_t*)m_renew_maybe(byte, chunk,
- sizeof(mp_parse_chunk_t) + chunk->alloc,
- sizeof(mp_parse_chunk_t) + chunk->alloc + num_bytes, false);
- if (new_data == NULL) {
- // could not grow existing memory; shrink it to fit previous
- (void)m_renew_maybe(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc,
- sizeof(mp_parse_chunk_t) + chunk->union_.used, false);
- chunk->alloc = chunk->union_.used;
- chunk->union_.next = parser->tree.chunk;
- parser->tree.chunk = chunk;
- chunk = NULL;
- } else {
- // could grow existing memory
- chunk->alloc += num_bytes;
- }
- }
- if (chunk == NULL) {
- // no previous chunk, allocate a new chunk
- size_t alloc = MICROPY_ALLOC_PARSE_CHUNK_INIT;
- if (alloc < num_bytes) {
- alloc = num_bytes;
- }
- chunk = (mp_parse_chunk_t*)m_new(byte, sizeof(mp_parse_chunk_t) + alloc);
- chunk->alloc = alloc;
- chunk->union_.used = 0;
- parser->cur_chunk = chunk;
- }
- byte *ret = chunk->data + chunk->union_.used;
- chunk->union_.used += num_bytes;
- return ret;
- }
- STATIC void push_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t arg_i) {
- if (parser->rule_stack_top >= parser->rule_stack_alloc) {
- rule_stack_t *rs = m_renew(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC);
- parser->rule_stack = rs;
- parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC;
- }
- rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++];
- rs->src_line = src_line;
- rs->rule_id = rule_id;
- rs->arg_i = arg_i;
- }
- STATIC void push_rule_from_arg(parser_t *parser, size_t arg) {
- assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE);
- size_t rule_id = arg & RULE_ARG_ARG_MASK;
- push_rule(parser, parser->lexer->tok_line, rule_id, 0);
- }
- STATIC uint8_t pop_rule(parser_t *parser, size_t *arg_i, size_t *src_line) {
- parser->rule_stack_top -= 1;
- uint8_t rule_id = parser->rule_stack[parser->rule_stack_top].rule_id;
- *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i;
- *src_line = parser->rule_stack[parser->rule_stack_top].src_line;
- return rule_id;
- }
- bool mp_parse_node_is_const_false(mp_parse_node_t pn) {
- return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_FALSE)
- || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) == 0);
- }
- bool mp_parse_node_is_const_true(mp_parse_node_t pn) {
- return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_TRUE)
- || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) != 0);
- }
- bool mp_parse_node_get_int_maybe(mp_parse_node_t pn, mp_obj_t *o) {
- if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
- *o = MP_OBJ_NEW_SMALL_INT(MP_PARSE_NODE_LEAF_SMALL_INT(pn));
- return true;
- } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) {
- mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
- #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
- // nodes are 32-bit pointers, but need to extract 64-bit object
- *o = (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
- #else
- *o = (mp_obj_t)pns->nodes[0];
- #endif
- return MP_OBJ_IS_INT(*o);
- } else {
- return false;
- }
- }
- int mp_parse_node_extract_list(mp_parse_node_t *pn, size_t pn_kind, mp_parse_node_t **nodes) {
- if (MP_PARSE_NODE_IS_NULL(*pn)) {
- *nodes = NULL;
- return 0;
- } else if (MP_PARSE_NODE_IS_LEAF(*pn)) {
- *nodes = pn;
- return 1;
- } else {
- mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)(*pn);
- if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) {
- *nodes = pn;
- return 1;
- } else {
- *nodes = pns->nodes;
- return MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
- }
- }
- }
- #if MICROPY_DEBUG_PRINTERS
- void mp_parse_node_print(mp_parse_node_t pn, size_t indent) {
- if (MP_PARSE_NODE_IS_STRUCT(pn)) {
- printf("[% 4d] ", (int)((mp_parse_node_struct_t*)pn)->source_line);
- } else {
- printf(" ");
- }
- for (size_t i = 0; i < indent; i++) {
- printf(" ");
- }
- if (MP_PARSE_NODE_IS_NULL(pn)) {
- printf("NULL\n");
- } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
- mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
- printf("int(" INT_FMT ")\n", arg);
- } else if (MP_PARSE_NODE_IS_LEAF(pn)) {
- uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
- switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
- case MP_PARSE_NODE_ID: printf("id(%s)\n", qstr_str(arg)); break;
- case MP_PARSE_NODE_STRING: printf("str(%s)\n", qstr_str(arg)); break;
- case MP_PARSE_NODE_BYTES: printf("bytes(%s)\n", qstr_str(arg)); break;
- default:
- assert(MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN);
- printf("tok(%u)\n", (uint)arg); break;
- }
- } else {
- // node must be a mp_parse_node_struct_t
- mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
- if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_const_object) {
- #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
- printf("literal const(%016llx)\n", (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32));
- #else
- printf("literal const(%p)\n", (mp_obj_t)pns->nodes[0]);
- #endif
- } else {
- size_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
- #if USE_RULE_NAME
- printf("%s(%u) (n=%u)\n", rule_name_table[MP_PARSE_NODE_STRUCT_KIND(pns)], (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
- #else
- printf("rule(%u) (n=%u)\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
- #endif
- for (size_t i = 0; i < n; i++) {
- mp_parse_node_print(pns->nodes[i], indent + 2);
- }
- }
- }
- }
- #endif // MICROPY_DEBUG_PRINTERS
- /*
- STATIC void result_stack_show(parser_t *parser) {
- printf("result stack, most recent first\n");
- for (ssize_t i = parser->result_stack_top - 1; i >= 0; i--) {
- mp_parse_node_print(parser->result_stack[i], 0);
- }
- }
- */
- STATIC mp_parse_node_t pop_result(parser_t *parser) {
- assert(parser->result_stack_top > 0);
- return parser->result_stack[--parser->result_stack_top];
- }
- STATIC mp_parse_node_t peek_result(parser_t *parser, size_t pos) {
- assert(parser->result_stack_top > pos);
- return parser->result_stack[parser->result_stack_top - 1 - pos];
- }
- STATIC void push_result_node(parser_t *parser, mp_parse_node_t pn) {
- if (parser->result_stack_top >= parser->result_stack_alloc) {
- mp_parse_node_t *stack = m_renew(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC);
- parser->result_stack = stack;
- parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC;
- }
- parser->result_stack[parser->result_stack_top++] = pn;
- }
- STATIC mp_parse_node_t make_node_const_object(parser_t *parser, size_t src_line, mp_obj_t obj) {
- mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_obj_t));
- pn->source_line = src_line;
- #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
- // nodes are 32-bit pointers, but need to store 64-bit object
- pn->kind_num_nodes = RULE_const_object | (2 << 8);
- pn->nodes[0] = (uint64_t)obj;
- pn->nodes[1] = (uint64_t)obj >> 32;
- #else
- pn->kind_num_nodes = RULE_const_object | (1 << 8);
- pn->nodes[0] = (uintptr_t)obj;
- #endif
- return (mp_parse_node_t)pn;
- }
- STATIC mp_parse_node_t mp_parse_node_new_small_int_checked(parser_t *parser, mp_obj_t o_val) {
- (void)parser;
- mp_int_t val = MP_OBJ_SMALL_INT_VALUE(o_val);
- #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
- // A parse node is only 32-bits and the small-int value must fit in 31-bits
- if (((val ^ (val << 1)) & 0xffffffff80000000) != 0) {
- return make_node_const_object(parser, 0, o_val);
- }
- #endif
- return mp_parse_node_new_small_int(val);
- }
- STATIC void push_result_token(parser_t *parser, uint8_t rule_id) {
- mp_parse_node_t pn;
- mp_lexer_t *lex = parser->lexer;
- if (lex->tok_kind == MP_TOKEN_NAME) {
- qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
- #if MICROPY_COMP_CONST
- // if name is a standalone identifier, look it up in the table of dynamic constants
- mp_map_elem_t *elem;
- if (rule_id == RULE_atom
- && (elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP)) != NULL) {
- if (MP_OBJ_IS_SMALL_INT(elem->value)) {
- pn = mp_parse_node_new_small_int_checked(parser, elem->value);
- } else {
- pn = make_node_const_object(parser, lex->tok_line, elem->value);
- }
- } else {
- pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id);
- }
- #else
- (void)rule_id;
- pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id);
- #endif
- } else if (lex->tok_kind == MP_TOKEN_INTEGER) {
- mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex);
- if (MP_OBJ_IS_SMALL_INT(o)) {
- pn = mp_parse_node_new_small_int_checked(parser, o);
- } else {
- pn = make_node_const_object(parser, lex->tok_line, o);
- }
- } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) {
- mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex);
- pn = make_node_const_object(parser, lex->tok_line, o);
- } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) {
- // Don't automatically intern all strings/bytes. doc strings (which are usually large)
- // will be discarded by the compiler, and so we shouldn't intern them.
- qstr qst = MP_QSTR_NULL;
- if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) {
- // intern short strings
- qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
- } else {
- // check if this string is already interned
- qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len);
- }
- if (qst != MP_QSTR_NULL) {
- // qstr exists, make a leaf node
- pn = mp_parse_node_new_leaf(lex->tok_kind == MP_TOKEN_STRING ? MP_PARSE_NODE_STRING : MP_PARSE_NODE_BYTES, qst);
- } else {
- // not interned, make a node holding a pointer to the string/bytes object
- mp_obj_t o = mp_obj_new_str_copy(
- lex->tok_kind == MP_TOKEN_STRING ? &mp_type_str : &mp_type_bytes,
- (const byte*)lex->vstr.buf, lex->vstr.len);
- pn = make_node_const_object(parser, lex->tok_line, o);
- }
- } else {
- pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind);
- }
- push_result_node(parser, pn);
- }
- #if MICROPY_COMP_MODULE_CONST
- STATIC const mp_rom_map_elem_t mp_constants_table[] = {
- #if MICROPY_PY_UERRNO
- { MP_ROM_QSTR(MP_QSTR_errno), MP_ROM_PTR(&mp_module_uerrno) },
- #endif
- #if MICROPY_PY_UCTYPES
- { MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) },
- #endif
- // Extra constants as defined by a port
- MICROPY_PORT_CONSTANTS
- };
- STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table);
- #endif
- STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args);
- #if MICROPY_COMP_CONST_FOLDING
- STATIC bool fold_logical_constants(parser_t *parser, uint8_t rule_id, size_t *num_args) {
- if (rule_id == RULE_or_test
- || rule_id == RULE_and_test) {
- // folding for binary logical ops: or and
- size_t copy_to = *num_args;
- for (size_t i = copy_to; i > 0;) {
- mp_parse_node_t pn = peek_result(parser, --i);
- parser->result_stack[parser->result_stack_top - copy_to] = pn;
- if (i == 0) {
- // always need to keep the last value
- break;
- }
- if (rule_id == RULE_or_test) {
- if (mp_parse_node_is_const_true(pn)) {
- //
- break;
- } else if (!mp_parse_node_is_const_false(pn)) {
- copy_to -= 1;
- }
- } else {
- // RULE_and_test
- if (mp_parse_node_is_const_false(pn)) {
- break;
- } else if (!mp_parse_node_is_const_true(pn)) {
- copy_to -= 1;
- }
- }
- }
- copy_to -= 1; // copy_to now contains number of args to pop
- // pop and discard all the short-circuited expressions
- for (size_t i = 0; i < copy_to; ++i) {
- pop_result(parser);
- }
- *num_args -= copy_to;
- // we did a complete folding if there's only 1 arg left
- return *num_args == 1;
- } else if (rule_id == RULE_not_test_2) {
- // folding for unary logical op: not
- mp_parse_node_t pn = peek_result(parser, 0);
- if (mp_parse_node_is_const_false(pn)) {
- pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_TRUE);
- } else if (mp_parse_node_is_const_true(pn)) {
- pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_FALSE);
- } else {
- return false;
- }
- pop_result(parser);
- push_result_node(parser, pn);
- return true;
- }
- return false;
- }
- STATIC bool fold_constants(parser_t *parser, uint8_t rule_id, size_t num_args) {
- // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4
- // it does not do partial folding, eg 1 + 2 + x -> 3 + x
- mp_obj_t arg0;
- if (rule_id == RULE_expr
- || rule_id == RULE_xor_expr
- || rule_id == RULE_and_expr) {
- // folding for binary ops: | ^ &
- mp_parse_node_t pn = peek_result(parser, num_args - 1);
- if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
- return false;
- }
- mp_binary_op_t op;
- if (rule_id == RULE_expr) {
- op = MP_BINARY_OP_OR;
- } else if (rule_id == RULE_xor_expr) {
- op = MP_BINARY_OP_XOR;
- } else {
- op = MP_BINARY_OP_AND;
- }
- for (ssize_t i = num_args - 2; i >= 0; --i) {
- pn = peek_result(parser, i);
- mp_obj_t arg1;
- if (!mp_parse_node_get_int_maybe(pn, &arg1)) {
- return false;
- }
- arg0 = mp_binary_op(op, arg0, arg1);
- }
- } else if (rule_id == RULE_shift_expr
- || rule_id == RULE_arith_expr
- || rule_id == RULE_term) {
- // folding for binary ops: << >> + - * / % //
- mp_parse_node_t pn = peek_result(parser, num_args - 1);
- if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
- return false;
- }
- for (ssize_t i = num_args - 2; i >= 1; i -= 2) {
- pn = peek_result(parser, i - 1);
- mp_obj_t arg1;
- if (!mp_parse_node_get_int_maybe(pn, &arg1)) {
- return false;
- }
- mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i));
- static const uint8_t token_to_op[] = {
- MP_BINARY_OP_ADD,
- MP_BINARY_OP_SUBTRACT,
- MP_BINARY_OP_MULTIPLY,
- 255,//MP_BINARY_OP_POWER,
- 255,//MP_BINARY_OP_TRUE_DIVIDE,
- MP_BINARY_OP_FLOOR_DIVIDE,
- MP_BINARY_OP_MODULO,
- 255,//MP_BINARY_OP_LESS
- MP_BINARY_OP_LSHIFT,
- 255,//MP_BINARY_OP_MORE
- MP_BINARY_OP_RSHIFT,
- };
- mp_binary_op_t op = token_to_op[tok - MP_TOKEN_OP_PLUS];
- if (op == (mp_binary_op_t)255) {
- return false;
- }
- int rhs_sign = mp_obj_int_sign(arg1);
- if (op <= MP_BINARY_OP_RSHIFT) {
- // << and >> can't have negative rhs
- if (rhs_sign < 0) {
- return false;
- }
- } else if (op >= MP_BINARY_OP_FLOOR_DIVIDE) {
- // % and // can't have zero rhs
- if (rhs_sign == 0) {
- return false;
- }
- }
- arg0 = mp_binary_op(op, arg0, arg1);
- }
- } else if (rule_id == RULE_factor_2) {
- // folding for unary ops: + - ~
- mp_parse_node_t pn = peek_result(parser, 0);
- if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
- return false;
- }
- mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1));
- mp_unary_op_t op;
- if (tok == MP_TOKEN_OP_PLUS) {
- op = MP_UNARY_OP_POSITIVE;
- } else if (tok == MP_TOKEN_OP_MINUS) {
- op = MP_UNARY_OP_NEGATIVE;
- } else {
- assert(tok == MP_TOKEN_OP_TILDE); // should be
- op = MP_UNARY_OP_INVERT;
- }
- arg0 = mp_unary_op(op, arg0);
- #if MICROPY_COMP_CONST
- } else if (rule_id == RULE_expr_stmt) {
- mp_parse_node_t pn1 = peek_result(parser, 0);
- if (!MP_PARSE_NODE_IS_NULL(pn1)
- && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign)
- || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) {
- // this node is of the form <x> = <y>
- mp_parse_node_t pn0 = peek_result(parser, 1);
- if (MP_PARSE_NODE_IS_ID(pn0)
- && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_atom_expr_normal)
- && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t*)pn1)->nodes[0])
- && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pn1)->nodes[0]) == MP_QSTR_const
- && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t*)pn1)->nodes[1], RULE_trailer_paren)
- ) {
- // code to assign dynamic constants: id = const(value)
- // get the id
- qstr id = MP_PARSE_NODE_LEAF_ARG(pn0);
- // get the value
- mp_parse_node_t pn_value = ((mp_parse_node_struct_t*)((mp_parse_node_struct_t*)pn1)->nodes[1])->nodes[0];
- mp_obj_t value;
- if (!mp_parse_node_get_int_maybe(pn_value, &value)) {
- mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
- "constant must be an integer");
- mp_obj_exception_add_traceback(exc, parser->lexer->source_name,
- ((mp_parse_node_struct_t*)pn1)->source_line, MP_QSTR_NULL);
- nlr_raise(exc);
- }
- // store the value in the table of dynamic constants
- mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
- assert(elem->value == MP_OBJ_NULL);
- elem->value = value;
- // If the constant starts with an underscore then treat it as a private
- // variable and don't emit any code to store the value to the id.
- if (qstr_str(id)[0] == '_') {
- pop_result(parser); // pop const(value)
- pop_result(parser); // pop id
- push_result_rule(parser, 0, RULE_pass_stmt, 0); // replace with "pass"
- return true;
- }
- // replace const(value) with value
- pop_result(parser);
- push_result_node(parser, pn_value);
- // finished folding this assignment, but we still want it to be part of the tree
- return false;
- }
- }
- return false;
- #endif
- #if MICROPY_COMP_MODULE_CONST
- } else if (rule_id == RULE_atom_expr_normal) {
- mp_parse_node_t pn0 = peek_result(parser, 1);
- mp_parse_node_t pn1 = peek_result(parser, 0);
- if (!(MP_PARSE_NODE_IS_ID(pn0)
- && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period))) {
- return false;
- }
- // id1.id2
- // look it up in constant table, see if it can be replaced with an integer
- mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pn1;
- assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
- qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0);
- qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]);
- mp_map_elem_t *elem = mp_map_lookup((mp_map_t*)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP);
- if (elem == NULL) {
- return false;
- }
- mp_obj_t dest[2];
- mp_load_method_maybe(elem->value, q_attr, dest);
- if (!(dest[0] != MP_OBJ_NULL && MP_OBJ_IS_INT(dest[0]) && dest[1] == MP_OBJ_NULL)) {
- return false;
- }
- arg0 = dest[0];
- #endif
- } else {
- return false;
- }
- // success folding this rule
- for (size_t i = num_args; i > 0; i--) {
- pop_result(parser);
- }
- if (MP_OBJ_IS_SMALL_INT(arg0)) {
- push_result_node(parser, mp_parse_node_new_small_int_checked(parser, arg0));
- } else {
- // TODO reuse memory for parse node struct?
- push_result_node(parser, make_node_const_object(parser, 0, arg0));
- }
- return true;
- }
- #endif
- STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args) {
- // optimise away parenthesis around an expression if possible
- if (rule_id == RULE_atom_paren) {
- // there should be just 1 arg for this rule
- mp_parse_node_t pn = peek_result(parser, 0);
- if (MP_PARSE_NODE_IS_NULL(pn)) {
- // need to keep parenthesis for ()
- } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_testlist_comp)) {
- // need to keep parenthesis for (a, b, ...)
- } else {
- // parenthesis around a single expression, so it's just the expression
- return;
- }
- }
- #if MICROPY_COMP_CONST_FOLDING
- if (fold_logical_constants(parser, rule_id, &num_args)) {
- // we folded this rule so return straight away
- return;
- }
- if (fold_constants(parser, rule_id, num_args)) {
- // we folded this rule so return straight away
- return;
- }
- #endif
- mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args);
- pn->source_line = src_line;
- pn->kind_num_nodes = (rule_id & 0xff) | (num_args << 8);
- for (size_t i = num_args; i > 0; i--) {
- pn->nodes[i - 1] = pop_result(parser);
- }
- push_result_node(parser, (mp_parse_node_t)pn);
- }
- mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) {
- // initialise parser and allocate memory for its stacks
- parser_t parser;
- parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT;
- parser.rule_stack_top = 0;
- parser.rule_stack = m_new(rule_stack_t, parser.rule_stack_alloc);
- parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT;
- parser.result_stack_top = 0;
- parser.result_stack = m_new(mp_parse_node_t, parser.result_stack_alloc);
- parser.lexer = lex;
- parser.tree.chunk = NULL;
- parser.cur_chunk = NULL;
- #if MICROPY_COMP_CONST
- mp_map_init(&parser.consts, 0);
- #endif
- // work out the top-level rule to use, and push it on the stack
- size_t top_level_rule;
- switch (input_kind) {
- case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break;
- case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break;
- default: top_level_rule = RULE_file_input;
- }
- push_rule(&parser, lex->tok_line, top_level_rule, 0);
- // parse!
- bool backtrack = false;
- for (;;) {
- next_rule:
- if (parser.rule_stack_top == 0) {
- break;
- }
- // Pop the next rule to process it
- size_t i; // state for the current rule
- size_t rule_src_line; // source line for the first token matched by the current rule
- uint8_t rule_id = pop_rule(&parser, &i, &rule_src_line);
- uint8_t rule_act = rule_act_table[rule_id];
- const uint16_t *rule_arg = get_rule_arg(rule_id);
- size_t n = rule_act & RULE_ACT_ARG_MASK;
- #if 0
- // debugging
- printf("depth=" UINT_FMT " ", parser.rule_stack_top);
- for (int j = 0; j < parser.rule_stack_top; ++j) {
- printf(" ");
- }
- printf("%s n=" UINT_FMT " i=" UINT_FMT " bt=%d\n", rule_name_table[rule_id], n, i, backtrack);
- #endif
- switch (rule_act & RULE_ACT_KIND_MASK) {
- case RULE_ACT_OR:
- if (i > 0 && !backtrack) {
- goto next_rule;
- } else {
- backtrack = false;
- }
- for (; i < n; ++i) {
- uint16_t kind = rule_arg[i] & RULE_ARG_KIND_MASK;
- if (kind == RULE_ARG_TOK) {
- if (lex->tok_kind == (rule_arg[i] & RULE_ARG_ARG_MASK)) {
- push_result_token(&parser, rule_id);
- mp_lexer_to_next(lex);
- goto next_rule;
- }
- } else {
- assert(kind == RULE_ARG_RULE);
- if (i + 1 < n) {
- push_rule(&parser, rule_src_line, rule_id, i + 1); // save this or-rule
- }
- push_rule_from_arg(&parser, rule_arg[i]); // push child of or-rule
- goto next_rule;
- }
- }
- backtrack = true;
- break;
- case RULE_ACT_AND: {
- // failed, backtrack if we can, else syntax error
- if (backtrack) {
- assert(i > 0);
- if ((rule_arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
- // an optional rule that failed, so continue with next arg
- push_result_node(&parser, MP_PARSE_NODE_NULL);
- backtrack = false;
- } else {
- // a mandatory rule that failed, so propagate backtrack
- if (i > 1) {
- // already eaten tokens so can't backtrack
- goto syntax_error;
- } else {
- goto next_rule;
- }
- }
- }
- // progress through the rule
- for (; i < n; ++i) {
- if ((rule_arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
- // need to match a token
- mp_token_kind_t tok_kind = rule_arg[i] & RULE_ARG_ARG_MASK;
- if (lex->tok_kind == tok_kind) {
- // matched token
- if (tok_kind == MP_TOKEN_NAME) {
- push_result_token(&parser, rule_id);
- }
- mp_lexer_to_next(lex);
- } else {
- // failed to match token
- if (i > 0) {
- // already eaten tokens so can't backtrack
- goto syntax_error;
- } else {
- // this rule failed, so backtrack
- backtrack = true;
- goto next_rule;
- }
- }
- } else {
- push_rule(&parser, rule_src_line, rule_id, i + 1); // save this and-rule
- push_rule_from_arg(&parser, rule_arg[i]); // push child of and-rule
- goto next_rule;
- }
- }
- assert(i == n);
- // matched the rule, so now build the corresponding parse_node
- #if !MICROPY_ENABLE_DOC_STRING
- // this code discards lonely statements, such as doc strings
- if (input_kind != MP_PARSE_SINGLE_INPUT && rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) {
- mp_parse_node_t p = peek_result(&parser, 1);
- if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p))
- || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_const_object)) {
- pop_result(&parser); // MP_PARSE_NODE_NULL
- pop_result(&parser); // const expression (leaf or RULE_const_object)
- // Pushing the "pass" rule here will overwrite any RULE_const_object
- // entry that was on the result stack, allowing the GC to reclaim
- // the memory from the const object when needed.
- push_result_rule(&parser, rule_src_line, RULE_pass_stmt, 0);
- break;
- }
- }
- #endif
- // count number of arguments for the parse node
- i = 0;
- size_t num_not_nil = 0;
- for (size_t x = n; x > 0;) {
- --x;
- if ((rule_arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
- mp_token_kind_t tok_kind = rule_arg[x] & RULE_ARG_ARG_MASK;
- if (tok_kind == MP_TOKEN_NAME) {
- // only tokens which were names are pushed to stack
- i += 1;
- num_not_nil += 1;
- }
- } else {
- // rules are always pushed
- if (peek_result(&parser, i) != MP_PARSE_NODE_NULL) {
- num_not_nil += 1;
- }
- i += 1;
- }
- }
- if (num_not_nil == 1 && (rule_act & RULE_ACT_ALLOW_IDENT)) {
- // this rule has only 1 argument and should not be emitted
- mp_parse_node_t pn = MP_PARSE_NODE_NULL;
- for (size_t x = 0; x < i; ++x) {
- mp_parse_node_t pn2 = pop_result(&parser);
- if (pn2 != MP_PARSE_NODE_NULL) {
- pn = pn2;
- }
- }
- push_result_node(&parser, pn);
- } else {
- // this rule must be emitted
- if (rule_act & RULE_ACT_ADD_BLANK) {
- // and add an extra blank node at the end (used by the compiler to store data)
- push_result_node(&parser, MP_PARSE_NODE_NULL);
- i += 1;
- }
- push_result_rule(&parser, rule_src_line, rule_id, i);
- }
- break;
- }
- default: {
- assert((rule_act & RULE_ACT_KIND_MASK) == RULE_ACT_LIST);
- // n=2 is: item item*
- // n=1 is: item (sep item)*
- // n=3 is: item (sep item)* [sep]
- bool had_trailing_sep;
- if (backtrack) {
- list_backtrack:
- had_trailing_sep = false;
- if (n == 2) {
- if (i == 1) {
- // fail on item, first time round; propagate backtrack
- goto next_rule;
- } else {
- // fail on item, in later rounds; finish with this rule
- backtrack = false;
- }
- } else {
- if (i == 1) {
- // fail on item, first time round; propagate backtrack
- goto next_rule;
- } else if ((i & 1) == 1) {
- // fail on item, in later rounds; have eaten tokens so can't backtrack
- if (n == 3) {
- // list allows trailing separator; finish parsing list
- had_trailing_sep = true;
- backtrack = false;
- } else {
- // list doesn't allowing trailing separator; fail
- goto syntax_error;
- }
- } else {
- // fail on separator; finish parsing list
- backtrack = false;
- }
- }
- } else {
- for (;;) {
- size_t arg = rule_arg[i & 1 & n];
- if ((arg & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
- if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) {
- if (i & 1 & n) {
- // separators which are tokens are not pushed to result stack
- } else {
- push_result_token(&parser, rule_id);
- }
- mp_lexer_to_next(lex);
- // got element of list, so continue parsing list
- i += 1;
- } else {
- // couldn't get element of list
- i += 1;
- backtrack = true;
- goto list_backtrack;
- }
- } else {
- assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE);
- push_rule(&parser, rule_src_line, rule_id, i + 1); // save this list-rule
- push_rule_from_arg(&parser, arg); // push child of list-rule
- goto next_rule;
- }
- }
- }
- assert(i >= 1);
- // compute number of elements in list, result in i
- i -= 1;
- if ((n & 1) && (rule_arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
- // don't count separators when they are tokens
- i = (i + 1) / 2;
- }
- if (i == 1) {
- // list matched single item
- if (had_trailing_sep) {
- // if there was a trailing separator, make a list of a single item
- push_result_rule(&parser, rule_src_line, rule_id, i);
- } else {
- // just leave single item on stack (ie don't wrap in a list)
- }
- } else {
- push_result_rule(&parser, rule_src_line, rule_id, i);
- }
- break;
- }
- }
- }
- #if MICROPY_COMP_CONST
- mp_map_deinit(&parser.consts);
- #endif
- // truncate final chunk and link into chain of chunks
- if (parser.cur_chunk != NULL) {
- (void)m_renew_maybe(byte, parser.cur_chunk,
- sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc,
- sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used,
- false);
- parser.cur_chunk->alloc = parser.cur_chunk->union_.used;
- parser.cur_chunk->union_.next = parser.tree.chunk;
- parser.tree.chunk = parser.cur_chunk;
- }
- if (
- lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream
- || parser.result_stack_top == 0 // check that we got a node (can fail on empty input)
- ) {
- syntax_error:;
- mp_obj_t exc;
- if (lex->tok_kind == MP_TOKEN_INDENT) {
- exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
- "unexpected indent");
- } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) {
- exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
- "unindent does not match any outer indentation level");
- } else {
- exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
- "invalid syntax");
- }
- // add traceback to give info about file name and location
- // we don't have a 'block' name, so just pass the NULL qstr to indicate this
- mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL);
- nlr_raise(exc);
- }
- // get the root parse node that we created
- assert(parser.result_stack_top == 1);
- parser.tree.root = parser.result_stack[0];
- // free the memory that we don't need anymore
- m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc);
- m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc);
- // we also free the lexer on behalf of the caller
- mp_lexer_free(lex);
- return parser.tree;
- }
- void mp_parse_tree_clear(mp_parse_tree_t *tree) {
- mp_parse_chunk_t *chunk = tree->chunk;
- while (chunk != NULL) {
- mp_parse_chunk_t *next = chunk->union_.next;
- m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc);
- chunk = next;
- }
- }
- #endif // MICROPY_ENABLE_COMPILER
|