objfun.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /*
  2. * This file is part of the MicroPython project, http://micropython.org/
  3. *
  4. * The MIT License (MIT)
  5. *
  6. * Copyright (c) 2013, 2014 Damien P. George
  7. * Copyright (c) 2014 Paul Sokolovsky
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. */
  27. #include <string.h>
  28. #include <assert.h>
  29. #include "py/objtuple.h"
  30. #include "py/objfun.h"
  31. #include "py/runtime.h"
  32. #include "py/bc.h"
  33. #include "py/stackctrl.h"
  34. #if MICROPY_DEBUG_VERBOSE // print debugging info
  35. #define DEBUG_PRINT (1)
  36. #else // don't print debugging info
  37. #define DEBUG_PRINT (0)
  38. #define DEBUG_printf(...) (void)0
  39. #endif
  40. // Note: the "name" entry in mp_obj_type_t for a function type must be
  41. // MP_QSTR_function because it is used to determine if an object is of generic
  42. // function type.
  43. /******************************************************************************/
  44. /* builtin functions */
  45. STATIC mp_obj_t fun_builtin_0_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  46. (void)args;
  47. assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_0));
  48. mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
  49. mp_arg_check_num(n_args, n_kw, 0, 0, false);
  50. return self->fun._0();
  51. }
  52. const mp_obj_type_t mp_type_fun_builtin_0 = {
  53. { &mp_type_type },
  54. .name = MP_QSTR_function,
  55. .call = fun_builtin_0_call,
  56. .unary_op = mp_generic_unary_op,
  57. };
  58. STATIC mp_obj_t fun_builtin_1_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  59. assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_1));
  60. mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
  61. mp_arg_check_num(n_args, n_kw, 1, 1, false);
  62. return self->fun._1(args[0]);
  63. }
  64. const mp_obj_type_t mp_type_fun_builtin_1 = {
  65. { &mp_type_type },
  66. .name = MP_QSTR_function,
  67. .call = fun_builtin_1_call,
  68. .unary_op = mp_generic_unary_op,
  69. };
  70. STATIC mp_obj_t fun_builtin_2_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  71. assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_2));
  72. mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
  73. mp_arg_check_num(n_args, n_kw, 2, 2, false);
  74. return self->fun._2(args[0], args[1]);
  75. }
  76. const mp_obj_type_t mp_type_fun_builtin_2 = {
  77. { &mp_type_type },
  78. .name = MP_QSTR_function,
  79. .call = fun_builtin_2_call,
  80. .unary_op = mp_generic_unary_op,
  81. };
  82. STATIC mp_obj_t fun_builtin_3_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  83. assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_3));
  84. mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
  85. mp_arg_check_num(n_args, n_kw, 3, 3, false);
  86. return self->fun._3(args[0], args[1], args[2]);
  87. }
  88. const mp_obj_type_t mp_type_fun_builtin_3 = {
  89. { &mp_type_type },
  90. .name = MP_QSTR_function,
  91. .call = fun_builtin_3_call,
  92. .unary_op = mp_generic_unary_op,
  93. };
  94. STATIC mp_obj_t fun_builtin_var_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  95. assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_var));
  96. mp_obj_fun_builtin_var_t *self = MP_OBJ_TO_PTR(self_in);
  97. // check number of arguments
  98. mp_arg_check_num(n_args, n_kw, self->n_args_min, self->n_args_max, self->is_kw);
  99. if (self->is_kw) {
  100. // function allows keywords
  101. // we create a map directly from the given args array
  102. mp_map_t kw_args;
  103. mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
  104. return self->fun.kw(n_args, args, &kw_args);
  105. } else {
  106. // function takes a variable number of arguments, but no keywords
  107. return self->fun.var(n_args, args);
  108. }
  109. }
  110. const mp_obj_type_t mp_type_fun_builtin_var = {
  111. { &mp_type_type },
  112. .name = MP_QSTR_function,
  113. .call = fun_builtin_var_call,
  114. .unary_op = mp_generic_unary_op,
  115. };
  116. /******************************************************************************/
  117. /* byte code functions */
  118. qstr mp_obj_code_get_name(const byte *code_info) {
  119. code_info = mp_decode_uint_skip(code_info); // skip code_info_size entry
  120. #if MICROPY_PERSISTENT_CODE
  121. return code_info[0] | (code_info[1] << 8);
  122. #else
  123. return mp_decode_uint_value(code_info);
  124. #endif
  125. }
  126. #if MICROPY_EMIT_NATIVE
  127. STATIC const mp_obj_type_t mp_type_fun_native;
  128. #endif
  129. qstr mp_obj_fun_get_name(mp_const_obj_t fun_in) {
  130. const mp_obj_fun_bc_t *fun = MP_OBJ_TO_PTR(fun_in);
  131. #if MICROPY_EMIT_NATIVE
  132. if (fun->base.type == &mp_type_fun_native) {
  133. // TODO native functions don't have name stored
  134. return MP_QSTR_;
  135. }
  136. #endif
  137. const byte *bc = fun->bytecode;
  138. bc = mp_decode_uint_skip(bc); // skip n_state
  139. bc = mp_decode_uint_skip(bc); // skip n_exc_stack
  140. bc++; // skip scope_params
  141. bc++; // skip n_pos_args
  142. bc++; // skip n_kwonly_args
  143. bc++; // skip n_def_pos_args
  144. return mp_obj_code_get_name(bc);
  145. }
  146. #if MICROPY_CPYTHON_COMPAT
  147. STATIC void fun_bc_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
  148. (void)kind;
  149. mp_obj_fun_bc_t *o = MP_OBJ_TO_PTR(o_in);
  150. mp_printf(print, "<function %q at 0x%p>", mp_obj_fun_get_name(o_in), o);
  151. }
  152. #endif
  153. #if DEBUG_PRINT
  154. STATIC void dump_args(const mp_obj_t *a, size_t sz) {
  155. DEBUG_printf("%p: ", a);
  156. for (size_t i = 0; i < sz; i++) {
  157. DEBUG_printf("%p ", a[i]);
  158. }
  159. DEBUG_printf("\n");
  160. }
  161. #else
  162. #define dump_args(...) (void)0
  163. #endif
  164. // With this macro you can tune the maximum number of function state bytes
  165. // that will be allocated on the stack. Any function that needs more
  166. // than this will try to use the heap, with fallback to stack allocation.
  167. #define VM_MAX_STATE_ON_STACK (11 * sizeof(mp_uint_t))
  168. // Set this to 1 to enable a simple stack overflow check.
  169. #define VM_DETECT_STACK_OVERFLOW (0)
  170. #define DECODE_CODESTATE_SIZE(bytecode, n_state_out_var, state_size_out_var) \
  171. { \
  172. /* bytecode prelude: state size and exception stack size */ \
  173. n_state_out_var = mp_decode_uint_value(bytecode); \
  174. size_t n_exc_stack = mp_decode_uint_value(mp_decode_uint_skip(bytecode)); \
  175. \
  176. n_state_out_var += VM_DETECT_STACK_OVERFLOW; \
  177. \
  178. /* state size in bytes */ \
  179. state_size_out_var = n_state_out_var * sizeof(mp_obj_t) \
  180. + n_exc_stack * sizeof(mp_exc_stack_t); \
  181. }
  182. #define INIT_CODESTATE(code_state, _fun_bc, n_args, n_kw, args) \
  183. code_state->fun_bc = _fun_bc; \
  184. code_state->ip = 0; \
  185. mp_setup_code_state(code_state, n_args, n_kw, args); \
  186. code_state->old_globals = mp_globals_get();
  187. #if MICROPY_STACKLESS
  188. mp_code_state_t *mp_obj_fun_bc_prepare_codestate(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  189. MP_STACK_CHECK();
  190. mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in);
  191. size_t n_state, state_size;
  192. DECODE_CODESTATE_SIZE(self->bytecode, n_state, state_size);
  193. mp_code_state_t *code_state;
  194. #if MICROPY_ENABLE_PYSTACK
  195. code_state = mp_pystack_alloc(sizeof(mp_code_state_t) + state_size);
  196. #else
  197. // If we use m_new_obj_var(), then on no memory, MemoryError will be
  198. // raised. But this is not correct exception for a function call,
  199. // RuntimeError should be raised instead. So, we use m_new_obj_var_maybe(),
  200. // return NULL, then vm.c takes the needed action (either raise
  201. // RuntimeError or fallback to stack allocation).
  202. code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size);
  203. if (!code_state) {
  204. return NULL;
  205. }
  206. #endif
  207. INIT_CODESTATE(code_state, self, n_args, n_kw, args);
  208. // execute the byte code with the correct globals context
  209. mp_globals_set(self->globals);
  210. return code_state;
  211. }
  212. #endif
  213. STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  214. MP_STACK_CHECK();
  215. DEBUG_printf("Input n_args: " UINT_FMT ", n_kw: " UINT_FMT "\n", n_args, n_kw);
  216. DEBUG_printf("Input pos args: ");
  217. dump_args(args, n_args);
  218. DEBUG_printf("Input kw args: ");
  219. dump_args(args + n_args, n_kw * 2);
  220. mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in);
  221. DEBUG_printf("Func n_def_args: %d\n", self->n_def_args);
  222. size_t n_state, state_size;
  223. DECODE_CODESTATE_SIZE(self->bytecode, n_state, state_size);
  224. // allocate state for locals and stack
  225. mp_code_state_t *code_state = NULL;
  226. #if MICROPY_ENABLE_PYSTACK
  227. code_state = mp_pystack_alloc(sizeof(mp_code_state_t) + state_size);
  228. #else
  229. if (state_size > VM_MAX_STATE_ON_STACK) {
  230. code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size);
  231. }
  232. if (code_state == NULL) {
  233. code_state = alloca(sizeof(mp_code_state_t) + state_size);
  234. state_size = 0; // indicate that we allocated using alloca
  235. }
  236. #endif
  237. INIT_CODESTATE(code_state, self, n_args, n_kw, args);
  238. // execute the byte code with the correct globals context
  239. mp_globals_set(self->globals);
  240. mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(code_state, MP_OBJ_NULL);
  241. mp_globals_set(code_state->old_globals);
  242. #if VM_DETECT_STACK_OVERFLOW
  243. if (vm_return_kind == MP_VM_RETURN_NORMAL) {
  244. if (code_state->sp < code_state->state) {
  245. printf("VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state);
  246. assert(0);
  247. }
  248. }
  249. // We can't check the case when an exception is returned in state[n_state - 1]
  250. // and there are no arguments, because in this case our detection slot may have
  251. // been overwritten by the returned exception (which is allowed).
  252. if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && self->n_pos_args + self->n_kwonly_args == 0)) {
  253. // Just check to see that we have at least 1 null object left in the state.
  254. bool overflow = true;
  255. for (size_t i = 0; i < n_state - self->n_pos_args - self->n_kwonly_args; i++) {
  256. if (code_state->state[i] == MP_OBJ_NULL) {
  257. overflow = false;
  258. break;
  259. }
  260. }
  261. if (overflow) {
  262. printf("VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state);
  263. assert(0);
  264. }
  265. }
  266. #endif
  267. mp_obj_t result;
  268. if (vm_return_kind == MP_VM_RETURN_NORMAL) {
  269. // return value is in *sp
  270. result = *code_state->sp;
  271. } else {
  272. // must be an exception because normal functions can't yield
  273. assert(vm_return_kind == MP_VM_RETURN_EXCEPTION);
  274. // return value is in fastn[0]==state[n_state - 1]
  275. result = code_state->state[n_state - 1];
  276. }
  277. #if MICROPY_ENABLE_PYSTACK
  278. mp_pystack_free(code_state);
  279. #else
  280. // free the state if it was allocated on the heap
  281. if (state_size != 0) {
  282. m_del_var(mp_code_state_t, byte, state_size, code_state);
  283. }
  284. #endif
  285. if (vm_return_kind == MP_VM_RETURN_NORMAL) {
  286. return result;
  287. } else { // MP_VM_RETURN_EXCEPTION
  288. nlr_raise(result);
  289. }
  290. }
  291. #if MICROPY_PY_FUNCTION_ATTRS
  292. void mp_obj_fun_bc_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
  293. if (dest[0] != MP_OBJ_NULL) {
  294. // not load attribute
  295. return;
  296. }
  297. if (attr == MP_QSTR___name__) {
  298. dest[0] = MP_OBJ_NEW_QSTR(mp_obj_fun_get_name(self_in));
  299. }
  300. }
  301. #endif
  302. const mp_obj_type_t mp_type_fun_bc = {
  303. { &mp_type_type },
  304. .name = MP_QSTR_function,
  305. #if MICROPY_CPYTHON_COMPAT
  306. .print = fun_bc_print,
  307. #endif
  308. .call = fun_bc_call,
  309. .unary_op = mp_generic_unary_op,
  310. #if MICROPY_PY_FUNCTION_ATTRS
  311. .attr = mp_obj_fun_bc_attr,
  312. #endif
  313. };
  314. mp_obj_t mp_obj_new_fun_bc(mp_obj_t def_args_in, mp_obj_t def_kw_args, const byte *code, const mp_uint_t *const_table) {
  315. size_t n_def_args = 0;
  316. size_t n_extra_args = 0;
  317. mp_obj_tuple_t *def_args = MP_OBJ_TO_PTR(def_args_in);
  318. if (def_args_in != MP_OBJ_NULL) {
  319. assert(MP_OBJ_IS_TYPE(def_args_in, &mp_type_tuple));
  320. n_def_args = def_args->len;
  321. n_extra_args = def_args->len;
  322. }
  323. if (def_kw_args != MP_OBJ_NULL) {
  324. n_extra_args += 1;
  325. }
  326. mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args);
  327. o->base.type = &mp_type_fun_bc;
  328. o->globals = mp_globals_get();
  329. o->bytecode = code;
  330. o->const_table = const_table;
  331. if (def_args != NULL) {
  332. memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t));
  333. }
  334. if (def_kw_args != MP_OBJ_NULL) {
  335. o->extra_args[n_def_args] = def_kw_args;
  336. }
  337. return MP_OBJ_FROM_PTR(o);
  338. }
  339. /******************************************************************************/
  340. /* native functions */
  341. #if MICROPY_EMIT_NATIVE
  342. STATIC mp_obj_t fun_native_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  343. MP_STACK_CHECK();
  344. mp_obj_fun_bc_t *self = self_in;
  345. mp_call_fun_t fun = MICROPY_MAKE_POINTER_CALLABLE((void*)self->bytecode);
  346. return fun(self_in, n_args, n_kw, args);
  347. }
  348. STATIC const mp_obj_type_t mp_type_fun_native = {
  349. { &mp_type_type },
  350. .name = MP_QSTR_function,
  351. .call = fun_native_call,
  352. .unary_op = mp_generic_unary_op,
  353. };
  354. mp_obj_t mp_obj_new_fun_native(mp_obj_t def_args_in, mp_obj_t def_kw_args, const void *fun_data, const mp_uint_t *const_table) {
  355. mp_obj_fun_bc_t *o = mp_obj_new_fun_bc(def_args_in, def_kw_args, (const byte*)fun_data, const_table);
  356. o->base.type = &mp_type_fun_native;
  357. return o;
  358. }
  359. #endif // MICROPY_EMIT_NATIVE
  360. /******************************************************************************/
  361. /* viper functions */
  362. #if MICROPY_EMIT_NATIVE
  363. typedef struct _mp_obj_fun_viper_t {
  364. mp_obj_base_t base;
  365. size_t n_args;
  366. void *fun_data; // GC must be able to trace this pointer
  367. mp_uint_t type_sig;
  368. } mp_obj_fun_viper_t;
  369. typedef mp_uint_t (*viper_fun_0_t)(void);
  370. typedef mp_uint_t (*viper_fun_1_t)(mp_uint_t);
  371. typedef mp_uint_t (*viper_fun_2_t)(mp_uint_t, mp_uint_t);
  372. typedef mp_uint_t (*viper_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
  373. typedef mp_uint_t (*viper_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t);
  374. STATIC mp_obj_t fun_viper_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  375. mp_obj_fun_viper_t *self = self_in;
  376. mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);
  377. void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);
  378. mp_uint_t ret;
  379. if (n_args == 0) {
  380. ret = ((viper_fun_0_t)fun)();
  381. } else if (n_args == 1) {
  382. ret = ((viper_fun_1_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4));
  383. } else if (n_args == 2) {
  384. ret = ((viper_fun_2_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4), mp_convert_obj_to_native(args[1], self->type_sig >> 8));
  385. } else if (n_args == 3) {
  386. ret = ((viper_fun_3_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4), mp_convert_obj_to_native(args[1], self->type_sig >> 8), mp_convert_obj_to_native(args[2], self->type_sig >> 12));
  387. } else {
  388. // compiler allows at most 4 arguments
  389. assert(n_args == 4);
  390. ret = ((viper_fun_4_t)fun)(
  391. mp_convert_obj_to_native(args[0], self->type_sig >> 4),
  392. mp_convert_obj_to_native(args[1], self->type_sig >> 8),
  393. mp_convert_obj_to_native(args[2], self->type_sig >> 12),
  394. mp_convert_obj_to_native(args[3], self->type_sig >> 16)
  395. );
  396. }
  397. return mp_convert_native_to_obj(ret, self->type_sig);
  398. }
  399. STATIC const mp_obj_type_t mp_type_fun_viper = {
  400. { &mp_type_type },
  401. .name = MP_QSTR_function,
  402. .call = fun_viper_call,
  403. .unary_op = mp_generic_unary_op,
  404. };
  405. mp_obj_t mp_obj_new_fun_viper(size_t n_args, void *fun_data, mp_uint_t type_sig) {
  406. mp_obj_fun_viper_t *o = m_new_obj(mp_obj_fun_viper_t);
  407. o->base.type = &mp_type_fun_viper;
  408. o->n_args = n_args;
  409. o->fun_data = fun_data;
  410. o->type_sig = type_sig;
  411. return o;
  412. }
  413. #endif // MICROPY_EMIT_NATIVE
  414. /******************************************************************************/
  415. /* inline assembler functions */
  416. #if MICROPY_EMIT_INLINE_ASM
  417. typedef struct _mp_obj_fun_asm_t {
  418. mp_obj_base_t base;
  419. size_t n_args;
  420. void *fun_data; // GC must be able to trace this pointer
  421. mp_uint_t type_sig;
  422. } mp_obj_fun_asm_t;
  423. typedef mp_uint_t (*inline_asm_fun_0_t)(void);
  424. typedef mp_uint_t (*inline_asm_fun_1_t)(mp_uint_t);
  425. typedef mp_uint_t (*inline_asm_fun_2_t)(mp_uint_t, mp_uint_t);
  426. typedef mp_uint_t (*inline_asm_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
  427. typedef mp_uint_t (*inline_asm_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t);
  428. // convert a MicroPython object to a sensible value for inline asm
  429. STATIC mp_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
  430. // TODO for byte_array, pass pointer to the array
  431. if (MP_OBJ_IS_SMALL_INT(obj)) {
  432. return MP_OBJ_SMALL_INT_VALUE(obj);
  433. } else if (obj == mp_const_none) {
  434. return 0;
  435. } else if (obj == mp_const_false) {
  436. return 0;
  437. } else if (obj == mp_const_true) {
  438. return 1;
  439. } else if (MP_OBJ_IS_TYPE(obj, &mp_type_int)) {
  440. return mp_obj_int_get_truncated(obj);
  441. } else if (MP_OBJ_IS_STR(obj)) {
  442. // pointer to the string (it's probably constant though!)
  443. size_t l;
  444. return (mp_uint_t)mp_obj_str_get_data(obj, &l);
  445. } else {
  446. mp_obj_type_t *type = mp_obj_get_type(obj);
  447. if (0) {
  448. #if MICROPY_PY_BUILTINS_FLOAT
  449. } else if (type == &mp_type_float) {
  450. // convert float to int (could also pass in float registers)
  451. return (mp_int_t)mp_obj_float_get(obj);
  452. #endif
  453. } else if (type == &mp_type_tuple || type == &mp_type_list) {
  454. // pointer to start of tuple (could pass length, but then could use len(x) for that)
  455. size_t len;
  456. mp_obj_t *items;
  457. mp_obj_get_array(obj, &len, &items);
  458. return (mp_uint_t)items;
  459. } else {
  460. mp_buffer_info_t bufinfo;
  461. if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) {
  462. // supports the buffer protocol, return a pointer to the data
  463. return (mp_uint_t)bufinfo.buf;
  464. } else {
  465. // just pass along a pointer to the object
  466. return (mp_uint_t)obj;
  467. }
  468. }
  469. }
  470. }
  471. STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  472. mp_obj_fun_asm_t *self = self_in;
  473. mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);
  474. void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);
  475. mp_uint_t ret;
  476. if (n_args == 0) {
  477. ret = ((inline_asm_fun_0_t)fun)();
  478. } else if (n_args == 1) {
  479. ret = ((inline_asm_fun_1_t)fun)(convert_obj_for_inline_asm(args[0]));
  480. } else if (n_args == 2) {
  481. ret = ((inline_asm_fun_2_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
  482. } else if (n_args == 3) {
  483. ret = ((inline_asm_fun_3_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
  484. } else {
  485. // compiler allows at most 4 arguments
  486. assert(n_args == 4);
  487. ret = ((inline_asm_fun_4_t)fun)(
  488. convert_obj_for_inline_asm(args[0]),
  489. convert_obj_for_inline_asm(args[1]),
  490. convert_obj_for_inline_asm(args[2]),
  491. convert_obj_for_inline_asm(args[3])
  492. );
  493. }
  494. return mp_convert_native_to_obj(ret, self->type_sig);
  495. }
  496. STATIC const mp_obj_type_t mp_type_fun_asm = {
  497. { &mp_type_type },
  498. .name = MP_QSTR_function,
  499. .call = fun_asm_call,
  500. .unary_op = mp_generic_unary_op,
  501. };
  502. mp_obj_t mp_obj_new_fun_asm(size_t n_args, void *fun_data, mp_uint_t type_sig) {
  503. mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
  504. o->base.type = &mp_type_fun_asm;
  505. o->n_args = n_args;
  506. o->fun_data = fun_data;
  507. o->type_sig = type_sig;
  508. return o;
  509. }
  510. #endif // MICROPY_EMIT_INLINE_ASM