| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102 |
- /*
- * This file is part of the MicroPython project, http://micropython.org/
- *
- * The MIT License (MIT)
- *
- * Copyright (c) 2013, 2014 Damien P. George
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
- #include <stdio.h>
- #include <string.h>
- #include <stdarg.h>
- #include "py/runtime.h"
- #include "py/stream.h"
- #include "py/mperrno.h"
- #include "py/mphal.h"
- #include "lib/utils/interrupt_char.h"
- #include "uart.h"
- #include "irq.h"
- #include "pendsv.h"
- /// \moduleref pyb
- /// \class UART - duplex serial communication bus
- ///
- /// UART implements the standard UART/USART duplex serial communications protocol. At
- /// the physical level it consists of 2 lines: RX and TX. The unit of communication
- /// is a character (not to be confused with a string character) which can be 8 or 9
- /// bits wide.
- ///
- /// UART objects can be created and initialised using:
- ///
- /// from pyb import UART
- ///
- /// uart = UART(1, 9600) # init with given baudrate
- /// uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters
- ///
- /// Bits can be 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2.
- ///
- /// A UART object acts like a stream object and reading and writing is done
- /// using the standard stream methods:
- ///
- /// uart.read(10) # read 10 characters, returns a bytes object
- /// uart.read() # read all available characters
- /// uart.readline() # read a line
- /// uart.readinto(buf) # read and store into the given buffer
- /// uart.write('abc') # write the 3 characters
- ///
- /// Individual characters can be read/written using:
- ///
- /// uart.readchar() # read 1 character and returns it as an integer
- /// uart.writechar(42) # write 1 character
- ///
- /// To check if there is anything to be read, use:
- ///
- /// uart.any() # returns True if any characters waiting
- #define CHAR_WIDTH_8BIT (0)
- #define CHAR_WIDTH_9BIT (1)
- struct _pyb_uart_obj_t {
- mp_obj_base_t base;
- UART_HandleTypeDef uart; // this is 17 words big
- IRQn_Type irqn;
- pyb_uart_t uart_id : 8;
- bool is_enabled : 1;
- bool attached_to_repl; // whether the UART is attached to REPL
- byte char_width; // 0 for 7,8 bit chars, 1 for 9 bit chars
- uint16_t char_mask; // 0x7f for 7 bit, 0xff for 8 bit, 0x1ff for 9 bit
- uint16_t timeout; // timeout waiting for first char
- uint16_t timeout_char; // timeout waiting between chars
- uint16_t read_buf_len; // len in chars; buf can hold len-1 chars
- volatile uint16_t read_buf_head; // indexes first empty slot
- uint16_t read_buf_tail; // indexes first full slot (not full if equals head)
- byte *read_buf; // byte or uint16_t, depending on char size
- };
- STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in);
- extern void NORETURN __fatal_error(const char *msg);
- void uart_init0(void) {
- #if defined(STM32H7)
- RCC_PeriphCLKInitTypeDef RCC_PeriphClkInit = {0};
- // Configure USART1/6 clock source
- RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART16;
- RCC_PeriphClkInit.Usart16ClockSelection = RCC_USART16CLKSOURCE_D2PCLK2;
- if (HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphClkInit) != HAL_OK) {
- __fatal_error("HAL_RCCEx_PeriphCLKConfig");
- }
- // Configure USART2/3/4/5/7/8 clock source
- RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART234578;
- RCC_PeriphClkInit.Usart16ClockSelection = RCC_USART234578CLKSOURCE_D2PCLK1;
- if (HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphClkInit) != HAL_OK) {
- __fatal_error("HAL_RCCEx_PeriphCLKConfig");
- }
- #endif
- for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) {
- MP_STATE_PORT(pyb_uart_obj_all)[i] = NULL;
- }
- }
- // unregister all interrupt sources
- void uart_deinit(void) {
- for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) {
- pyb_uart_obj_t *uart_obj = MP_STATE_PORT(pyb_uart_obj_all)[i];
- if (uart_obj != NULL) {
- pyb_uart_deinit(MP_OBJ_FROM_PTR(uart_obj));
- }
- }
- }
- STATIC bool uart_exists(int uart_id) {
- if (uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all))) {
- // safeguard against pyb_uart_obj_all array being configured too small
- return false;
- }
- switch (uart_id) {
- #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX)
- case PYB_UART_1: return true;
- #endif
- #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX)
- case PYB_UART_2: return true;
- #endif
- #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX)
- case PYB_UART_3: return true;
- #endif
- #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX)
- case PYB_UART_4: return true;
- #endif
- #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX)
- case PYB_UART_5: return true;
- #endif
- #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX)
- case PYB_UART_6: return true;
- #endif
- #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX)
- case PYB_UART_7: return true;
- #endif
- #if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX)
- case PYB_UART_8: return true;
- #endif
- default: return false;
- }
- }
- // assumes Init parameters have been set up correctly
- STATIC bool uart_init2(pyb_uart_obj_t *uart_obj) {
- USART_TypeDef *UARTx;
- IRQn_Type irqn;
- int uart_unit;
- const pin_obj_t *pins[4] = {0};
- switch (uart_obj->uart_id) {
- #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX)
- case PYB_UART_1:
- uart_unit = 1;
- UARTx = USART1;
- irqn = USART1_IRQn;
- pins[0] = MICROPY_HW_UART1_TX;
- pins[1] = MICROPY_HW_UART1_RX;
- __HAL_RCC_USART1_CLK_ENABLE();
- break;
- #endif
- #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX)
- case PYB_UART_2:
- uart_unit = 2;
- UARTx = USART2;
- irqn = USART2_IRQn;
- pins[0] = MICROPY_HW_UART2_TX;
- pins[1] = MICROPY_HW_UART2_RX;
- #if defined(MICROPY_HW_UART2_RTS)
- if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) {
- pins[2] = MICROPY_HW_UART2_RTS;
- }
- #endif
- #if defined(MICROPY_HW_UART2_CTS)
- if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
- pins[3] = MICROPY_HW_UART2_CTS;
- }
- #endif
- __HAL_RCC_USART2_CLK_ENABLE();
- break;
- #endif
- #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX)
- case PYB_UART_3:
- uart_unit = 3;
- UARTx = USART3;
- irqn = USART3_IRQn;
- pins[0] = MICROPY_HW_UART3_TX;
- pins[1] = MICROPY_HW_UART3_RX;
- #if defined(MICROPY_HW_UART3_RTS)
- if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) {
- pins[2] = MICROPY_HW_UART3_RTS;
- }
- #endif
- #if defined(MICROPY_HW_UART3_CTS)
- if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
- pins[3] = MICROPY_HW_UART3_CTS;
- }
- #endif
- __HAL_RCC_USART3_CLK_ENABLE();
- break;
- #endif
- #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX)
- case PYB_UART_4:
- uart_unit = 4;
- UARTx = UART4;
- irqn = UART4_IRQn;
- pins[0] = MICROPY_HW_UART4_TX;
- pins[1] = MICROPY_HW_UART4_RX;
- __HAL_RCC_UART4_CLK_ENABLE();
- break;
- #endif
- #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX)
- case PYB_UART_5:
- uart_unit = 5;
- UARTx = UART5;
- irqn = UART5_IRQn;
- pins[0] = MICROPY_HW_UART5_TX;
- pins[1] = MICROPY_HW_UART5_RX;
- __HAL_RCC_UART5_CLK_ENABLE();
- break;
- #endif
- #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX)
- case PYB_UART_6:
- uart_unit = 6;
- UARTx = USART6;
- irqn = USART6_IRQn;
- pins[0] = MICROPY_HW_UART6_TX;
- pins[1] = MICROPY_HW_UART6_RX;
- #if defined(MICROPY_HW_UART6_RTS)
- if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) {
- pins[2] = MICROPY_HW_UART6_RTS;
- }
- #endif
- #if defined(MICROPY_HW_UART6_CTS)
- if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
- pins[3] = MICROPY_HW_UART6_CTS;
- }
- #endif
- __HAL_RCC_USART6_CLK_ENABLE();
- break;
- #endif
- #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX)
- case PYB_UART_7:
- uart_unit = 7;
- UARTx = UART7;
- irqn = UART7_IRQn;
- pins[0] = MICROPY_HW_UART7_TX;
- pins[1] = MICROPY_HW_UART7_RX;
- __HAL_RCC_UART7_CLK_ENABLE();
- break;
- #endif
- #if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX)
- case PYB_UART_8:
- uart_unit = 8;
- #if defined(STM32F0)
- UARTx = USART8;
- irqn = USART3_8_IRQn;
- __HAL_RCC_USART8_CLK_ENABLE();
- #else
- UARTx = UART8;
- irqn = UART8_IRQn;
- __HAL_RCC_UART8_CLK_ENABLE();
- #endif
- pins[0] = MICROPY_HW_UART8_TX;
- pins[1] = MICROPY_HW_UART8_RX;
- break;
- #endif
- default:
- // UART does not exist or is not configured for this board
- return false;
- }
- uint32_t mode = MP_HAL_PIN_MODE_ALT;
- uint32_t pull = MP_HAL_PIN_PULL_UP;
- for (uint i = 0; i < 4; i++) {
- if (pins[i] != NULL) {
- bool ret = mp_hal_pin_config_alt(pins[i], mode, pull, AF_FN_UART, uart_unit);
- if (!ret) {
- return false;
- }
- }
- }
- uart_obj->irqn = irqn;
- uart_obj->uart.Instance = UARTx;
- // init UARTx
- HAL_UART_Init(&uart_obj->uart);
- uart_obj->is_enabled = true;
- uart_obj->attached_to_repl = false;
- return true;
- }
- void uart_attach_to_repl(pyb_uart_obj_t *self, bool attached) {
- self->attached_to_repl = attached;
- }
- /* obsolete and unused
- bool uart_init(pyb_uart_obj_t *uart_obj, uint32_t baudrate) {
- UART_HandleTypeDef *uh = &uart_obj->uart;
- memset(uh, 0, sizeof(*uh));
- uh->Init.BaudRate = baudrate;
- uh->Init.WordLength = UART_WORDLENGTH_8B;
- uh->Init.StopBits = UART_STOPBITS_1;
- uh->Init.Parity = UART_PARITY_NONE;
- uh->Init.Mode = UART_MODE_TX_RX;
- uh->Init.HwFlowCtl = UART_HWCONTROL_NONE;
- uh->Init.OverSampling = UART_OVERSAMPLING_16;
- return uart_init2(uart_obj);
- }
- */
- mp_uint_t uart_rx_any(pyb_uart_obj_t *self) {
- int buffer_bytes = self->read_buf_head - self->read_buf_tail;
- if (buffer_bytes < 0) {
- return buffer_bytes + self->read_buf_len;
- } else if (buffer_bytes > 0) {
- return buffer_bytes;
- } else {
- return __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET;
- }
- }
- // Waits at most timeout milliseconds for at least 1 char to become ready for
- // reading (from buf or for direct reading).
- // Returns true if something available, false if not.
- STATIC bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout) {
- uint32_t start = HAL_GetTick();
- for (;;) {
- if (self->read_buf_tail != self->read_buf_head || __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) {
- return true; // have at least 1 char ready for reading
- }
- if (HAL_GetTick() - start >= timeout) {
- return false; // timeout
- }
- MICROPY_EVENT_POLL_HOOK
- }
- }
- // assumes there is a character available
- int uart_rx_char(pyb_uart_obj_t *self) {
- if (self->read_buf_tail != self->read_buf_head) {
- // buffering via IRQ
- int data;
- if (self->char_width == CHAR_WIDTH_9BIT) {
- data = ((uint16_t*)self->read_buf)[self->read_buf_tail];
- } else {
- data = self->read_buf[self->read_buf_tail];
- }
- self->read_buf_tail = (self->read_buf_tail + 1) % self->read_buf_len;
- if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) {
- // UART was stalled by flow ctrl: re-enable IRQ now we have room in buffer
- __HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE);
- }
- return data;
- } else {
- // no buffering
- #if defined(STM32F0) || defined(STM32F7) || defined(STM32L4) || defined(STM32H7)
- return self->uart.Instance->RDR & self->char_mask;
- #else
- return self->uart.Instance->DR & self->char_mask;
- #endif
- }
- }
- // Waits at most timeout milliseconds for TX register to become empty.
- // Returns true if can write, false if can't.
- STATIC bool uart_tx_wait(pyb_uart_obj_t *self, uint32_t timeout) {
- uint32_t start = HAL_GetTick();
- for (;;) {
- if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) {
- return true; // tx register is empty
- }
- if (HAL_GetTick() - start >= timeout) {
- return false; // timeout
- }
- MICROPY_EVENT_POLL_HOOK
- }
- }
- // Waits at most timeout milliseconds for UART flag to be set.
- // Returns true if flag is/was set, false on timeout.
- STATIC bool uart_wait_flag_set(pyb_uart_obj_t *self, uint32_t flag, uint32_t timeout) {
- // Note: we don't use WFI to idle in this loop because UART tx doesn't generate
- // an interrupt and the flag can be set quickly if the baudrate is large.
- uint32_t start = HAL_GetTick();
- for (;;) {
- if (__HAL_UART_GET_FLAG(&self->uart, flag)) {
- return true;
- }
- if (timeout == 0 || HAL_GetTick() - start >= timeout) {
- return false; // timeout
- }
- }
- }
- // src - a pointer to the data to send (16-bit aligned for 9-bit chars)
- // num_chars - number of characters to send (9-bit chars count for 2 bytes from src)
- // *errcode - returns 0 for success, MP_Exxx on error
- // returns the number of characters sent (valid even if there was an error)
- STATIC size_t uart_tx_data(pyb_uart_obj_t *self, const void *src_in, size_t num_chars, int *errcode) {
- if (num_chars == 0) {
- *errcode = 0;
- return 0;
- }
- uint32_t timeout;
- if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
- // CTS can hold off transmission for an arbitrarily long time. Apply
- // the overall timeout rather than the character timeout.
- timeout = self->timeout;
- } else {
- // The timeout specified here is for waiting for the TX data register to
- // become empty (ie between chars), as well as for the final char to be
- // completely transferred. The default value for timeout_char is long
- // enough for 1 char, but we need to double it to wait for the last char
- // to be transferred to the data register, and then to be transmitted.
- timeout = 2 * self->timeout_char;
- }
- const uint8_t *src = (const uint8_t*)src_in;
- size_t num_tx = 0;
- USART_TypeDef *uart = self->uart.Instance;
- while (num_tx < num_chars) {
- if (!uart_wait_flag_set(self, UART_FLAG_TXE, timeout)) {
- *errcode = MP_ETIMEDOUT;
- return num_tx;
- }
- uint32_t data;
- if (self->char_width == CHAR_WIDTH_9BIT) {
- data = *((uint16_t*)src) & 0x1ff;
- src += 2;
- } else {
- data = *src++;
- }
- #if defined(STM32F4)
- uart->DR = data;
- #else
- uart->TDR = data;
- #endif
- ++num_tx;
- }
- // wait for the UART frame to complete
- if (!uart_wait_flag_set(self, UART_FLAG_TC, timeout)) {
- *errcode = MP_ETIMEDOUT;
- return num_tx;
- }
- *errcode = 0;
- return num_tx;
- }
- void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) {
- int errcode;
- uart_tx_data(uart_obj, str, len, &errcode);
- }
- // this IRQ handler is set up to handle RXNE interrupts only
- void uart_irq_handler(mp_uint_t uart_id) {
- // get the uart object
- pyb_uart_obj_t *self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1];
- if (self == NULL) {
- // UART object has not been set, so we can't do anything, not
- // even disable the IRQ. This should never happen.
- return;
- }
- if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) {
- if (self->read_buf_len != 0) {
- uint16_t next_head = (self->read_buf_head + 1) % self->read_buf_len;
- if (next_head != self->read_buf_tail) {
- // only read data if room in buf
- #if defined(STM32F0) || defined(STM32F7) || defined(STM32L4) || defined(STM32H7)
- int data = self->uart.Instance->RDR; // clears UART_FLAG_RXNE
- #else
- int data = self->uart.Instance->DR; // clears UART_FLAG_RXNE
- #endif
- data &= self->char_mask;
- // Handle interrupt coming in on a UART REPL
- if (self->attached_to_repl && data == mp_interrupt_char) {
- pendsv_kbd_intr();
- return;
- }
- if (self->char_width == CHAR_WIDTH_9BIT) {
- ((uint16_t*)self->read_buf)[self->read_buf_head] = data;
- } else {
- self->read_buf[self->read_buf_head] = data;
- }
- self->read_buf_head = next_head;
- } else { // No room: leave char in buf, disable interrupt
- __HAL_UART_DISABLE_IT(&self->uart, UART_IT_RXNE);
- }
- }
- }
- }
- /******************************************************************************/
- /* MicroPython bindings */
- STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
- pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
- if (!self->is_enabled) {
- mp_printf(print, "UART(%u)", self->uart_id);
- } else {
- mp_int_t bits;
- switch (self->uart.Init.WordLength) {
- #ifdef UART_WORDLENGTH_7B
- case UART_WORDLENGTH_7B: bits = 7; break;
- #endif
- case UART_WORDLENGTH_8B: bits = 8; break;
- case UART_WORDLENGTH_9B: default: bits = 9; break;
- }
- if (self->uart.Init.Parity != UART_PARITY_NONE) {
- bits -= 1;
- }
- mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=",
- self->uart_id, self->uart.Init.BaudRate, bits);
- if (self->uart.Init.Parity == UART_PARITY_NONE) {
- mp_print_str(print, "None");
- } else {
- mp_printf(print, "%u", self->uart.Init.Parity == UART_PARITY_EVEN ? 0 : 1);
- }
- if (self->uart.Init.HwFlowCtl) {
- mp_printf(print, ", flow=");
- if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) {
- mp_printf(print, "RTS%s", self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS ? "|" : "");
- }
- if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
- mp_printf(print, "CTS");
- }
- }
- mp_printf(print, ", stop=%u, timeout=%u, timeout_char=%u, read_buf_len=%u)",
- self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2,
- self->timeout, self->timeout_char,
- self->read_buf_len == 0 ? 0 : self->read_buf_len - 1); // -1 to adjust for usable length of buffer
- }
- }
- /// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, flow=0, read_buf_len=64)
- ///
- /// Initialise the UART bus with the given parameters:
- ///
- /// - `baudrate` is the clock rate.
- /// - `bits` is the number of bits per byte, 7, 8 or 9.
- /// - `parity` is the parity, `None`, 0 (even) or 1 (odd).
- /// - `stop` is the number of stop bits, 1 or 2.
- /// - `timeout` is the timeout in milliseconds to wait for the first character.
- /// - `timeout_char` is the timeout in milliseconds to wait between characters.
- /// - `flow` is RTS | CTS where RTS == 256, CTS == 512
- /// - `read_buf_len` is the character length of the read buffer (0 to disable).
- STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
- static const mp_arg_t allowed_args[] = {
- { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} },
- { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
- { MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
- { MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} },
- { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_HWCONTROL_NONE} },
- { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
- { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
- { MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} },
- };
- // parse args
- struct {
- mp_arg_val_t baudrate, bits, parity, stop, flow, timeout, timeout_char, read_buf_len;
- } args;
- mp_arg_parse_all(n_args, pos_args, kw_args,
- MP_ARRAY_SIZE(allowed_args), allowed_args, (mp_arg_val_t*)&args);
- // set the UART configuration values
- memset(&self->uart, 0, sizeof(self->uart));
- UART_InitTypeDef *init = &self->uart.Init;
- // baudrate
- init->BaudRate = args.baudrate.u_int;
- // parity
- mp_int_t bits = args.bits.u_int;
- if (args.parity.u_obj == mp_const_none) {
- init->Parity = UART_PARITY_NONE;
- } else {
- mp_int_t parity = mp_obj_get_int(args.parity.u_obj);
- init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN;
- bits += 1; // STs convention has bits including parity
- }
- // number of bits
- if (bits == 8) {
- init->WordLength = UART_WORDLENGTH_8B;
- } else if (bits == 9) {
- init->WordLength = UART_WORDLENGTH_9B;
- #ifdef UART_WORDLENGTH_7B
- } else if (bits == 7) {
- init->WordLength = UART_WORDLENGTH_7B;
- #endif
- } else {
- mp_raise_ValueError("unsupported combination of bits and parity");
- }
- // stop bits
- switch (args.stop.u_int) {
- case 1: init->StopBits = UART_STOPBITS_1; break;
- default: init->StopBits = UART_STOPBITS_2; break;
- }
- // flow control
- init->HwFlowCtl = args.flow.u_int;
- // extra config (not yet configurable)
- init->Mode = UART_MODE_TX_RX;
- init->OverSampling = UART_OVERSAMPLING_16;
- // init UART (if it fails, it's because the port doesn't exist)
- if (!uart_init2(self)) {
- nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", self->uart_id));
- }
- // set timeout
- self->timeout = args.timeout.u_int;
- // set timeout_char
- // make sure it is at least as long as a whole character (13 bits to be safe)
- // minimum value is 2ms because sys-tick has a resolution of only 1ms
- self->timeout_char = args.timeout_char.u_int;
- uint32_t min_timeout_char = 13000 / init->BaudRate + 2;
- if (self->timeout_char < min_timeout_char) {
- self->timeout_char = min_timeout_char;
- }
- // setup the read buffer
- m_del(byte, self->read_buf, self->read_buf_len << self->char_width);
- if (init->WordLength == UART_WORDLENGTH_9B && init->Parity == UART_PARITY_NONE) {
- self->char_mask = 0x1ff;
- self->char_width = CHAR_WIDTH_9BIT;
- } else {
- if (init->WordLength == UART_WORDLENGTH_9B || init->Parity == UART_PARITY_NONE) {
- self->char_mask = 0xff;
- } else {
- self->char_mask = 0x7f;
- }
- self->char_width = CHAR_WIDTH_8BIT;
- }
- self->read_buf_head = 0;
- self->read_buf_tail = 0;
- if (args.read_buf_len.u_int <= 0) {
- // no read buffer
- self->read_buf_len = 0;
- self->read_buf = NULL;
- HAL_NVIC_DisableIRQ(self->irqn);
- __HAL_UART_DISABLE_IT(&self->uart, UART_IT_RXNE);
- } else {
- // read buffer using interrupts
- self->read_buf_len = args.read_buf_len.u_int + 1; // +1 to adjust for usable length of buffer
- self->read_buf = m_new(byte, self->read_buf_len << self->char_width);
- __HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE);
- NVIC_SetPriority(IRQn_NONNEG(self->irqn), IRQ_PRI_UART);
- HAL_NVIC_EnableIRQ(self->irqn);
- }
- // compute actual baudrate that was configured
- // (this formula assumes UART_OVERSAMPLING_16)
- uint32_t actual_baudrate = 0;
- #if defined(STM32F0)
- actual_baudrate = HAL_RCC_GetPCLK1Freq();
- #elif defined(STM32F7) || defined(STM32H7)
- UART_ClockSourceTypeDef clocksource = UART_CLOCKSOURCE_UNDEFINED;
- UART_GETCLOCKSOURCE(&self->uart, clocksource);
- switch (clocksource) {
- #if defined(STM32H7)
- case UART_CLOCKSOURCE_D2PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
- case UART_CLOCKSOURCE_D3PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
- case UART_CLOCKSOURCE_D2PCLK2: actual_baudrate = HAL_RCC_GetPCLK2Freq(); break;
- #else
- case UART_CLOCKSOURCE_PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
- case UART_CLOCKSOURCE_PCLK2: actual_baudrate = HAL_RCC_GetPCLK2Freq(); break;
- case UART_CLOCKSOURCE_SYSCLK: actual_baudrate = HAL_RCC_GetSysClockFreq(); break;
- #endif
- #if defined(STM32H7)
- case UART_CLOCKSOURCE_CSI: actual_baudrate = CSI_VALUE; break;
- #endif
- case UART_CLOCKSOURCE_HSI: actual_baudrate = HSI_VALUE; break;
- case UART_CLOCKSOURCE_LSE: actual_baudrate = LSE_VALUE; break;
- #if defined(STM32H7)
- case UART_CLOCKSOURCE_PLL2:
- case UART_CLOCKSOURCE_PLL3:
- #endif
- case UART_CLOCKSOURCE_UNDEFINED: break;
- }
- #else
- if (self->uart.Instance == USART1
- #if defined(USART6)
- || self->uart.Instance == USART6
- #endif
- ) {
- actual_baudrate = HAL_RCC_GetPCLK2Freq();
- } else {
- actual_baudrate = HAL_RCC_GetPCLK1Freq();
- }
- #endif
- actual_baudrate /= self->uart.Instance->BRR;
- // check we could set the baudrate within 5%
- uint32_t baudrate_diff;
- if (actual_baudrate > init->BaudRate) {
- baudrate_diff = actual_baudrate - init->BaudRate;
- } else {
- baudrate_diff = init->BaudRate - actual_baudrate;
- }
- init->BaudRate = actual_baudrate; // remember actual baudrate for printing
- if (20 * baudrate_diff > init->BaudRate) {
- nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "set baudrate %d is not within 5%% of desired value", actual_baudrate));
- }
- return mp_const_none;
- }
- /// \classmethod \constructor(bus, ...)
- ///
- /// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'.
- /// With no additional parameters, the UART object is created but not
- /// initialised (it has the settings from the last initialisation of
- /// the bus, if any). If extra arguments are given, the bus is initialised.
- /// See `init` for parameters of initialisation.
- ///
- /// The physical pins of the UART busses are:
- ///
- /// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)`
- /// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)`
- /// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)`
- /// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)`
- /// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)`
- STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
- // check arguments
- mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
- // work out port
- int uart_id = 0;
- if (MP_OBJ_IS_STR(args[0])) {
- const char *port = mp_obj_str_get_str(args[0]);
- if (0) {
- #ifdef MICROPY_HW_UART1_NAME
- } else if (strcmp(port, MICROPY_HW_UART1_NAME) == 0) {
- uart_id = PYB_UART_1;
- #endif
- #ifdef MICROPY_HW_UART2_NAME
- } else if (strcmp(port, MICROPY_HW_UART2_NAME) == 0) {
- uart_id = PYB_UART_2;
- #endif
- #ifdef MICROPY_HW_UART3_NAME
- } else if (strcmp(port, MICROPY_HW_UART3_NAME) == 0) {
- uart_id = PYB_UART_3;
- #endif
- #ifdef MICROPY_HW_UART4_NAME
- } else if (strcmp(port, MICROPY_HW_UART4_NAME) == 0) {
- uart_id = PYB_UART_4;
- #endif
- #ifdef MICROPY_HW_UART5_NAME
- } else if (strcmp(port, MICROPY_HW_UART5_NAME) == 0) {
- uart_id = PYB_UART_5;
- #endif
- #ifdef MICROPY_HW_UART6_NAME
- } else if (strcmp(port, MICROPY_HW_UART6_NAME) == 0) {
- uart_id = PYB_UART_6;
- #endif
- } else {
- nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) doesn't exist", port));
- }
- } else {
- uart_id = mp_obj_get_int(args[0]);
- if (!uart_exists(uart_id)) {
- nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", uart_id));
- }
- }
- pyb_uart_obj_t *self;
- if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) {
- // create new UART object
- self = m_new0(pyb_uart_obj_t, 1);
- self->base.type = &pyb_uart_type;
- self->uart_id = uart_id;
- MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self;
- } else {
- // reference existing UART object
- self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1];
- }
- if (n_args > 1 || n_kw > 0) {
- // start the peripheral
- mp_map_t kw_args;
- mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
- pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
- }
- return MP_OBJ_FROM_PTR(self);
- }
- STATIC mp_obj_t pyb_uart_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
- return pyb_uart_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
- }
- STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init);
- /// \method deinit()
- /// Turn off the UART bus.
- STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) {
- pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
- self->is_enabled = false;
- UART_HandleTypeDef *uart = &self->uart;
- HAL_UART_DeInit(uart);
- if (uart->Instance == USART1) {
- HAL_NVIC_DisableIRQ(USART1_IRQn);
- __HAL_RCC_USART1_FORCE_RESET();
- __HAL_RCC_USART1_RELEASE_RESET();
- __HAL_RCC_USART1_CLK_DISABLE();
- } else if (uart->Instance == USART2) {
- HAL_NVIC_DisableIRQ(USART2_IRQn);
- __HAL_RCC_USART2_FORCE_RESET();
- __HAL_RCC_USART2_RELEASE_RESET();
- __HAL_RCC_USART2_CLK_DISABLE();
- #if defined(USART3)
- } else if (uart->Instance == USART3) {
- #if !defined(STM32F0)
- HAL_NVIC_DisableIRQ(USART3_IRQn);
- #endif
- __HAL_RCC_USART3_FORCE_RESET();
- __HAL_RCC_USART3_RELEASE_RESET();
- __HAL_RCC_USART3_CLK_DISABLE();
- #endif
- #if defined(UART4)
- } else if (uart->Instance == UART4) {
- HAL_NVIC_DisableIRQ(UART4_IRQn);
- __HAL_RCC_UART4_FORCE_RESET();
- __HAL_RCC_UART4_RELEASE_RESET();
- __HAL_RCC_UART4_CLK_DISABLE();
- #endif
- #if defined(UART5)
- } else if (uart->Instance == UART5) {
- HAL_NVIC_DisableIRQ(UART5_IRQn);
- __HAL_RCC_UART5_FORCE_RESET();
- __HAL_RCC_UART5_RELEASE_RESET();
- __HAL_RCC_UART5_CLK_DISABLE();
- #endif
- #if defined(UART6)
- } else if (uart->Instance == USART6) {
- HAL_NVIC_DisableIRQ(USART6_IRQn);
- __HAL_RCC_USART6_FORCE_RESET();
- __HAL_RCC_USART6_RELEASE_RESET();
- __HAL_RCC_USART6_CLK_DISABLE();
- #endif
- #if defined(UART7)
- } else if (uart->Instance == UART7) {
- HAL_NVIC_DisableIRQ(UART7_IRQn);
- __HAL_RCC_UART7_FORCE_RESET();
- __HAL_RCC_UART7_RELEASE_RESET();
- __HAL_RCC_UART7_CLK_DISABLE();
- #endif
- #if defined(UART8)
- } else if (uart->Instance == UART8) {
- HAL_NVIC_DisableIRQ(UART8_IRQn);
- __HAL_RCC_UART8_FORCE_RESET();
- __HAL_RCC_UART8_RELEASE_RESET();
- __HAL_RCC_UART8_CLK_DISABLE();
- #endif
- }
- return mp_const_none;
- }
- STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit);
- /// \method any()
- /// Return `True` if any characters waiting, else `False`.
- STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) {
- pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
- return MP_OBJ_NEW_SMALL_INT(uart_rx_any(self));
- }
- STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any);
- /// \method writechar(char)
- /// Write a single character on the bus. `char` is an integer to write.
- /// Return value: `None`.
- STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
- pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
- // get the character to write (might be 9 bits)
- uint16_t data = mp_obj_get_int(char_in);
- // write the character
- int errcode;
- if (uart_tx_wait(self, self->timeout)) {
- uart_tx_data(self, &data, 1, &errcode);
- } else {
- errcode = MP_ETIMEDOUT;
- }
- if (errcode != 0) {
- mp_raise_OSError(errcode);
- }
- return mp_const_none;
- }
- STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar);
- /// \method readchar()
- /// Receive a single character on the bus.
- /// Return value: The character read, as an integer. Returns -1 on timeout.
- STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) {
- pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
- if (uart_rx_wait(self, self->timeout)) {
- return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self));
- } else {
- // return -1 on timeout
- return MP_OBJ_NEW_SMALL_INT(-1);
- }
- }
- STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar);
- // uart.sendbreak()
- STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) {
- pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
- #if defined(STM32F0) || defined(STM32F7) || defined(STM32L4) || defined(STM32H7)
- self->uart.Instance->RQR = USART_RQR_SBKRQ; // write-only register
- #else
- self->uart.Instance->CR1 |= USART_CR1_SBK;
- #endif
- return mp_const_none;
- }
- STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak);
- STATIC const mp_rom_map_elem_t pyb_uart_locals_dict_table[] = {
- // instance methods
- { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_uart_init_obj) },
- { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_uart_deinit_obj) },
- { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_uart_any_obj) },
- /// \method read([nbytes])
- { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
- /// \method readline()
- { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj)},
- /// \method readinto(buf[, nbytes])
- { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
- /// \method write(buf)
- { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
- { MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&pyb_uart_writechar_obj) },
- { MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&pyb_uart_readchar_obj) },
- { MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&pyb_uart_sendbreak_obj) },
- // class constants
- { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) },
- { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) },
- };
- STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table);
- STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
- pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
- byte *buf = buf_in;
- // check that size is a multiple of character width
- if (size & self->char_width) {
- *errcode = MP_EIO;
- return MP_STREAM_ERROR;
- }
- // convert byte size to char size
- size >>= self->char_width;
- // make sure we want at least 1 char
- if (size == 0) {
- return 0;
- }
- // wait for first char to become available
- if (!uart_rx_wait(self, self->timeout)) {
- // return EAGAIN error to indicate non-blocking (then read() method returns None)
- *errcode = MP_EAGAIN;
- return MP_STREAM_ERROR;
- }
- // read the data
- byte *orig_buf = buf;
- for (;;) {
- int data = uart_rx_char(self);
- if (self->char_width == CHAR_WIDTH_9BIT) {
- *(uint16_t*)buf = data;
- buf += 2;
- } else {
- *buf++ = data;
- }
- if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) {
- // return number of bytes read
- return buf - orig_buf;
- }
- }
- }
- STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
- pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
- const byte *buf = buf_in;
- // check that size is a multiple of character width
- if (size & self->char_width) {
- *errcode = MP_EIO;
- return MP_STREAM_ERROR;
- }
- // wait to be able to write the first character. EAGAIN causes write to return None
- if (!uart_tx_wait(self, self->timeout)) {
- *errcode = MP_EAGAIN;
- return MP_STREAM_ERROR;
- }
- // write the data
- size_t num_tx = uart_tx_data(self, buf, size >> self->char_width, errcode);
- if (*errcode == 0 || *errcode == MP_ETIMEDOUT) {
- // return number of bytes written, even if there was a timeout
- return num_tx << self->char_width;
- } else {
- return MP_STREAM_ERROR;
- }
- }
- STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
- pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
- mp_uint_t ret;
- if (request == MP_STREAM_POLL) {
- uintptr_t flags = arg;
- ret = 0;
- if ((flags & MP_STREAM_POLL_RD) && uart_rx_any(self)) {
- ret |= MP_STREAM_POLL_RD;
- }
- if ((flags & MP_STREAM_POLL_WR) && __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) {
- ret |= MP_STREAM_POLL_WR;
- }
- } else {
- *errcode = MP_EINVAL;
- ret = MP_STREAM_ERROR;
- }
- return ret;
- }
- STATIC const mp_stream_p_t uart_stream_p = {
- .read = pyb_uart_read,
- .write = pyb_uart_write,
- .ioctl = pyb_uart_ioctl,
- .is_text = false,
- };
- const mp_obj_type_t pyb_uart_type = {
- { &mp_type_type },
- .name = MP_QSTR_UART,
- .print = pyb_uart_print,
- .make_new = pyb_uart_make_new,
- .getiter = mp_identity_getiter,
- .iternext = mp_stream_unbuffered_iter,
- .protocol = &uart_stream_p,
- .locals_dict = (mp_obj_dict_t*)&pyb_uart_locals_dict,
- };
|