sdcard.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. /*
  2. * This file is part of the MicroPython project, http://micropython.org/
  3. *
  4. * The MIT License (MIT)
  5. *
  6. * Copyright (c) 2013, 2014 Damien P. George
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. */
  26. #include <string.h>
  27. #include "py/runtime.h"
  28. #include "py/mphal.h"
  29. #include "lib/oofatfs/ff.h"
  30. #include "extmod/vfs_fat.h"
  31. #include "sdcard.h"
  32. #include "pin.h"
  33. #include "pin_static_af.h"
  34. #include "bufhelper.h"
  35. #include "dma.h"
  36. #include "irq.h"
  37. #if MICROPY_HW_HAS_SDCARD
  38. #if defined(STM32F7) || defined(STM32H7) || defined(STM32L4)
  39. // The F7 has 2 SDMMC units but at the moment we only support using one of them in
  40. // a given build. If a boards config file defines MICROPY_HW_SDMMC2_CK then SDMMC2
  41. // is used, otherwise SDMMC1 is used.
  42. #if defined(MICROPY_HW_SDMMC2_CK)
  43. #define SDIO SDMMC2
  44. #define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC2_CLK_ENABLE()
  45. #define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC2_CLK_DISABLE()
  46. #define SDMMC_IRQn SDMMC2_IRQn
  47. #define SDMMC_TX_DMA dma_SDMMC_2_TX
  48. #define SDMMC_RX_DMA dma_SDMMC_2_RX
  49. #else
  50. #define SDIO SDMMC1
  51. #define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC1_CLK_ENABLE()
  52. #define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC1_CLK_DISABLE()
  53. #define SDMMC_IRQn SDMMC1_IRQn
  54. #define SDMMC_TX_DMA dma_SDIO_0_TX
  55. #define SDMMC_RX_DMA dma_SDIO_0_RX
  56. #endif
  57. // The F7 & L4 series calls the peripheral SDMMC rather than SDIO, so provide some
  58. // #defines for backwards compatability.
  59. #define SDIO_CLOCK_EDGE_RISING SDMMC_CLOCK_EDGE_RISING
  60. #define SDIO_CLOCK_EDGE_FALLING SDMMC_CLOCK_EDGE_FALLING
  61. #define SDIO_CLOCK_BYPASS_DISABLE SDMMC_CLOCK_BYPASS_DISABLE
  62. #define SDIO_CLOCK_BYPASS_ENABLE SDMMC_CLOCK_BYPASS_ENABLE
  63. #define SDIO_CLOCK_POWER_SAVE_DISABLE SDMMC_CLOCK_POWER_SAVE_DISABLE
  64. #define SDIO_CLOCK_POWER_SAVE_ENABLE SDMMC_CLOCK_POWER_SAVE_ENABLE
  65. #define SDIO_BUS_WIDE_1B SDMMC_BUS_WIDE_1B
  66. #define SDIO_BUS_WIDE_4B SDMMC_BUS_WIDE_4B
  67. #define SDIO_BUS_WIDE_8B SDMMC_BUS_WIDE_8B
  68. #define SDIO_HARDWARE_FLOW_CONTROL_DISABLE SDMMC_HARDWARE_FLOW_CONTROL_DISABLE
  69. #define SDIO_HARDWARE_FLOW_CONTROL_ENABLE SDMMC_HARDWARE_FLOW_CONTROL_ENABLE
  70. #if defined(STM32H7)
  71. #define GPIO_AF12_SDIO GPIO_AF12_SDIO1
  72. #define SDIO_IRQHandler SDMMC1_IRQHandler
  73. #define SDIO_TRANSFER_CLK_DIV SDMMC_NSpeed_CLK_DIV
  74. #define SDIO_USE_GPDMA 0
  75. #else
  76. #define SDIO_TRANSFER_CLK_DIV SDMMC_TRANSFER_CLK_DIV
  77. #define SDIO_USE_GPDMA 1
  78. #endif
  79. #else
  80. // These are definitions for F4 MCUs so there is a common macro across all MCUs.
  81. #define SDMMC_CLK_ENABLE() __SDIO_CLK_ENABLE()
  82. #define SDMMC_CLK_DISABLE() __SDIO_CLK_DISABLE()
  83. #define SDMMC_IRQn SDIO_IRQn
  84. #define SDMMC_TX_DMA dma_SDIO_0_TX
  85. #define SDMMC_RX_DMA dma_SDIO_0_RX
  86. #define SDIO_USE_GPDMA 1
  87. #endif
  88. // If no custom SDIO pins defined, use the default ones
  89. #ifndef MICROPY_HW_SDMMC_CK
  90. #define MICROPY_HW_SDMMC_D0 (pin_C8)
  91. #define MICROPY_HW_SDMMC_D1 (pin_C9)
  92. #define MICROPY_HW_SDMMC_D2 (pin_C10)
  93. #define MICROPY_HW_SDMMC_D3 (pin_C11)
  94. #define MICROPY_HW_SDMMC_CK (pin_C12)
  95. #define MICROPY_HW_SDMMC_CMD (pin_D2)
  96. #endif
  97. // TODO: Since SDIO is fundamentally half-duplex, we really only need to
  98. // tie up one DMA channel. However, the HAL DMA API doesn't
  99. // seem to provide a convenient way to change the direction. I believe that
  100. // its as simple as changing the CR register and the Init.Direction field
  101. // and make DMA_SetConfig public.
  102. // TODO: I think that as an optimization, we can allocate these dynamically
  103. // if an sd card is detected. This will save approx 260 bytes of RAM
  104. // when no sdcard was being used.
  105. static SD_HandleTypeDef sd_handle;
  106. #if SDIO_USE_GPDMA
  107. static DMA_HandleTypeDef sd_rx_dma, sd_tx_dma;
  108. #endif
  109. void sdcard_init(void) {
  110. // invalidate the sd_handle
  111. sd_handle.Instance = NULL;
  112. // configure SD GPIO
  113. // we do this here an not in HAL_SD_MspInit because it apparently
  114. // makes it more robust to have the pins always pulled high
  115. // Note: the mp_hal_pin_config function will configure the GPIO in
  116. // fast mode which can do up to 50MHz. This should be plenty for SDIO
  117. // which clocks up to 25MHz maximum.
  118. #if defined(MICROPY_HW_SDMMC2_CK)
  119. // Use SDMMC2 peripheral with pins provided by the board's config
  120. mp_hal_pin_config_alt_static(MICROPY_HW_SDMMC2_CK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDMMC2_CK);
  121. mp_hal_pin_config_alt_static(MICROPY_HW_SDMMC2_CMD, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDMMC2_CMD);
  122. mp_hal_pin_config_alt_static(MICROPY_HW_SDMMC2_D0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDMMC2_D0);
  123. mp_hal_pin_config_alt_static(MICROPY_HW_SDMMC2_D1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDMMC2_D1);
  124. mp_hal_pin_config_alt_static(MICROPY_HW_SDMMC2_D2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDMMC2_D2);
  125. mp_hal_pin_config_alt_static(MICROPY_HW_SDMMC2_D3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDMMC2_D3);
  126. #else
  127. // Default SDIO/SDMMC1 config
  128. mp_hal_pin_config_alt_static(MICROPY_HW_SDMMC_D0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDIO_D0);
  129. mp_hal_pin_config_alt_static(MICROPY_HW_SDMMC_D1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDIO_D1);
  130. mp_hal_pin_config_alt_static(MICROPY_HW_SDMMC_D2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDIO_D2);
  131. mp_hal_pin_config_alt_static(MICROPY_HW_SDMMC_D3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDIO_D3);
  132. mp_hal_pin_config_alt_static(MICROPY_HW_SDMMC_CK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDIO_CK);
  133. mp_hal_pin_config_alt_static(MICROPY_HW_SDMMC_CMD, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDIO_CMD);
  134. #endif
  135. // configure the SD card detect pin
  136. // we do this here so we can detect if the SD card is inserted before powering it on
  137. mp_hal_pin_config(MICROPY_HW_SDCARD_DETECT_PIN, MP_HAL_PIN_MODE_INPUT, MICROPY_HW_SDCARD_DETECT_PULL, 0);
  138. }
  139. void HAL_SD_MspInit(SD_HandleTypeDef *hsd) {
  140. // enable SDIO clock
  141. SDMMC_CLK_ENABLE();
  142. #if defined(STM32H7)
  143. // Reset SDMMC
  144. __HAL_RCC_SDMMC1_FORCE_RESET();
  145. __HAL_RCC_SDMMC1_RELEASE_RESET();
  146. #endif
  147. // NVIC configuration for SDIO interrupts
  148. NVIC_SetPriority(SDMMC_IRQn, IRQ_PRI_SDIO);
  149. HAL_NVIC_EnableIRQ(SDMMC_IRQn);
  150. // GPIO have already been initialised by sdcard_init
  151. }
  152. void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) {
  153. HAL_NVIC_DisableIRQ(SDMMC_IRQn);
  154. SDMMC_CLK_DISABLE();
  155. }
  156. bool sdcard_is_present(void) {
  157. return HAL_GPIO_ReadPin(MICROPY_HW_SDCARD_DETECT_PIN->gpio, MICROPY_HW_SDCARD_DETECT_PIN->pin_mask) == MICROPY_HW_SDCARD_DETECT_PRESENT;
  158. }
  159. bool sdcard_power_on(void) {
  160. if (!sdcard_is_present()) {
  161. return false;
  162. }
  163. if (sd_handle.Instance) {
  164. return true;
  165. }
  166. // SD device interface configuration
  167. sd_handle.Instance = SDIO;
  168. sd_handle.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
  169. #ifndef STM32H7
  170. sd_handle.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
  171. #endif
  172. sd_handle.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_ENABLE;
  173. sd_handle.Init.BusWide = SDIO_BUS_WIDE_1B;
  174. sd_handle.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
  175. sd_handle.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV;
  176. // init the SD interface, with retry if it's not ready yet
  177. for (int retry = 10; HAL_SD_Init(&sd_handle) != HAL_OK; retry--) {
  178. if (retry == 0) {
  179. goto error;
  180. }
  181. mp_hal_delay_ms(50);
  182. }
  183. // configure the SD bus width for wide operation
  184. #if defined(STM32F7)
  185. // use maximum SDMMC clock speed on F7 MCUs
  186. sd_handle.Init.ClockBypass = SDMMC_CLOCK_BYPASS_ENABLE;
  187. #endif
  188. if (HAL_SD_ConfigWideBusOperation(&sd_handle, SDIO_BUS_WIDE_4B) != HAL_OK) {
  189. HAL_SD_DeInit(&sd_handle);
  190. goto error;
  191. }
  192. return true;
  193. error:
  194. sd_handle.Instance = NULL;
  195. return false;
  196. }
  197. void sdcard_power_off(void) {
  198. if (!sd_handle.Instance) {
  199. return;
  200. }
  201. HAL_SD_DeInit(&sd_handle);
  202. sd_handle.Instance = NULL;
  203. }
  204. uint64_t sdcard_get_capacity_in_bytes(void) {
  205. if (sd_handle.Instance == NULL) {
  206. return 0;
  207. }
  208. HAL_SD_CardInfoTypeDef cardinfo;
  209. HAL_SD_GetCardInfo(&sd_handle, &cardinfo);
  210. return (uint64_t)cardinfo.LogBlockNbr * (uint64_t)cardinfo.LogBlockSize;
  211. }
  212. #if !defined(MICROPY_HW_SDMMC2_CK)
  213. void SDIO_IRQHandler(void) {
  214. IRQ_ENTER(SDIO_IRQn);
  215. HAL_SD_IRQHandler(&sd_handle);
  216. IRQ_EXIT(SDIO_IRQn);
  217. }
  218. #endif
  219. #if defined(STM32F7)
  220. void SDMMC2_IRQHandler(void) {
  221. IRQ_ENTER(SDMMC2_IRQn);
  222. HAL_SD_IRQHandler(&sd_handle);
  223. IRQ_EXIT(SDMMC2_IRQn);
  224. }
  225. #endif
  226. STATIC HAL_StatusTypeDef sdcard_wait_finished(SD_HandleTypeDef *sd, uint32_t timeout) {
  227. // Wait for HAL driver to be ready (eg for DMA to finish)
  228. uint32_t start = HAL_GetTick();
  229. for (;;) {
  230. // Do an atomic check of the state; WFI will exit even if IRQs are disabled
  231. uint32_t irq_state = disable_irq();
  232. if (sd->State != HAL_SD_STATE_BUSY) {
  233. enable_irq(irq_state);
  234. break;
  235. }
  236. __WFI();
  237. enable_irq(irq_state);
  238. if (HAL_GetTick() - start >= timeout) {
  239. return HAL_TIMEOUT;
  240. }
  241. }
  242. // Wait for SD card to complete the operation
  243. for (;;) {
  244. HAL_SD_CardStateTypedef state = HAL_SD_GetCardState(sd);
  245. if (state == HAL_SD_CARD_TRANSFER) {
  246. return HAL_OK;
  247. }
  248. if (!(state == HAL_SD_CARD_SENDING || state == HAL_SD_CARD_RECEIVING || state == HAL_SD_CARD_PROGRAMMING)) {
  249. return HAL_ERROR;
  250. }
  251. if (HAL_GetTick() - start >= timeout) {
  252. return HAL_TIMEOUT;
  253. }
  254. __WFI();
  255. }
  256. return HAL_OK;
  257. }
  258. mp_uint_t sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
  259. // check that SD card is initialised
  260. if (sd_handle.Instance == NULL) {
  261. return HAL_ERROR;
  262. }
  263. HAL_StatusTypeDef err = HAL_OK;
  264. // check that dest pointer is aligned on a 4-byte boundary
  265. uint8_t *orig_dest = NULL;
  266. uint32_t saved_word;
  267. if (((uint32_t)dest & 3) != 0) {
  268. // Pointer is not aligned so it needs fixing.
  269. // We could allocate a temporary block of RAM (as sdcard_write_blocks
  270. // does) but instead we are going to use the dest buffer inplace. We
  271. // are going to align the pointer, save the initial word at the aligned
  272. // location, read into the aligned memory, move the memory back to the
  273. // unaligned location, then restore the initial bytes at the aligned
  274. // location. We should have no trouble doing this as those initial
  275. // bytes at the aligned location should be able to be changed for the
  276. // duration of this function call.
  277. orig_dest = dest;
  278. dest = (uint8_t*)((uint32_t)dest & ~3);
  279. saved_word = *(uint32_t*)dest;
  280. }
  281. if (query_irq() == IRQ_STATE_ENABLED) {
  282. // we must disable USB irqs to prevent MSC contention with SD card
  283. uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
  284. #if SDIO_USE_GPDMA
  285. dma_init(&sd_rx_dma, &SDMMC_RX_DMA, &sd_handle);
  286. sd_handle.hdmarx = &sd_rx_dma;
  287. #endif
  288. // make sure cache is flushed and invalidated so when DMA updates the RAM
  289. // from reading the peripheral the CPU then reads the new data
  290. MP_HAL_CLEANINVALIDATE_DCACHE(dest, num_blocks * SDCARD_BLOCK_SIZE);
  291. err = HAL_SD_ReadBlocks_DMA(&sd_handle, dest, block_num, num_blocks);
  292. if (err == HAL_OK) {
  293. err = sdcard_wait_finished(&sd_handle, 60000);
  294. }
  295. #if SDIO_USE_GPDMA
  296. dma_deinit(&SDMMC_RX_DMA);
  297. sd_handle.hdmarx = NULL;
  298. #endif
  299. restore_irq_pri(basepri);
  300. } else {
  301. err = HAL_SD_ReadBlocks(&sd_handle, dest, block_num, num_blocks, 60000);
  302. if (err == HAL_OK) {
  303. err = sdcard_wait_finished(&sd_handle, 60000);
  304. }
  305. }
  306. if (orig_dest != NULL) {
  307. // move the read data to the non-aligned position, and restore the initial bytes
  308. memmove(orig_dest, dest, num_blocks * SDCARD_BLOCK_SIZE);
  309. memcpy(dest, &saved_word, orig_dest - dest);
  310. }
  311. return err;
  312. }
  313. mp_uint_t sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
  314. // check that SD card is initialised
  315. if (sd_handle.Instance == NULL) {
  316. return HAL_ERROR;
  317. }
  318. HAL_StatusTypeDef err = HAL_OK;
  319. // check that src pointer is aligned on a 4-byte boundary
  320. if (((uint32_t)src & 3) != 0) {
  321. // pointer is not aligned, so allocate a temporary block to do the write
  322. uint8_t *src_aligned = m_new_maybe(uint8_t, SDCARD_BLOCK_SIZE);
  323. if (src_aligned == NULL) {
  324. return HAL_ERROR;
  325. }
  326. for (size_t i = 0; i < num_blocks; ++i) {
  327. memcpy(src_aligned, src + i * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE);
  328. err = sdcard_write_blocks(src_aligned, block_num + i, 1);
  329. if (err != HAL_OK) {
  330. break;
  331. }
  332. }
  333. m_del(uint8_t, src_aligned, SDCARD_BLOCK_SIZE);
  334. return err;
  335. }
  336. if (query_irq() == IRQ_STATE_ENABLED) {
  337. // we must disable USB irqs to prevent MSC contention with SD card
  338. uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
  339. #if SDIO_USE_GPDMA
  340. dma_init(&sd_tx_dma, &SDMMC_TX_DMA, &sd_handle);
  341. sd_handle.hdmatx = &sd_tx_dma;
  342. #endif
  343. // make sure cache is flushed to RAM so the DMA can read the correct data
  344. MP_HAL_CLEAN_DCACHE(src, num_blocks * SDCARD_BLOCK_SIZE);
  345. err = HAL_SD_WriteBlocks_DMA(&sd_handle, (uint8_t*)src, block_num, num_blocks);
  346. if (err == HAL_OK) {
  347. err = sdcard_wait_finished(&sd_handle, 60000);
  348. }
  349. #if SDIO_USE_GPDMA
  350. dma_deinit(&SDMMC_TX_DMA);
  351. sd_handle.hdmatx = NULL;
  352. #endif
  353. restore_irq_pri(basepri);
  354. } else {
  355. err = HAL_SD_WriteBlocks(&sd_handle, (uint8_t*)src, block_num, num_blocks, 60000);
  356. if (err == HAL_OK) {
  357. err = sdcard_wait_finished(&sd_handle, 60000);
  358. }
  359. }
  360. return err;
  361. }
  362. /******************************************************************************/
  363. // MicroPython bindings
  364. //
  365. // Expose the SD card as an object with the block protocol.
  366. // there is a singleton SDCard object
  367. const mp_obj_base_t pyb_sdcard_obj = {&pyb_sdcard_type};
  368. STATIC mp_obj_t pyb_sdcard_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  369. // check arguments
  370. mp_arg_check_num(n_args, n_kw, 0, 0, false);
  371. // return singleton object
  372. return MP_OBJ_FROM_PTR(&pyb_sdcard_obj);
  373. }
  374. STATIC mp_obj_t sd_present(mp_obj_t self) {
  375. return mp_obj_new_bool(sdcard_is_present());
  376. }
  377. STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_present_obj, sd_present);
  378. STATIC mp_obj_t sd_power(mp_obj_t self, mp_obj_t state) {
  379. bool result;
  380. if (mp_obj_is_true(state)) {
  381. result = sdcard_power_on();
  382. } else {
  383. sdcard_power_off();
  384. result = true;
  385. }
  386. return mp_obj_new_bool(result);
  387. }
  388. STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_power_obj, sd_power);
  389. STATIC mp_obj_t sd_info(mp_obj_t self) {
  390. if (sd_handle.Instance == NULL) {
  391. return mp_const_none;
  392. }
  393. HAL_SD_CardInfoTypeDef cardinfo;
  394. HAL_SD_GetCardInfo(&sd_handle, &cardinfo);
  395. // cardinfo.SD_csd and cardinfo.SD_cid have lots of info but we don't use them
  396. mp_obj_t tuple[3] = {
  397. mp_obj_new_int_from_ull((uint64_t)cardinfo.LogBlockNbr * (uint64_t)cardinfo.LogBlockSize),
  398. mp_obj_new_int_from_uint(cardinfo.LogBlockSize),
  399. mp_obj_new_int(cardinfo.CardType),
  400. };
  401. return mp_obj_new_tuple(3, tuple);
  402. }
  403. STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_info_obj, sd_info);
  404. // now obsolete, kept for backwards compatibility
  405. STATIC mp_obj_t sd_read(mp_obj_t self, mp_obj_t block_num) {
  406. uint8_t *dest = m_new(uint8_t, SDCARD_BLOCK_SIZE);
  407. mp_uint_t ret = sdcard_read_blocks(dest, mp_obj_get_int(block_num), 1);
  408. if (ret != 0) {
  409. m_del(uint8_t, dest, SDCARD_BLOCK_SIZE);
  410. nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_read_blocks failed [%u]", ret));
  411. }
  412. return mp_obj_new_bytearray_by_ref(SDCARD_BLOCK_SIZE, dest);
  413. }
  414. STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_read_obj, sd_read);
  415. // now obsolete, kept for backwards compatibility
  416. STATIC mp_obj_t sd_write(mp_obj_t self, mp_obj_t block_num, mp_obj_t data) {
  417. mp_buffer_info_t bufinfo;
  418. mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_READ);
  419. if (bufinfo.len % SDCARD_BLOCK_SIZE != 0) {
  420. nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "writes must be a multiple of %d bytes", SDCARD_BLOCK_SIZE));
  421. }
  422. mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
  423. if (ret != 0) {
  424. nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_write_blocks failed [%u]", ret));
  425. }
  426. return mp_const_none;
  427. }
  428. STATIC MP_DEFINE_CONST_FUN_OBJ_3(sd_write_obj, sd_write);
  429. STATIC mp_obj_t pyb_sdcard_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
  430. mp_buffer_info_t bufinfo;
  431. mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
  432. mp_uint_t ret = sdcard_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
  433. return mp_obj_new_bool(ret == 0);
  434. }
  435. STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_readblocks_obj, pyb_sdcard_readblocks);
  436. STATIC mp_obj_t pyb_sdcard_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
  437. mp_buffer_info_t bufinfo;
  438. mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
  439. mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
  440. return mp_obj_new_bool(ret == 0);
  441. }
  442. STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_writeblocks_obj, pyb_sdcard_writeblocks);
  443. STATIC mp_obj_t pyb_sdcard_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
  444. mp_int_t cmd = mp_obj_get_int(cmd_in);
  445. switch (cmd) {
  446. case BP_IOCTL_INIT:
  447. if (!sdcard_power_on()) {
  448. return MP_OBJ_NEW_SMALL_INT(-1); // error
  449. }
  450. return MP_OBJ_NEW_SMALL_INT(0); // success
  451. case BP_IOCTL_DEINIT:
  452. sdcard_power_off();
  453. return MP_OBJ_NEW_SMALL_INT(0); // success
  454. case BP_IOCTL_SYNC:
  455. // nothing to do
  456. return MP_OBJ_NEW_SMALL_INT(0); // success
  457. case BP_IOCTL_SEC_COUNT:
  458. return MP_OBJ_NEW_SMALL_INT(sdcard_get_capacity_in_bytes() / SDCARD_BLOCK_SIZE);
  459. case BP_IOCTL_SEC_SIZE:
  460. return MP_OBJ_NEW_SMALL_INT(SDCARD_BLOCK_SIZE);
  461. default: // unknown command
  462. return MP_OBJ_NEW_SMALL_INT(-1); // error
  463. }
  464. }
  465. STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_ioctl_obj, pyb_sdcard_ioctl);
  466. STATIC const mp_rom_map_elem_t pyb_sdcard_locals_dict_table[] = {
  467. { MP_ROM_QSTR(MP_QSTR_present), MP_ROM_PTR(&sd_present_obj) },
  468. { MP_ROM_QSTR(MP_QSTR_power), MP_ROM_PTR(&sd_power_obj) },
  469. { MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&sd_info_obj) },
  470. { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&sd_read_obj) },
  471. { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&sd_write_obj) },
  472. // block device protocol
  473. { MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&pyb_sdcard_readblocks_obj) },
  474. { MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&pyb_sdcard_writeblocks_obj) },
  475. { MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&pyb_sdcard_ioctl_obj) },
  476. };
  477. STATIC MP_DEFINE_CONST_DICT(pyb_sdcard_locals_dict, pyb_sdcard_locals_dict_table);
  478. const mp_obj_type_t pyb_sdcard_type = {
  479. { &mp_type_type },
  480. .name = MP_QSTR_SDCard,
  481. .make_new = pyb_sdcard_make_new,
  482. .locals_dict = (mp_obj_dict_t*)&pyb_sdcard_locals_dict,
  483. };
  484. void sdcard_init_vfs(fs_user_mount_t *vfs, int part) {
  485. vfs->base.type = &mp_fat_vfs_type;
  486. vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL;
  487. vfs->fatfs.drv = vfs;
  488. vfs->fatfs.part = part;
  489. vfs->readblocks[0] = MP_OBJ_FROM_PTR(&pyb_sdcard_readblocks_obj);
  490. vfs->readblocks[1] = MP_OBJ_FROM_PTR(&pyb_sdcard_obj);
  491. vfs->readblocks[2] = MP_OBJ_FROM_PTR(sdcard_read_blocks); // native version
  492. vfs->writeblocks[0] = MP_OBJ_FROM_PTR(&pyb_sdcard_writeblocks_obj);
  493. vfs->writeblocks[1] = MP_OBJ_FROM_PTR(&pyb_sdcard_obj);
  494. vfs->writeblocks[2] = MP_OBJ_FROM_PTR(sdcard_write_blocks); // native version
  495. vfs->u.ioctl[0] = MP_OBJ_FROM_PTR(&pyb_sdcard_ioctl_obj);
  496. vfs->u.ioctl[1] = MP_OBJ_FROM_PTR(&pyb_sdcard_obj);
  497. }
  498. #endif // MICROPY_HW_HAS_SDCARD