| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474 |
- /*
- * This file is part of the MicroPython project, http://micropython.org/
- *
- * The MIT License (MIT)
- *
- * Copyright (c) 2018 Damien P. George
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
- #include "py/mperrno.h"
- #include "py/mphal.h"
- #include "i2c.h"
- #if MICROPY_HW_ENABLE_HW_I2C
- #define I2C_POLL_TIMEOUT_MS (50)
- #if defined(STM32F4)
- int i2c_init(i2c_t *i2c, mp_hal_pin_obj_t scl, mp_hal_pin_obj_t sda, uint32_t freq) {
- uint32_t i2c_id = ((uint32_t)i2c - I2C1_BASE) / (I2C2_BASE - I2C1_BASE);
- // Init pins
- if (!mp_hal_pin_config_alt(scl, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_UP, AF_FN_I2C, i2c_id + 1)) {
- return -MP_EPERM;
- }
- if (!mp_hal_pin_config_alt(sda, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_UP, AF_FN_I2C, i2c_id + 1)) {
- return -MP_EPERM;
- }
- // Force reset I2C peripheral
- RCC->APB1RSTR |= RCC_APB1RSTR_I2C1RST << i2c_id;
- RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C1RST << i2c_id);
- // Enable I2C peripheral clock
- RCC->APB1ENR |= RCC_APB1ENR_I2C1EN << i2c_id;
- volatile uint32_t tmp = RCC->APB1ENR; // delay after RCC clock enable
- (void)tmp;
- uint32_t PCLK1 = HAL_RCC_GetPCLK1Freq();
- // Initialise I2C peripheral
- i2c->CR1 = 0;
- i2c->CR2 = PCLK1 / 1000000;
- i2c->OAR1 = 0;
- i2c->OAR2 = 0;
- freq = MIN(freq, 400000);
- // SM: MAX(4, PCLK1 / (F * 2))
- // FM, 16:9 duty: 0xc000 | MAX(1, (PCLK1 / (F * (16 + 9))))
- if (freq <= 100000) {
- i2c->CCR = MAX(4, PCLK1 / (freq * 2));
- } else {
- i2c->CCR = 0xc000 | MAX(1, PCLK1 / (freq * 25));
- }
- // SM: 1000ns / (1/PCLK1) + 1 = PCLK1 * 1e-6 + 1
- // FM: 300ns / (1/PCLK1) + 1 = 300e-3 * PCLK1 * 1e-6 + 1
- if (freq <= 100000) {
- i2c->TRISE = PCLK1 / 1000000 + 1; // 1000ns rise time in SM
- } else {
- i2c->TRISE = PCLK1 / 1000000 * 3 / 10 + 1; // 300ns rise time in FM
- }
- #if defined(I2C_FLTR_ANOFF)
- i2c->FLTR = 0; // analog filter on, digital filter off
- #endif
- return 0;
- }
- STATIC int i2c_wait_sr1_set(i2c_t *i2c, uint32_t mask) {
- uint32_t t0 = HAL_GetTick();
- while (!(i2c->SR1 & mask)) {
- if (HAL_GetTick() - t0 >= I2C_POLL_TIMEOUT_MS) {
- i2c->CR1 &= ~I2C_CR1_PE;
- return -MP_ETIMEDOUT;
- }
- }
- return 0;
- }
- STATIC int i2c_wait_stop(i2c_t *i2c) {
- uint32_t t0 = HAL_GetTick();
- while (i2c->CR1 & I2C_CR1_STOP) {
- if (HAL_GetTick() - t0 >= I2C_POLL_TIMEOUT_MS) {
- i2c->CR1 &= ~I2C_CR1_PE;
- return -MP_ETIMEDOUT;
- }
- }
- i2c->CR1 &= ~I2C_CR1_PE;
- return 0;
- }
- // For write: len = 0, 1 or N
- // For read: len = 1, 2 or N; stop = true
- int i2c_start_addr(i2c_t *i2c, int rd_wrn, uint16_t addr, size_t next_len, bool stop) {
- if (!(i2c->CR1 & I2C_CR1_PE) && (i2c->SR2 & I2C_SR2_MSL)) {
- // The F4 I2C peripheral can sometimes get into a bad state where it's disabled
- // (PE low) but still an active master (MSL high). It seems the best way to get
- // out of this is a full reset.
- uint32_t i2c_id = ((uint32_t)i2c - I2C1_BASE) / (I2C2_BASE - I2C1_BASE);
- RCC->APB1RSTR |= RCC_APB1RSTR_I2C1RST << i2c_id;
- RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C1RST << i2c_id);
- }
- // It looks like it's possible to terminate the reading by sending a
- // START condition instead of STOP condition but we don't support that.
- if (rd_wrn) {
- if (!stop) {
- return -MP_EINVAL;
- }
- }
- // Repurpose OAR1 to hold stop flag
- i2c->OAR1 = stop;
- // Enable peripheral and send START condition
- i2c->CR1 |= I2C_CR1_PE;
- i2c->CR1 |= I2C_CR1_START;
- // Wait for START to be sent
- int ret;
- if ((ret = i2c_wait_sr1_set(i2c, I2C_SR1_SB))) {
- return ret;
- }
- // Send the 7-bit address with read/write bit
- i2c->DR = addr << 1 | rd_wrn;
- // Wait for address to be sent
- if ((ret = i2c_wait_sr1_set(i2c, I2C_SR1_AF | I2C_SR1_ADDR))) {
- return ret;
- }
- // Check if the slave responded or not
- if (i2c->SR1 & I2C_SR1_AF) {
- // Got a NACK
- i2c->CR1 |= I2C_CR1_STOP;
- i2c_wait_stop(i2c); // Don't leak errors from this call
- return -MP_ENODEV;
- }
- if (rd_wrn) {
- // For reading, set up ACK/NACK control based on number of bytes to read (at least 1 byte)
- if (next_len <= 1) {
- // NACK next received byte
- i2c->CR1 &= ~I2C_CR1_ACK;
- } else if (next_len <= 2) {
- // NACK second received byte
- i2c->CR1 |= I2C_CR1_POS;
- i2c->CR1 &= ~I2C_CR1_ACK;
- } else {
- // ACK next received byte
- i2c->CR1 |= I2C_CR1_ACK;
- }
- }
- // Read SR2 to clear SR1_ADDR
- uint32_t sr2 = i2c->SR2;
- (void)sr2;
- return 0;
- }
- // next_len = 0 or N (>=2)
- int i2c_read(i2c_t *i2c, uint8_t *dest, size_t len, size_t next_len) {
- if (len == 0) {
- return -MP_EINVAL;
- }
- if (next_len == 1) {
- return -MP_EINVAL;
- }
- size_t remain = len + next_len;
- if (remain == 1) {
- // Special case
- i2c->CR1 |= I2C_CR1_STOP;
- int ret;
- if ((ret = i2c_wait_sr1_set(i2c, I2C_SR1_RXNE))) {
- return ret;
- }
- *dest = i2c->DR;
- } else {
- for (; len; --len) {
- remain = len + next_len;
- int ret;
- if ((ret = i2c_wait_sr1_set(i2c, I2C_SR1_BTF))) {
- return ret;
- }
- if (remain == 2) {
- // In this case next_len == 0 (it's not allowed to be 1)
- i2c->CR1 |= I2C_CR1_STOP;
- *dest++ = i2c->DR;
- *dest = i2c->DR;
- break;
- } else if (remain == 3) {
- // NACK next received byte
- i2c->CR1 &= ~I2C_CR1_ACK;
- }
- *dest++ = i2c->DR;
- }
- }
- if (!next_len) {
- // We sent a stop above, just wait for it to be finished
- return i2c_wait_stop(i2c);
- }
- return 0;
- }
- // next_len = 0 or N
- int i2c_write(i2c_t *i2c, const uint8_t *src, size_t len, size_t next_len) {
- int ret;
- if ((ret = i2c_wait_sr1_set(i2c, I2C_SR1_AF | I2C_SR1_TXE))) {
- return ret;
- }
- // Write out the data
- int num_acks = 0;
- while (len--) {
- i2c->DR = *src++;
- if ((ret = i2c_wait_sr1_set(i2c, I2C_SR1_AF | I2C_SR1_BTF))) {
- return ret;
- }
- if (i2c->SR1 & I2C_SR1_AF) {
- // Slave did not respond to byte so stop sending
- break;
- }
- ++num_acks;
- }
- if (!next_len) {
- if (i2c->OAR1) {
- // Send a STOP and wait for it to finish
- i2c->CR1 |= I2C_CR1_STOP;
- if ((ret = i2c_wait_stop(i2c))) {
- return ret;
- }
- }
- }
- return num_acks;
- }
- #elif defined(STM32F0) || defined(STM32F7)
- int i2c_init(i2c_t *i2c, mp_hal_pin_obj_t scl, mp_hal_pin_obj_t sda, uint32_t freq) {
- uint32_t i2c_id = ((uint32_t)i2c - I2C1_BASE) / (I2C2_BASE - I2C1_BASE);
- // Init pins
- if (!mp_hal_pin_config_alt(scl, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_UP, AF_FN_I2C, i2c_id + 1)) {
- return -MP_EPERM;
- }
- if (!mp_hal_pin_config_alt(sda, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_UP, AF_FN_I2C, i2c_id + 1)) {
- return -MP_EPERM;
- }
- // Enable I2C peripheral clock
- RCC->APB1ENR |= RCC_APB1ENR_I2C1EN << i2c_id;
- volatile uint32_t tmp = RCC->APB1ENR; // delay after RCC clock enable
- (void)tmp;
- // Initialise I2C peripheral
- i2c->CR1 = 0;
- i2c->CR2 = 0;
- i2c->OAR1 = 0;
- i2c->OAR2 = 0;
- // These timing values are for f_I2CCLK=54MHz and are only approximate
- if (freq >= 1000000) {
- i2c->TIMINGR = 0x50100103;
- } else if (freq >= 400000) {
- i2c->TIMINGR = 0x70330309;
- } else if (freq >= 100000) {
- i2c->TIMINGR = 0xb0420f13;
- } else {
- return -MP_EINVAL;
- }
- i2c->TIMEOUTR = 0;
- return 0;
- }
- STATIC int i2c_wait_cr2_clear(i2c_t *i2c, uint32_t mask) {
- uint32_t t0 = HAL_GetTick();
- while (i2c->CR2 & mask) {
- if (HAL_GetTick() - t0 >= I2C_POLL_TIMEOUT_MS) {
- i2c->CR1 &= ~I2C_CR1_PE;
- return -MP_ETIMEDOUT;
- }
- }
- return 0;
- }
- STATIC int i2c_wait_isr_set(i2c_t *i2c, uint32_t mask) {
- uint32_t t0 = HAL_GetTick();
- while (!(i2c->ISR & mask)) {
- if (HAL_GetTick() - t0 >= I2C_POLL_TIMEOUT_MS) {
- i2c->CR1 &= ~I2C_CR1_PE;
- return -MP_ETIMEDOUT;
- }
- }
- return 0;
- }
- // len = 0, 1 or N
- int i2c_start_addr(i2c_t *i2c, int rd_wrn, uint16_t addr, size_t len, bool stop) {
- // Enable the peripheral and send the START condition with slave address
- i2c->CR1 |= I2C_CR1_PE;
- i2c->CR2 = stop << I2C_CR2_AUTOEND_Pos
- | (len > 1) << I2C_CR2_RELOAD_Pos
- | (len > 0) << I2C_CR2_NBYTES_Pos
- | rd_wrn << I2C_CR2_RD_WRN_Pos
- | (addr & 0x7f) << 1;
- i2c->CR2 |= I2C_CR2_START;
- // Wait for address to be sent
- int ret;
- if ((ret = i2c_wait_cr2_clear(i2c, I2C_CR2_START))) {
- return ret;
- }
- // Check if the slave responded or not
- if (i2c->ISR & I2C_ISR_NACKF) {
- // If we get a NACK then I2C periph unconditionally sends a STOP
- i2c_wait_isr_set(i2c, I2C_ISR_STOPF); // Don't leak errors from this call
- i2c->CR1 &= ~I2C_CR1_PE;
- return -MP_ENODEV;
- }
- // Repurpose OAR1 to indicate that we loaded CR2
- i2c->OAR1 = 1;
- return 0;
- }
- STATIC int i2c_check_stop(i2c_t *i2c) {
- if (i2c->CR2 & I2C_CR2_AUTOEND) {
- // Wait for the STOP condition and then disable the peripheral
- int ret;
- if ((ret = i2c_wait_isr_set(i2c, I2C_ISR_STOPF))) {
- return ret;
- }
- i2c->CR1 &= ~I2C_CR1_PE;
- }
- return 0;
- }
- // next_len = 0 or N
- int i2c_read(i2c_t *i2c, uint8_t *dest, size_t len, size_t next_len) {
- if (i2c->OAR1) {
- i2c->OAR1 = 0;
- } else {
- goto load_cr2;
- }
- // Read in the data
- while (len--) {
- int ret;
- if ((ret = i2c_wait_isr_set(i2c, I2C_ISR_RXNE))) {
- return ret;
- }
- *dest++ = i2c->RXDR;
- load_cr2:
- if (len) {
- i2c->CR2 = (i2c->CR2 & I2C_CR2_AUTOEND)
- | (len + next_len > 1) << I2C_CR2_RELOAD_Pos
- | 1 << I2C_CR2_NBYTES_Pos;
- }
- }
- if (!next_len) {
- int ret;
- if ((ret = i2c_check_stop(i2c))) {
- return ret;
- }
- }
- return 0;
- }
- // next_len = 0 or N
- int i2c_write(i2c_t *i2c, const uint8_t *src, size_t len, size_t next_len) {
- int num_acks = 0;
- if (i2c->OAR1) {
- i2c->OAR1 = 0;
- } else {
- goto load_cr2;
- }
- // Write out the data
- while (len--) {
- int ret;
- if ((ret = i2c_wait_isr_set(i2c, I2C_ISR_TXE))) {
- return ret;
- }
- i2c->TXDR = *src++;
- if ((ret = i2c_wait_isr_set(i2c, I2C_ISR_TCR | I2C_ISR_TC | I2C_ISR_STOPF))) {
- return ret;
- }
- uint32_t isr = i2c->ISR;
- if (isr & I2C_ISR_NACKF) {
- // Slave did not respond to byte so stop sending
- if (!(isr & I2C_ISR_TXE)) {
- // The TXDR is still full so the byte previous to that wasn't actually ACK'd
- --num_acks;
- }
- break;
- }
- ++num_acks;
- load_cr2:
- if (len) {
- i2c->CR2 = (i2c->CR2 & I2C_CR2_AUTOEND)
- | (len + next_len > 1) << I2C_CR2_RELOAD_Pos
- | 1 << I2C_CR2_NBYTES_Pos;
- }
- }
- if (!next_len) {
- int ret;
- if ((ret = i2c_check_stop(i2c))) {
- return ret;
- }
- }
- return num_acks;
- }
- #endif
- #if defined(STM32F0) || defined(STM32F4) || defined(STM32F7)
- int i2c_readfrom(i2c_t *i2c, uint16_t addr, uint8_t *dest, size_t len, bool stop) {
- int ret;
- if ((ret = i2c_start_addr(i2c, 1, addr, len, stop))) {
- return ret;
- }
- return i2c_read(i2c, dest, len, 0);
- }
- int i2c_writeto(i2c_t *i2c, uint16_t addr, const uint8_t *src, size_t len, bool stop) {
- int ret;
- if ((ret = i2c_start_addr(i2c, 0, addr, len, stop))) {
- return ret;
- }
- return i2c_write(i2c, src, len, 0);
- }
- #endif
- #endif // MICROPY_HW_ENABLE_HW_I2C
|