| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544 |
- /*
- * This file is part of the MicroPython project, http://micropython.org/
- *
- * The MIT License (MIT)
- *
- * Copyright (c) 2013, 2014 Damien P. George
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
- #include <stdio.h>
- #include <stdint.h>
- #include <string.h>
- #include "py/runtime.h"
- #include "py/mphal.h"
- #include "timer.h"
- #include "dac.h"
- #include "dma.h"
- #include "pin.h"
- /// \moduleref pyb
- /// \class DAC - digital to analog conversion
- ///
- /// The DAC is used to output analog values (a specific voltage) on pin X5 or pin X6.
- /// The voltage will be between 0 and 3.3V.
- ///
- /// *This module will undergo changes to the API.*
- ///
- /// Example usage:
- ///
- /// from pyb import DAC
- ///
- /// dac = DAC(1) # create DAC 1 on pin X5
- /// dac.write(128) # write a value to the DAC (makes X5 1.65V)
- ///
- /// To output a continuous sine-wave:
- ///
- /// import math
- /// from pyb import DAC
- ///
- /// # create a buffer containing a sine-wave
- /// buf = bytearray(100)
- /// for i in range(len(buf)):
- /// buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))
- ///
- /// # output the sine-wave at 400Hz
- /// dac = DAC(1)
- /// dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)
- #if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC
- #if defined(STM32H7)
- #define DAC DAC1
- #endif
- STATIC DAC_HandleTypeDef DAC_Handle;
- void dac_init(void) {
- memset(&DAC_Handle, 0, sizeof DAC_Handle);
- DAC_Handle.Instance = DAC;
- DAC_Handle.State = HAL_DAC_STATE_RESET;
- HAL_DAC_Init(&DAC_Handle);
- }
- #if defined(TIM6)
- STATIC void TIM6_Config(uint freq) {
- // Init TIM6 at the required frequency (in Hz)
- TIM_HandleTypeDef *tim = timer_tim6_init(freq);
- // TIM6 TRGO selection
- TIM_MasterConfigTypeDef config;
- config.MasterOutputTrigger = TIM_TRGO_UPDATE;
- config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
- HAL_TIMEx_MasterConfigSynchronization(tim, &config);
- // TIM6 start counter
- HAL_TIM_Base_Start(tim);
- }
- #endif
- STATIC uint32_t TIMx_Config(mp_obj_t timer) {
- // TRGO selection to trigger DAC
- TIM_HandleTypeDef *tim = pyb_timer_get_handle(timer);
- TIM_MasterConfigTypeDef config;
- config.MasterOutputTrigger = TIM_TRGO_UPDATE;
- config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
- HAL_TIMEx_MasterConfigSynchronization(tim, &config);
- // work out the trigger channel (only certain ones are supported)
- if (tim->Instance == TIM2) {
- return DAC_TRIGGER_T2_TRGO;
- #if defined(TIM4)
- } else if (tim->Instance == TIM4) {
- return DAC_TRIGGER_T4_TRGO;
- #endif
- #if defined(TIM5)
- } else if (tim->Instance == TIM5) {
- return DAC_TRIGGER_T5_TRGO;
- #endif
- #if defined(TIM6)
- } else if (tim->Instance == TIM6) {
- return DAC_TRIGGER_T6_TRGO;
- #endif
- #if defined(TIM7)
- } else if (tim->Instance == TIM7) {
- return DAC_TRIGGER_T7_TRGO;
- #endif
- #if defined(TIM8)
- } else if (tim->Instance == TIM8) {
- return DAC_TRIGGER_T8_TRGO;
- #endif
- } else {
- mp_raise_ValueError("Timer does not support DAC triggering");
- }
- }
- /******************************************************************************/
- // MicroPython bindings
- typedef enum {
- DAC_STATE_RESET,
- DAC_STATE_WRITE_SINGLE,
- DAC_STATE_BUILTIN_WAVEFORM,
- DAC_STATE_DMA_WAVEFORM, // should be last enum since we use space beyond it
- } pyb_dac_state_t;
- typedef struct _pyb_dac_obj_t {
- mp_obj_base_t base;
- uint32_t dac_channel; // DAC_CHANNEL_1 or DAC_CHANNEL_2
- const dma_descr_t *tx_dma_descr;
- mp_hal_pin_obj_t pin; // pin_A4 or pin_A5
- uint8_t bits; // 8 or 12
- uint8_t state;
- uint8_t outbuf_single;
- uint8_t outbuf_waveform;
- } pyb_dac_obj_t;
- STATIC void pyb_dac_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
- pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in);
- mp_printf(print, "DAC(%u, bits=%u)",
- self->dac_channel == DAC_CHANNEL_1 ? 1 : 2,
- self->bits);
- }
- STATIC mp_obj_t pyb_dac_init_helper(pyb_dac_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
- static const mp_arg_t allowed_args[] = {
- { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
- { MP_QSTR_buffering, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
- };
- // parse args
- mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
- mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
- // GPIO configuration
- mp_hal_pin_config(self->pin, MP_HAL_PIN_MODE_ANALOG, MP_HAL_PIN_PULL_NONE, 0);
- // DAC peripheral clock
- #if defined(STM32F4) || defined(STM32F7)
- __DAC_CLK_ENABLE();
- #elif defined(STM32H7)
- __HAL_RCC_DAC12_CLK_ENABLE();
- #elif defined(STM32F0) || defined(STM32L4)
- __HAL_RCC_DAC1_CLK_ENABLE();
- #else
- #error Unsupported Processor
- #endif
- // stop anything already going on
- __HAL_RCC_DMA1_CLK_ENABLE();
- DMA_HandleTypeDef DMA_Handle;
- /* Get currently configured dma */
- dma_init_handle(&DMA_Handle, self->tx_dma_descr, (void*)NULL);
- // Need to deinit DMA first
- DMA_Handle.State = HAL_DMA_STATE_READY;
- HAL_DMA_DeInit(&DMA_Handle);
- HAL_DAC_Stop(&DAC_Handle, self->dac_channel);
- if ((self->dac_channel == DAC_CHANNEL_1 && DAC_Handle.DMA_Handle1 != NULL)
- || (self->dac_channel == DAC_CHANNEL_2 && DAC_Handle.DMA_Handle2 != NULL)) {
- HAL_DAC_Stop_DMA(&DAC_Handle, self->dac_channel);
- }
- // set bit resolution
- if (args[0].u_int == 8 || args[0].u_int == 12) {
- self->bits = args[0].u_int;
- } else {
- mp_raise_ValueError("unsupported bits");
- }
- // set output buffer config
- if (args[1].u_obj == mp_const_none) {
- // due to legacy, default values differ for single and waveform outputs
- self->outbuf_single = DAC_OUTPUTBUFFER_DISABLE;
- self->outbuf_waveform = DAC_OUTPUTBUFFER_ENABLE;
- } else if (mp_obj_is_true(args[1].u_obj)) {
- self->outbuf_single = DAC_OUTPUTBUFFER_ENABLE;
- self->outbuf_waveform = DAC_OUTPUTBUFFER_ENABLE;
- } else {
- self->outbuf_single = DAC_OUTPUTBUFFER_DISABLE;
- self->outbuf_waveform = DAC_OUTPUTBUFFER_DISABLE;
- }
- // reset state of DAC
- self->state = DAC_STATE_RESET;
- return mp_const_none;
- }
- // create the dac object
- // currently support either DAC1 on X5 (id = 1) or DAC2 on X6 (id = 2)
- /// \classmethod \constructor(port)
- /// Construct a new DAC object.
- ///
- /// `port` can be a pin object, or an integer (1 or 2).
- /// DAC(1) is on pin X5 and DAC(2) is on pin X6.
- STATIC mp_obj_t pyb_dac_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
- // check arguments
- mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
- // get pin/channel to output on
- mp_int_t dac_id;
- if (MP_OBJ_IS_INT(args[0])) {
- dac_id = mp_obj_get_int(args[0]);
- } else {
- const pin_obj_t *pin = pin_find(args[0]);
- if (pin == pin_A4) {
- dac_id = 1;
- } else if (pin == pin_A5) {
- dac_id = 2;
- } else {
- nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Pin(%q) doesn't have DAC capabilities", pin->name));
- }
- }
- pyb_dac_obj_t *dac = m_new_obj(pyb_dac_obj_t);
- dac->base.type = &pyb_dac_type;
- if (dac_id == 1) {
- dac->pin = pin_A4;
- dac->dac_channel = DAC_CHANNEL_1;
- dac->tx_dma_descr = &dma_DAC_1_TX;
- } else if (dac_id == 2) {
- dac->pin = pin_A5;
- dac->dac_channel = DAC_CHANNEL_2;
- dac->tx_dma_descr = &dma_DAC_2_TX;
- } else {
- nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "DAC(%d) doesn't exist", dac_id));
- }
- // configure the peripheral
- mp_map_t kw_args;
- mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
- pyb_dac_init_helper(dac, n_args - 1, args + 1, &kw_args);
- // return object
- return MP_OBJ_FROM_PTR(dac);
- }
- STATIC mp_obj_t pyb_dac_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
- return pyb_dac_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
- }
- STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_init_obj, 1, pyb_dac_init);
- /// \method deinit()
- /// Turn off the DAC, enable other use of pin.
- STATIC mp_obj_t pyb_dac_deinit(mp_obj_t self_in) {
- pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in);
- if (self->dac_channel == DAC_CHANNEL_1) {
- DAC_Handle.Instance->CR &= ~DAC_CR_EN1;
- #if defined(STM32H7) || defined(STM32L4)
- DAC->MCR = (DAC->MCR & ~(7 << DAC_MCR_MODE1_Pos)) | 2 << DAC_MCR_MODE1_Pos;
- #else
- DAC_Handle.Instance->CR |= DAC_CR_BOFF1;
- #endif
- } else {
- DAC_Handle.Instance->CR &= ~DAC_CR_EN2;
- #if defined(STM32H7) || defined(STM32L4)
- DAC->MCR = (DAC->MCR & ~(7 << DAC_MCR_MODE2_Pos)) | 2 << DAC_MCR_MODE2_Pos;
- #else
- DAC_Handle.Instance->CR |= DAC_CR_BOFF2;
- #endif
- }
- return mp_const_none;
- }
- STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_dac_deinit_obj, pyb_dac_deinit);
- #if defined(TIM6)
- /// \method noise(freq)
- /// Generate a pseudo-random noise signal. A new random sample is written
- /// to the DAC output at the given frequency.
- STATIC mp_obj_t pyb_dac_noise(mp_obj_t self_in, mp_obj_t freq) {
- pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in);
- // set TIM6 to trigger the DAC at the given frequency
- TIM6_Config(mp_obj_get_int(freq));
- if (self->state != DAC_STATE_BUILTIN_WAVEFORM) {
- // configure DAC to trigger via TIM6
- DAC_ChannelConfTypeDef config;
- config.DAC_Trigger = DAC_TRIGGER_T6_TRGO;
- config.DAC_OutputBuffer = self->outbuf_waveform;
- HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel);
- self->state = DAC_STATE_BUILTIN_WAVEFORM;
- }
- // set noise wave generation
- HAL_DACEx_NoiseWaveGenerate(&DAC_Handle, self->dac_channel, DAC_LFSRUNMASK_BITS10_0);
- HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_L, 0x7ff0);
- HAL_DAC_Start(&DAC_Handle, self->dac_channel);
- return mp_const_none;
- }
- STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_noise_obj, pyb_dac_noise);
- #endif
- #if defined(TIM6)
- /// \method triangle(freq)
- /// Generate a triangle wave. The value on the DAC output changes at
- /// the given frequency, and the frequence of the repeating triangle wave
- /// itself is 256 (or 1024, need to check) times smaller.
- STATIC mp_obj_t pyb_dac_triangle(mp_obj_t self_in, mp_obj_t freq) {
- pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in);
- // set TIM6 to trigger the DAC at the given frequency
- TIM6_Config(mp_obj_get_int(freq));
- if (self->state != DAC_STATE_BUILTIN_WAVEFORM) {
- // configure DAC to trigger via TIM6
- DAC_ChannelConfTypeDef config;
- config.DAC_Trigger = DAC_TRIGGER_T6_TRGO;
- config.DAC_OutputBuffer = self->outbuf_waveform;
- HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel);
- self->state = DAC_STATE_BUILTIN_WAVEFORM;
- }
- // set triangle wave generation
- HAL_DACEx_TriangleWaveGenerate(&DAC_Handle, self->dac_channel, DAC_TRIANGLEAMPLITUDE_1023);
- HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_R, 0x100);
- HAL_DAC_Start(&DAC_Handle, self->dac_channel);
- return mp_const_none;
- }
- STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_triangle_obj, pyb_dac_triangle);
- #endif
- /// \method write(value)
- /// Direct access to the DAC output (8 bit only at the moment).
- STATIC mp_obj_t pyb_dac_write(mp_obj_t self_in, mp_obj_t val) {
- pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in);
- if (self->state != DAC_STATE_WRITE_SINGLE) {
- DAC_ChannelConfTypeDef config;
- config.DAC_Trigger = DAC_TRIGGER_NONE;
- config.DAC_OutputBuffer = self->outbuf_single;
- HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel);
- self->state = DAC_STATE_WRITE_SINGLE;
- }
- // DAC output is always 12-bit at the hardware level, and we provide support
- // for multiple bit "resolutions" simply by shifting the input value.
- HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_R,
- mp_obj_get_int(val) << (12 - self->bits));
- HAL_DAC_Start(&DAC_Handle, self->dac_channel);
- return mp_const_none;
- }
- STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_write_obj, pyb_dac_write);
- #if defined(TIM6)
- /// \method write_timed(data, freq, *, mode=DAC.NORMAL)
- /// Initiates a burst of RAM to DAC using a DMA transfer.
- /// The input data is treated as an array of bytes (8 bit data).
- ///
- /// `freq` can be an integer specifying the frequency to write the DAC
- /// samples at, using Timer(6). Or it can be an already-initialised
- /// Timer object which is used to trigger the DAC sample. Valid timers
- /// are 2, 4, 5, 6, 7 and 8.
- ///
- /// `mode` can be `DAC.NORMAL` or `DAC.CIRCULAR`.
- ///
- // TODO add callback argument, to call when transfer is finished
- // TODO add double buffer argument
- //
- // TODO reconsider API, eg: write_trig(data, *, trig=None, loop=False)
- // Then trigger can be timer (preinitialised with desired freq) or pin (extint9),
- // and we can reuse the same timer for both DACs (and maybe also ADC) without
- // setting the freq twice.
- // Can still do 1-liner: dac.write_trig(buf, trig=Timer(6, freq=100), loop=True)
- mp_obj_t pyb_dac_write_timed(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
- static const mp_arg_t allowed_args[] = {
- { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
- { MP_QSTR_freq, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
- { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DMA_NORMAL} },
- };
- // parse args
- pyb_dac_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
- mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
- mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
- // get the data to write
- mp_buffer_info_t bufinfo;
- mp_get_buffer_raise(args[0].u_obj, &bufinfo, MP_BUFFER_READ);
- uint32_t dac_trigger;
- if (mp_obj_is_integer(args[1].u_obj)) {
- // set TIM6 to trigger the DAC at the given frequency
- TIM6_Config(mp_obj_get_int(args[1].u_obj));
- dac_trigger = DAC_TRIGGER_T6_TRGO;
- } else {
- // set the supplied timer to trigger the DAC (timer should be initialised)
- dac_trigger = TIMx_Config(args[1].u_obj);
- }
- __HAL_RCC_DMA1_CLK_ENABLE();
- DMA_HandleTypeDef DMA_Handle;
- /* Get currently configured dma */
- dma_init_handle(&DMA_Handle, self->tx_dma_descr, (void*)NULL);
- /*
- DMA_Cmd(DMA_Handle->Instance, DISABLE);
- while (DMA_GetCmdStatus(DMA_Handle->Instance) != DISABLE) {
- }
- DAC_Cmd(self->dac_channel, DISABLE);
- */
- /*
- // DAC channel configuration
- DAC_InitTypeDef DAC_InitStructure;
- DAC_InitStructure.DAC_Trigger = DAC_Trigger_T7_TRGO;
- DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
- DAC_InitStructure.DAC_LFSRUnmask_TriangleAmplitude = DAC_TriangleAmplitude_1; // unused, but need to set it to a valid value
- DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
- DAC_Init(self->dac_channel, &DAC_InitStructure);
- */
- // Need to deinit DMA first
- DMA_Handle.State = HAL_DMA_STATE_READY;
- HAL_DMA_DeInit(&DMA_Handle);
- if (self->bits == 8) {
- DMA_Handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
- DMA_Handle.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
- } else {
- DMA_Handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
- DMA_Handle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
- }
- DMA_Handle.Init.Mode = args[2].u_int;
- HAL_DMA_Init(&DMA_Handle);
- if (self->dac_channel == DAC_CHANNEL_1) {
- __HAL_LINKDMA(&DAC_Handle, DMA_Handle1, DMA_Handle);
- } else {
- __HAL_LINKDMA(&DAC_Handle, DMA_Handle2, DMA_Handle);
- }
- DAC_Handle.Instance = DAC;
- DAC_Handle.State = HAL_DAC_STATE_RESET;
- HAL_DAC_Init(&DAC_Handle);
- if (self->state != DAC_STATE_DMA_WAVEFORM + dac_trigger) {
- DAC_ChannelConfTypeDef config;
- config.DAC_Trigger = dac_trigger;
- config.DAC_OutputBuffer = self->outbuf_waveform;
- HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel);
- self->state = DAC_STATE_DMA_WAVEFORM + dac_trigger;
- }
- if (self->bits == 8) {
- HAL_DAC_Start_DMA(&DAC_Handle, self->dac_channel,
- (uint32_t*)bufinfo.buf, bufinfo.len, DAC_ALIGN_8B_R);
- } else {
- HAL_DAC_Start_DMA(&DAC_Handle, self->dac_channel,
- (uint32_t*)bufinfo.buf, bufinfo.len / 2, DAC_ALIGN_12B_R);
- }
- /*
- // enable DMA stream
- DMA_Cmd(DMA_Handle->Instance, ENABLE);
- while (DMA_GetCmdStatus(DMA_Handle->Instance) == DISABLE) {
- }
- // enable DAC channel
- DAC_Cmd(self->dac_channel, ENABLE);
- // enable DMA for DAC channel
- DAC_DMACmd(self->dac_channel, ENABLE);
- */
- //printf("DMA: %p %lu\n", bufinfo.buf, bufinfo.len);
- return mp_const_none;
- }
- STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_write_timed_obj, 1, pyb_dac_write_timed);
- #endif
- STATIC const mp_rom_map_elem_t pyb_dac_locals_dict_table[] = {
- // instance methods
- { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_dac_init_obj) },
- { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_dac_deinit_obj) },
- { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&pyb_dac_write_obj) },
- #if defined(TIM6)
- { MP_ROM_QSTR(MP_QSTR_noise), MP_ROM_PTR(&pyb_dac_noise_obj) },
- { MP_ROM_QSTR(MP_QSTR_triangle), MP_ROM_PTR(&pyb_dac_triangle_obj) },
- { MP_ROM_QSTR(MP_QSTR_write_timed), MP_ROM_PTR(&pyb_dac_write_timed_obj) },
- #endif
- // class constants
- { MP_ROM_QSTR(MP_QSTR_NORMAL), MP_ROM_INT(DMA_NORMAL) },
- { MP_ROM_QSTR(MP_QSTR_CIRCULAR), MP_ROM_INT(DMA_CIRCULAR) },
- };
- STATIC MP_DEFINE_CONST_DICT(pyb_dac_locals_dict, pyb_dac_locals_dict_table);
- const mp_obj_type_t pyb_dac_type = {
- { &mp_type_type },
- .name = MP_QSTR_DAC,
- .print = pyb_dac_print,
- .make_new = pyb_dac_make_new,
- .locals_dict = (mp_obj_dict_t*)&pyb_dac_locals_dict,
- };
- #endif // MICROPY_HW_ENABLE_DAC
|