can.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093
  1. /*
  2. * This file is part of the MicroPython project, http://micropython.org/
  3. *
  4. * The MIT License (MIT)
  5. *
  6. * Copyright (c) 2014-2018 Damien P. George
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. */
  26. #include <stdio.h>
  27. #include <string.h>
  28. #include <stdarg.h>
  29. #include "py/objtuple.h"
  30. #include "py/objarray.h"
  31. #include "py/runtime.h"
  32. #include "py/gc.h"
  33. #include "py/binary.h"
  34. #include "py/stream.h"
  35. #include "py/mperrno.h"
  36. #include "py/mphal.h"
  37. #include "bufhelper.h"
  38. #include "can.h"
  39. #include "irq.h"
  40. #if MICROPY_HW_ENABLE_CAN
  41. #define MASK16 (0)
  42. #define LIST16 (1)
  43. #define MASK32 (2)
  44. #define LIST32 (3)
  45. enum {
  46. CAN_STATE_STOPPED,
  47. CAN_STATE_ERROR_ACTIVE,
  48. CAN_STATE_ERROR_WARNING,
  49. CAN_STATE_ERROR_PASSIVE,
  50. CAN_STATE_BUS_OFF,
  51. };
  52. /// \moduleref pyb
  53. /// \class CAN - controller area network communication bus
  54. ///
  55. /// CAN implements the standard CAN communications protocol. At
  56. /// the physical level it consists of 2 lines: RX and TX. Note that
  57. /// to connect the pyboard to a CAN bus you must use a CAN transceiver
  58. /// to convert the CAN logic signals from the pyboard to the correct
  59. /// voltage levels on the bus.
  60. ///
  61. /// Note that this driver does not yet support filter configuration
  62. /// (it defaults to a single filter that lets through all messages),
  63. /// or bus timing configuration (except for setting the prescaler).
  64. ///
  65. /// Example usage (works without anything connected):
  66. ///
  67. /// from pyb import CAN
  68. /// can = pyb.CAN(1, pyb.CAN.LOOPBACK)
  69. /// can.send('message!', 123) # send message with id 123
  70. /// can.recv(0) # receive message on FIFO 0
  71. typedef enum _rx_state_t {
  72. RX_STATE_FIFO_EMPTY = 0,
  73. RX_STATE_MESSAGE_PENDING,
  74. RX_STATE_FIFO_FULL,
  75. RX_STATE_FIFO_OVERFLOW,
  76. } rx_state_t;
  77. typedef struct _pyb_can_obj_t {
  78. mp_obj_base_t base;
  79. mp_obj_t rxcallback0;
  80. mp_obj_t rxcallback1;
  81. mp_uint_t can_id : 8;
  82. bool is_enabled : 1;
  83. bool extframe : 1;
  84. byte rx_state0;
  85. byte rx_state1;
  86. uint16_t num_error_warning;
  87. uint16_t num_error_passive;
  88. uint16_t num_bus_off;
  89. CAN_HandleTypeDef can;
  90. } pyb_can_obj_t;
  91. STATIC mp_obj_t pyb_can_deinit(mp_obj_t self_in);
  92. STATIC uint8_t can2_start_bank = 14;
  93. // assumes Init parameters have been set up correctly
  94. STATIC bool can_init(pyb_can_obj_t *can_obj) {
  95. CAN_TypeDef *CANx = NULL;
  96. uint32_t sce_irq = 0;
  97. const pin_obj_t *pins[2];
  98. switch (can_obj->can_id) {
  99. #if defined(MICROPY_HW_CAN1_TX)
  100. case PYB_CAN_1:
  101. CANx = CAN1;
  102. sce_irq = CAN1_SCE_IRQn;
  103. pins[0] = MICROPY_HW_CAN1_TX;
  104. pins[1] = MICROPY_HW_CAN1_RX;
  105. __CAN1_CLK_ENABLE();
  106. break;
  107. #endif
  108. #if defined(MICROPY_HW_CAN2_TX)
  109. case PYB_CAN_2:
  110. CANx = CAN2;
  111. sce_irq = CAN2_SCE_IRQn;
  112. pins[0] = MICROPY_HW_CAN2_TX;
  113. pins[1] = MICROPY_HW_CAN2_RX;
  114. __CAN1_CLK_ENABLE(); // CAN2 is a "slave" and needs CAN1 enabled as well
  115. __CAN2_CLK_ENABLE();
  116. break;
  117. #endif
  118. default:
  119. return false;
  120. }
  121. // init GPIO
  122. uint32_t mode = MP_HAL_PIN_MODE_ALT;
  123. uint32_t pull = MP_HAL_PIN_PULL_UP;
  124. for (int i = 0; i < 2; i++) {
  125. if (!mp_hal_pin_config_alt(pins[i], mode, pull, AF_FN_CAN, can_obj->can_id)) {
  126. return false;
  127. }
  128. }
  129. // init CANx
  130. can_obj->can.Instance = CANx;
  131. HAL_CAN_Init(&can_obj->can);
  132. can_obj->is_enabled = true;
  133. can_obj->num_error_warning = 0;
  134. can_obj->num_error_passive = 0;
  135. can_obj->num_bus_off = 0;
  136. __HAL_CAN_ENABLE_IT(&can_obj->can, CAN_IT_ERR | CAN_IT_BOF | CAN_IT_EPV | CAN_IT_EWG);
  137. NVIC_SetPriority(sce_irq, IRQ_PRI_CAN);
  138. HAL_NVIC_EnableIRQ(sce_irq);
  139. return true;
  140. }
  141. void can_init0(void) {
  142. for (uint i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all)); i++) {
  143. MP_STATE_PORT(pyb_can_obj_all)[i] = NULL;
  144. }
  145. }
  146. void can_deinit(void) {
  147. for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all)); i++) {
  148. pyb_can_obj_t *can_obj = MP_STATE_PORT(pyb_can_obj_all)[i];
  149. if (can_obj != NULL) {
  150. pyb_can_deinit(MP_OBJ_FROM_PTR(can_obj));
  151. }
  152. }
  153. }
  154. STATIC void can_clearfilter(uint32_t f) {
  155. CAN_FilterConfTypeDef filter;
  156. filter.FilterIdHigh = 0;
  157. filter.FilterIdLow = 0;
  158. filter.FilterMaskIdHigh = 0;
  159. filter.FilterMaskIdLow = 0;
  160. filter.FilterFIFOAssignment = CAN_FILTER_FIFO0;
  161. filter.FilterNumber = f;
  162. filter.FilterMode = CAN_FILTERMODE_IDMASK;
  163. filter.FilterScale = CAN_FILTERSCALE_16BIT;
  164. filter.FilterActivation = DISABLE;
  165. filter.BankNumber = can2_start_bank;
  166. HAL_CAN_ConfigFilter(NULL, &filter);
  167. }
  168. STATIC int can_receive(CAN_TypeDef *can, int fifo, CanRxMsgTypeDef *msg, uint32_t timeout_ms) {
  169. volatile uint32_t *rfr;
  170. if (fifo == CAN_FIFO0) {
  171. rfr = &can->RF0R;
  172. } else {
  173. rfr = &can->RF1R;
  174. }
  175. // Wait for a message to become available, with timeout
  176. uint32_t start = HAL_GetTick();
  177. while ((*rfr & 3) == 0) {
  178. MICROPY_EVENT_POLL_HOOK
  179. if (HAL_GetTick() - start >= timeout_ms) {
  180. return -MP_ETIMEDOUT;
  181. }
  182. }
  183. // Read message data
  184. CAN_FIFOMailBox_TypeDef *box = &can->sFIFOMailBox[fifo];
  185. msg->IDE = box->RIR & 4;
  186. if (msg->IDE == CAN_ID_STD) {
  187. msg->StdId = box->RIR >> 21;
  188. } else {
  189. msg->ExtId = box->RIR >> 3;
  190. }
  191. msg->RTR = box->RIR & 2;
  192. msg->DLC = box->RDTR & 0xf;
  193. msg->FMI = box->RDTR >> 8 & 0xff;
  194. uint32_t rdlr = box->RDLR;
  195. msg->Data[0] = rdlr;
  196. msg->Data[1] = rdlr >> 8;
  197. msg->Data[2] = rdlr >> 16;
  198. msg->Data[3] = rdlr >> 24;
  199. uint32_t rdhr = box->RDHR;
  200. msg->Data[4] = rdhr;
  201. msg->Data[5] = rdhr >> 8;
  202. msg->Data[6] = rdhr >> 16;
  203. msg->Data[7] = rdhr >> 24;
  204. // Release (free) message from FIFO
  205. *rfr |= CAN_RF0R_RFOM0;
  206. return 0; // success
  207. }
  208. // We have our own version of CAN transmit so we can handle Timeout=0 correctly.
  209. STATIC HAL_StatusTypeDef CAN_Transmit(CAN_HandleTypeDef *hcan, uint32_t Timeout) {
  210. uint32_t transmitmailbox;
  211. uint32_t tickstart;
  212. uint32_t rqcpflag;
  213. uint32_t txokflag;
  214. // Check the parameters
  215. assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE));
  216. assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR));
  217. assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC));
  218. // Select one empty transmit mailbox
  219. if ((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0) {
  220. transmitmailbox = CAN_TXMAILBOX_0;
  221. rqcpflag = CAN_FLAG_RQCP0;
  222. txokflag = CAN_FLAG_TXOK0;
  223. } else if ((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1) {
  224. transmitmailbox = CAN_TXMAILBOX_1;
  225. rqcpflag = CAN_FLAG_RQCP1;
  226. txokflag = CAN_FLAG_TXOK1;
  227. } else if ((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2) {
  228. transmitmailbox = CAN_TXMAILBOX_2;
  229. rqcpflag = CAN_FLAG_RQCP2;
  230. txokflag = CAN_FLAG_TXOK2;
  231. } else {
  232. transmitmailbox = CAN_TXSTATUS_NOMAILBOX;
  233. }
  234. if (transmitmailbox != CAN_TXSTATUS_NOMAILBOX) {
  235. // Set up the Id
  236. hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ;
  237. if (hcan->pTxMsg->IDE == CAN_ID_STD) {
  238. assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId));
  239. hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \
  240. hcan->pTxMsg->RTR);
  241. } else {
  242. assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId));
  243. hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \
  244. hcan->pTxMsg->IDE | \
  245. hcan->pTxMsg->RTR);
  246. }
  247. // Set up the DLC
  248. hcan->pTxMsg->DLC &= (uint8_t)0x0000000F;
  249. hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0;
  250. hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC;
  251. // Set up the data field
  252. hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) |
  253. ((uint32_t)hcan->pTxMsg->Data[2] << 16) |
  254. ((uint32_t)hcan->pTxMsg->Data[1] << 8) |
  255. ((uint32_t)hcan->pTxMsg->Data[0]));
  256. hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) |
  257. ((uint32_t)hcan->pTxMsg->Data[6] << 16) |
  258. ((uint32_t)hcan->pTxMsg->Data[5] << 8) |
  259. ((uint32_t)hcan->pTxMsg->Data[4]));
  260. // Request transmission
  261. hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ;
  262. if (Timeout == 0) {
  263. return HAL_OK;
  264. }
  265. // Get tick
  266. tickstart = HAL_GetTick();
  267. // Check End of transmission flag
  268. while (!(__HAL_CAN_TRANSMIT_STATUS(hcan, transmitmailbox))) {
  269. // Check for the Timeout
  270. if (Timeout != HAL_MAX_DELAY) {
  271. if ((HAL_GetTick() - tickstart) > Timeout) {
  272. // When the timeout expires, we try to abort the transmission of the packet
  273. __HAL_CAN_CANCEL_TRANSMIT(hcan, transmitmailbox);
  274. while (!__HAL_CAN_GET_FLAG(hcan, rqcpflag)) {
  275. }
  276. if (__HAL_CAN_GET_FLAG(hcan, txokflag)) {
  277. // The abort attempt failed and the message was sent properly
  278. return HAL_OK;
  279. } else {
  280. return HAL_TIMEOUT;
  281. }
  282. }
  283. }
  284. }
  285. return HAL_OK;
  286. } else {
  287. return HAL_BUSY;
  288. }
  289. }
  290. /******************************************************************************/
  291. // MicroPython bindings
  292. STATIC void pyb_can_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
  293. pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
  294. if (!self->is_enabled) {
  295. mp_printf(print, "CAN(%u)", self->can_id);
  296. } else {
  297. qstr mode;
  298. switch (self->can.Init.Mode) {
  299. case CAN_MODE_NORMAL: mode = MP_QSTR_NORMAL; break;
  300. case CAN_MODE_LOOPBACK: mode = MP_QSTR_LOOPBACK; break;
  301. case CAN_MODE_SILENT: mode = MP_QSTR_SILENT; break;
  302. case CAN_MODE_SILENT_LOOPBACK: default: mode = MP_QSTR_SILENT_LOOPBACK; break;
  303. }
  304. mp_printf(print, "CAN(%u, CAN.%q, extframe=%q, auto_restart=%q)",
  305. self->can_id,
  306. mode,
  307. self->extframe ? MP_QSTR_True : MP_QSTR_False,
  308. (self->can.Instance->MCR & CAN_MCR_ABOM) ? MP_QSTR_True : MP_QSTR_False);
  309. }
  310. }
  311. // init(mode, extframe=False, prescaler=100, *, sjw=1, bs1=6, bs2=8)
  312. STATIC mp_obj_t pyb_can_init_helper(pyb_can_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
  313. enum { ARG_mode, ARG_extframe, ARG_prescaler, ARG_sjw, ARG_bs1, ARG_bs2, ARG_auto_restart };
  314. static const mp_arg_t allowed_args[] = {
  315. { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = CAN_MODE_NORMAL} },
  316. { MP_QSTR_extframe, MP_ARG_BOOL, {.u_bool = false} },
  317. { MP_QSTR_prescaler, MP_ARG_INT, {.u_int = 100} },
  318. { MP_QSTR_sjw, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
  319. { MP_QSTR_bs1, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 6} },
  320. { MP_QSTR_bs2, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
  321. { MP_QSTR_auto_restart, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
  322. };
  323. // parse args
  324. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
  325. mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
  326. self->extframe = args[ARG_extframe].u_bool;
  327. // set the CAN configuration values
  328. memset(&self->can, 0, sizeof(self->can));
  329. CAN_InitTypeDef *init = &self->can.Init;
  330. init->Mode = args[ARG_mode].u_int << 4; // shift-left so modes fit in a small-int
  331. init->Prescaler = args[ARG_prescaler].u_int;
  332. init->SJW = ((args[ARG_sjw].u_int - 1) & 3) << 24;
  333. init->BS1 = ((args[ARG_bs1].u_int - 1) & 0xf) << 16;
  334. init->BS2 = ((args[ARG_bs2].u_int - 1) & 7) << 20;
  335. init->TTCM = DISABLE;
  336. init->ABOM = args[ARG_auto_restart].u_bool ? ENABLE : DISABLE;
  337. init->AWUM = DISABLE;
  338. init->NART = DISABLE;
  339. init->RFLM = DISABLE;
  340. init->TXFP = DISABLE;
  341. // init CAN (if it fails, it's because the port doesn't exist)
  342. if (!can_init(self)) {
  343. nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN(%d) doesn't exist", self->can_id));
  344. }
  345. return mp_const_none;
  346. }
  347. /// \classmethod \constructor(bus, ...)
  348. ///
  349. /// Construct a CAN object on the given bus. `bus` can be 1-2, or 'YA' or 'YB'.
  350. /// With no additional parameters, the CAN object is created but not
  351. /// initialised (it has the settings from the last initialisation of
  352. /// the bus, if any). If extra arguments are given, the bus is initialised.
  353. /// See `init` for parameters of initialisation.
  354. ///
  355. /// The physical pins of the CAN busses are:
  356. ///
  357. /// - `CAN(1)` is on `YA`: `(RX, TX) = (Y3, Y4) = (PB8, PB9)`
  358. /// - `CAN(2)` is on `YB`: `(RX, TX) = (Y5, Y6) = (PB12, PB13)`
  359. STATIC mp_obj_t pyb_can_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  360. // check arguments
  361. mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
  362. // work out port
  363. mp_uint_t can_idx;
  364. if (MP_OBJ_IS_STR(args[0])) {
  365. const char *port = mp_obj_str_get_str(args[0]);
  366. if (0) {
  367. #ifdef MICROPY_HW_CAN1_NAME
  368. } else if (strcmp(port, MICROPY_HW_CAN1_NAME) == 0) {
  369. can_idx = PYB_CAN_1;
  370. #endif
  371. #ifdef MICROPY_HW_CAN2_NAME
  372. } else if (strcmp(port, MICROPY_HW_CAN2_NAME) == 0) {
  373. can_idx = PYB_CAN_2;
  374. #endif
  375. } else {
  376. nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN(%s) doesn't exist", port));
  377. }
  378. } else {
  379. can_idx = mp_obj_get_int(args[0]);
  380. }
  381. if (can_idx < 1 || can_idx > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all))) {
  382. nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN(%d) doesn't exist", can_idx));
  383. }
  384. pyb_can_obj_t *self;
  385. if (MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1] == NULL) {
  386. self = m_new_obj(pyb_can_obj_t);
  387. self->base.type = &pyb_can_type;
  388. self->can_id = can_idx;
  389. self->is_enabled = false;
  390. MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1] = self;
  391. } else {
  392. self = MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1];
  393. }
  394. if (!self->is_enabled || n_args > 1) {
  395. if (self->is_enabled) {
  396. // The caller is requesting a reconfiguration of the hardware
  397. // this can only be done if the hardware is in init mode
  398. pyb_can_deinit(MP_OBJ_FROM_PTR(self));
  399. }
  400. self->rxcallback0 = mp_const_none;
  401. self->rxcallback1 = mp_const_none;
  402. self->rx_state0 = RX_STATE_FIFO_EMPTY;
  403. self->rx_state1 = RX_STATE_FIFO_EMPTY;
  404. if (n_args > 1 || n_kw > 0) {
  405. // start the peripheral
  406. mp_map_t kw_args;
  407. mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
  408. pyb_can_init_helper(self, n_args - 1, args + 1, &kw_args);
  409. }
  410. }
  411. return MP_OBJ_FROM_PTR(self);
  412. }
  413. STATIC mp_obj_t pyb_can_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
  414. return pyb_can_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
  415. }
  416. STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_init_obj, 1, pyb_can_init);
  417. /// \method deinit()
  418. /// Turn off the CAN bus.
  419. STATIC mp_obj_t pyb_can_deinit(mp_obj_t self_in) {
  420. pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
  421. self->is_enabled = false;
  422. HAL_CAN_DeInit(&self->can);
  423. if (self->can.Instance == CAN1) {
  424. HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
  425. HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn);
  426. HAL_NVIC_DisableIRQ(CAN1_SCE_IRQn);
  427. __CAN1_FORCE_RESET();
  428. __CAN1_RELEASE_RESET();
  429. __CAN1_CLK_DISABLE();
  430. #if defined(CAN2)
  431. } else if (self->can.Instance == CAN2) {
  432. HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
  433. HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn);
  434. HAL_NVIC_DisableIRQ(CAN2_SCE_IRQn);
  435. __CAN2_FORCE_RESET();
  436. __CAN2_RELEASE_RESET();
  437. __CAN2_CLK_DISABLE();
  438. #endif
  439. }
  440. return mp_const_none;
  441. }
  442. STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_deinit_obj, pyb_can_deinit);
  443. // Force a software restart of the controller, to allow transmission after a bus error
  444. STATIC mp_obj_t pyb_can_restart(mp_obj_t self_in) {
  445. pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
  446. if (!self->is_enabled) {
  447. mp_raise_ValueError(NULL);
  448. }
  449. CAN_TypeDef *can = self->can.Instance;
  450. can->MCR |= CAN_MCR_INRQ;
  451. while ((can->MSR & CAN_MSR_INAK) == 0) {
  452. }
  453. can->MCR &= ~CAN_MCR_INRQ;
  454. while ((can->MSR & CAN_MSR_INAK)) {
  455. }
  456. return mp_const_none;
  457. }
  458. STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_restart_obj, pyb_can_restart);
  459. // Get the state of the controller
  460. STATIC mp_obj_t pyb_can_state(mp_obj_t self_in) {
  461. pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
  462. mp_int_t state = CAN_STATE_STOPPED;
  463. if (self->is_enabled) {
  464. CAN_TypeDef *can = self->can.Instance;
  465. if (can->ESR & CAN_ESR_BOFF) {
  466. state = CAN_STATE_BUS_OFF;
  467. } else if (can->ESR & CAN_ESR_EPVF) {
  468. state = CAN_STATE_ERROR_PASSIVE;
  469. } else if (can->ESR & CAN_ESR_EWGF) {
  470. state = CAN_STATE_ERROR_WARNING;
  471. } else {
  472. state = CAN_STATE_ERROR_ACTIVE;
  473. }
  474. }
  475. return MP_OBJ_NEW_SMALL_INT(state);
  476. }
  477. STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_state_obj, pyb_can_state);
  478. // Get info about error states and TX/RX buffers
  479. STATIC mp_obj_t pyb_can_info(size_t n_args, const mp_obj_t *args) {
  480. pyb_can_obj_t *self = MP_OBJ_TO_PTR(args[0]);
  481. mp_obj_list_t *list;
  482. if (n_args == 1) {
  483. list = MP_OBJ_TO_PTR(mp_obj_new_list(8, NULL));
  484. } else {
  485. if (!MP_OBJ_IS_TYPE(args[1], &mp_type_list)) {
  486. mp_raise_TypeError(NULL);
  487. }
  488. list = MP_OBJ_TO_PTR(args[1]);
  489. if (list->len < 8) {
  490. mp_raise_ValueError(NULL);
  491. }
  492. }
  493. CAN_TypeDef *can = self->can.Instance;
  494. uint32_t esr = can->ESR;
  495. list->items[0] = MP_OBJ_NEW_SMALL_INT(esr >> CAN_ESR_TEC_Pos & 0xff);
  496. list->items[1] = MP_OBJ_NEW_SMALL_INT(esr >> CAN_ESR_REC_Pos & 0xff);
  497. list->items[2] = MP_OBJ_NEW_SMALL_INT(self->num_error_warning);
  498. list->items[3] = MP_OBJ_NEW_SMALL_INT(self->num_error_passive);
  499. list->items[4] = MP_OBJ_NEW_SMALL_INT(self->num_bus_off);
  500. int n_tx_pending = 0x01121223 >> ((can->TSR >> CAN_TSR_TME_Pos & 7) << 2) & 0xf;
  501. list->items[5] = MP_OBJ_NEW_SMALL_INT(n_tx_pending);
  502. list->items[6] = MP_OBJ_NEW_SMALL_INT(can->RF0R >> CAN_RF0R_FMP0_Pos & 3);
  503. list->items[7] = MP_OBJ_NEW_SMALL_INT(can->RF1R >> CAN_RF1R_FMP1_Pos & 3);
  504. return MP_OBJ_FROM_PTR(list);
  505. }
  506. STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_can_info_obj, 1, 2, pyb_can_info);
  507. /// \method any(fifo)
  508. /// Return `True` if any message waiting on the FIFO, else `False`.
  509. STATIC mp_obj_t pyb_can_any(mp_obj_t self_in, mp_obj_t fifo_in) {
  510. pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
  511. mp_int_t fifo = mp_obj_get_int(fifo_in);
  512. if (fifo == 0) {
  513. if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0) {
  514. return mp_const_true;
  515. }
  516. } else {
  517. if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0) {
  518. return mp_const_true;
  519. }
  520. }
  521. return mp_const_false;
  522. }
  523. STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_any_obj, pyb_can_any);
  524. /// \method send(send, addr, *, timeout=5000)
  525. /// Send a message on the bus:
  526. ///
  527. /// - `send` is the data to send (an integer to send, or a buffer object).
  528. /// - `addr` is the address to send to
  529. /// - `timeout` is the timeout in milliseconds to wait for the send.
  530. ///
  531. /// Return value: `None`.
  532. STATIC mp_obj_t pyb_can_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
  533. enum { ARG_data, ARG_id, ARG_timeout, ARG_rtr };
  534. static const mp_arg_t allowed_args[] = {
  535. { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
  536. { MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
  537. { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
  538. { MP_QSTR_rtr, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
  539. };
  540. // parse args
  541. pyb_can_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
  542. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
  543. mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
  544. // get the buffer to send from
  545. mp_buffer_info_t bufinfo;
  546. uint8_t data[1];
  547. pyb_buf_get_for_send(args[ARG_data].u_obj, &bufinfo, data);
  548. if (bufinfo.len > 8) {
  549. mp_raise_ValueError("CAN data field too long");
  550. }
  551. // send the data
  552. CanTxMsgTypeDef tx_msg;
  553. if (self->extframe) {
  554. tx_msg.ExtId = args[ARG_id].u_int & 0x1FFFFFFF;
  555. tx_msg.IDE = CAN_ID_EXT;
  556. } else {
  557. tx_msg.StdId = args[ARG_id].u_int & 0x7FF;
  558. tx_msg.IDE = CAN_ID_STD;
  559. }
  560. if (args[ARG_rtr].u_bool == false) {
  561. tx_msg.RTR = CAN_RTR_DATA;
  562. } else {
  563. tx_msg.RTR = CAN_RTR_REMOTE;
  564. }
  565. tx_msg.DLC = bufinfo.len;
  566. for (mp_uint_t i = 0; i < bufinfo.len; i++) {
  567. tx_msg.Data[i] = ((byte*)bufinfo.buf)[i]; // Data is uint32_t but holds only 1 byte
  568. }
  569. self->can.pTxMsg = &tx_msg;
  570. HAL_StatusTypeDef status = CAN_Transmit(&self->can, args[ARG_timeout].u_int);
  571. if (status != HAL_OK) {
  572. mp_hal_raise(status);
  573. }
  574. return mp_const_none;
  575. }
  576. STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_send_obj, 1, pyb_can_send);
  577. /// \method recv(fifo, list=None, *, timeout=5000)
  578. ///
  579. /// Receive data on the bus:
  580. ///
  581. /// - `fifo` is an integer, which is the FIFO to receive on
  582. /// - `list` if not None is a list with at least 4 elements
  583. /// - `timeout` is the timeout in milliseconds to wait for the receive.
  584. ///
  585. /// Return value: buffer of data bytes.
  586. STATIC mp_obj_t pyb_can_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
  587. enum { ARG_fifo, ARG_list, ARG_timeout };
  588. static const mp_arg_t allowed_args[] = {
  589. { MP_QSTR_fifo, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
  590. { MP_QSTR_list, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
  591. { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
  592. };
  593. // parse args
  594. pyb_can_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
  595. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
  596. mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
  597. // receive the data
  598. CanRxMsgTypeDef rx_msg;
  599. int ret = can_receive(self->can.Instance, args[ARG_fifo].u_int, &rx_msg, args[ARG_timeout].u_int);
  600. if (ret < 0) {
  601. mp_raise_OSError(-ret);
  602. }
  603. // Manage the rx state machine
  604. mp_int_t fifo = args[ARG_fifo].u_int;
  605. if ((fifo == CAN_FIFO0 && self->rxcallback0 != mp_const_none) ||
  606. (fifo == CAN_FIFO1 && self->rxcallback1 != mp_const_none)) {
  607. byte *state = (fifo == CAN_FIFO0) ? &self->rx_state0 : &self->rx_state1;
  608. switch (*state) {
  609. case RX_STATE_FIFO_EMPTY:
  610. break;
  611. case RX_STATE_MESSAGE_PENDING:
  612. if (__HAL_CAN_MSG_PENDING(&self->can, fifo) == 0) {
  613. // Fifo is empty
  614. __HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FMP0 : CAN_IT_FMP1);
  615. *state = RX_STATE_FIFO_EMPTY;
  616. }
  617. break;
  618. case RX_STATE_FIFO_FULL:
  619. __HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FF0 : CAN_IT_FF1);
  620. *state = RX_STATE_MESSAGE_PENDING;
  621. break;
  622. case RX_STATE_FIFO_OVERFLOW:
  623. __HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FOV0 : CAN_IT_FOV1);
  624. __HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FF0 : CAN_IT_FF1);
  625. *state = RX_STATE_MESSAGE_PENDING;
  626. break;
  627. }
  628. }
  629. // Create the tuple, or get the list, that will hold the return values
  630. // Also populate the fourth element, either a new bytes or reuse existing memoryview
  631. mp_obj_t ret_obj = args[ARG_list].u_obj;
  632. mp_obj_t *items;
  633. if (ret_obj == mp_const_none) {
  634. ret_obj = mp_obj_new_tuple(4, NULL);
  635. items = ((mp_obj_tuple_t*)MP_OBJ_TO_PTR(ret_obj))->items;
  636. items[3] = mp_obj_new_bytes(&rx_msg.Data[0], rx_msg.DLC);
  637. } else {
  638. // User should provide a list of length at least 4 to hold the values
  639. if (!MP_OBJ_IS_TYPE(ret_obj, &mp_type_list)) {
  640. mp_raise_TypeError(NULL);
  641. }
  642. mp_obj_list_t *list = MP_OBJ_TO_PTR(ret_obj);
  643. if (list->len < 4) {
  644. mp_raise_ValueError(NULL);
  645. }
  646. items = list->items;
  647. // Fourth element must be a memoryview which we assume points to a
  648. // byte-like array which is large enough, and then we resize it inplace
  649. if (!MP_OBJ_IS_TYPE(items[3], &mp_type_memoryview)) {
  650. mp_raise_TypeError(NULL);
  651. }
  652. mp_obj_array_t *mv = MP_OBJ_TO_PTR(items[3]);
  653. if (!(mv->typecode == (MP_OBJ_ARRAY_TYPECODE_FLAG_RW | BYTEARRAY_TYPECODE)
  654. || (mv->typecode | 0x20) == (MP_OBJ_ARRAY_TYPECODE_FLAG_RW | 'b'))) {
  655. mp_raise_ValueError(NULL);
  656. }
  657. mv->len = rx_msg.DLC;
  658. memcpy(mv->items, &rx_msg.Data[0], rx_msg.DLC);
  659. }
  660. // Populate the first 3 values of the tuple/list
  661. if (rx_msg.IDE == CAN_ID_STD) {
  662. items[0] = MP_OBJ_NEW_SMALL_INT(rx_msg.StdId);
  663. } else {
  664. items[0] = MP_OBJ_NEW_SMALL_INT(rx_msg.ExtId);
  665. }
  666. items[1] = rx_msg.RTR == CAN_RTR_REMOTE ? mp_const_true : mp_const_false;
  667. items[2] = MP_OBJ_NEW_SMALL_INT(rx_msg.FMI);
  668. // Return the result
  669. return ret_obj;
  670. }
  671. STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_recv_obj, 1, pyb_can_recv);
  672. /// \class method initfilterbanks
  673. ///
  674. /// Set up the filterbanks. All filter will be disabled and set to their reset states.
  675. ///
  676. /// - `banks` is an integer that sets how many filter banks that are reserved for CAN1.
  677. /// 0 -> no filters assigned for CAN1
  678. /// 28 -> all filters are assigned to CAN1
  679. /// CAN2 will get the rest of the 28 available.
  680. ///
  681. /// Return value: none.
  682. STATIC mp_obj_t pyb_can_initfilterbanks(mp_obj_t self, mp_obj_t bank_in) {
  683. can2_start_bank = mp_obj_get_int(bank_in);
  684. for (int f = 0; f < 28; f++) {
  685. can_clearfilter(f);
  686. }
  687. return mp_const_none;
  688. }
  689. STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_initfilterbanks_fun_obj, pyb_can_initfilterbanks);
  690. STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pyb_can_initfilterbanks_obj, MP_ROM_PTR(&pyb_can_initfilterbanks_fun_obj));
  691. STATIC mp_obj_t pyb_can_clearfilter(mp_obj_t self_in, mp_obj_t bank_in) {
  692. pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
  693. mp_int_t f = mp_obj_get_int(bank_in);
  694. if (self->can_id == 2) {
  695. f += can2_start_bank;
  696. }
  697. can_clearfilter(f);
  698. return mp_const_none;
  699. }
  700. STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_clearfilter_obj, pyb_can_clearfilter);
  701. /// Configures a filterbank
  702. /// Return value: `None`.
  703. #define EXTENDED_ID_TO_16BIT_FILTER(id) (((id & 0xC00000) >> 13) | ((id & 0x38000) >> 15)) | 8
  704. STATIC mp_obj_t pyb_can_setfilter(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
  705. enum { ARG_bank, ARG_mode, ARG_fifo, ARG_params, ARG_rtr };
  706. static const mp_arg_t allowed_args[] = {
  707. { MP_QSTR_bank, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
  708. { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
  709. { MP_QSTR_fifo, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = CAN_FILTER_FIFO0} },
  710. { MP_QSTR_params, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
  711. { MP_QSTR_rtr, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
  712. };
  713. // parse args
  714. pyb_can_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
  715. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
  716. mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
  717. size_t len;
  718. size_t rtr_len;
  719. mp_uint_t rtr_masks[4] = {0, 0, 0, 0};
  720. mp_obj_t *rtr_flags;
  721. mp_obj_t *params;
  722. mp_obj_get_array(args[ARG_params].u_obj, &len, &params);
  723. if (args[ARG_rtr].u_obj != MP_OBJ_NULL){
  724. mp_obj_get_array(args[ARG_rtr].u_obj, &rtr_len, &rtr_flags);
  725. }
  726. CAN_FilterConfTypeDef filter;
  727. if (args[ARG_mode].u_int == MASK16 || args[ARG_mode].u_int == LIST16) {
  728. if (len != 4) {
  729. goto error;
  730. }
  731. filter.FilterScale = CAN_FILTERSCALE_16BIT;
  732. if (self->extframe) {
  733. if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
  734. if (args[ARG_mode].u_int == MASK16) {
  735. rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
  736. rtr_masks[1] = 0x02;
  737. rtr_masks[2] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
  738. rtr_masks[3] = 0x02;
  739. } else { // LIST16
  740. rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
  741. rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
  742. rtr_masks[2] = mp_obj_get_int(rtr_flags[2]) ? 0x02 : 0;
  743. rtr_masks[3] = mp_obj_get_int(rtr_flags[3]) ? 0x02 : 0;
  744. }
  745. }
  746. filter.FilterIdLow = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[0])) | rtr_masks[0]; // id1
  747. filter.FilterMaskIdLow = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[1])) | rtr_masks[1]; // mask1
  748. filter.FilterIdHigh = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[2])) | rtr_masks[2]; // id2
  749. filter.FilterMaskIdHigh = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[3])) | rtr_masks[3]; // mask2
  750. } else { // Basic frames
  751. if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
  752. if (args[ARG_mode].u_int == MASK16) {
  753. rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x10 : 0;
  754. rtr_masks[1] = 0x10;
  755. rtr_masks[2] = mp_obj_get_int(rtr_flags[1]) ? 0x10 : 0;
  756. rtr_masks[3] = 0x10;
  757. } else { // LIST16
  758. rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x10 : 0;
  759. rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x10 : 0;
  760. rtr_masks[2] = mp_obj_get_int(rtr_flags[2]) ? 0x10 : 0;
  761. rtr_masks[3] = mp_obj_get_int(rtr_flags[3]) ? 0x10 : 0;
  762. }
  763. }
  764. filter.FilterIdLow = (mp_obj_get_int(params[0]) << 5) | rtr_masks[0]; // id1
  765. filter.FilterMaskIdLow = (mp_obj_get_int(params[1]) << 5) | rtr_masks[1]; // mask1
  766. filter.FilterIdHigh = (mp_obj_get_int(params[2]) << 5) | rtr_masks[2]; // id2
  767. filter.FilterMaskIdHigh = (mp_obj_get_int(params[3]) << 5) | rtr_masks[3]; // mask2
  768. }
  769. if (args[ARG_mode].u_int == MASK16) {
  770. filter.FilterMode = CAN_FILTERMODE_IDMASK;
  771. }
  772. if (args[ARG_mode].u_int == LIST16) {
  773. filter.FilterMode = CAN_FILTERMODE_IDLIST;
  774. }
  775. }
  776. else if (args[ARG_mode].u_int == MASK32 || args[ARG_mode].u_int == LIST32) {
  777. if (len != 2) {
  778. goto error;
  779. }
  780. filter.FilterScale = CAN_FILTERSCALE_32BIT;
  781. if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
  782. if (args[ARG_mode].u_int == MASK32) {
  783. rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
  784. rtr_masks[1] = 0x02;
  785. } else { // LIST32
  786. rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
  787. rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
  788. }
  789. }
  790. filter.FilterIdHigh = (mp_obj_get_int(params[0]) & 0x1FFFE000) >> 13;
  791. filter.FilterIdLow = (((mp_obj_get_int(params[0]) & 0x00001FFF) << 3) | 4) | rtr_masks[0];
  792. filter.FilterMaskIdHigh = (mp_obj_get_int(params[1]) & 0x1FFFE000 ) >> 13;
  793. filter.FilterMaskIdLow = (((mp_obj_get_int(params[1]) & 0x00001FFF) << 3) | 4) | rtr_masks[1];
  794. if (args[ARG_mode].u_int == MASK32) {
  795. filter.FilterMode = CAN_FILTERMODE_IDMASK;
  796. }
  797. if (args[ARG_mode].u_int == LIST32) {
  798. filter.FilterMode = CAN_FILTERMODE_IDLIST;
  799. }
  800. } else {
  801. goto error;
  802. }
  803. filter.FilterFIFOAssignment = args[ARG_fifo].u_int;
  804. filter.FilterNumber = args[ARG_bank].u_int;
  805. if (self->can_id == 1) {
  806. if (filter.FilterNumber >= can2_start_bank) {
  807. goto error;
  808. }
  809. } else {
  810. filter.FilterNumber = filter.FilterNumber + can2_start_bank;
  811. if (filter.FilterNumber > 27) {
  812. goto error;
  813. }
  814. }
  815. filter.FilterActivation = ENABLE;
  816. filter.BankNumber = can2_start_bank;
  817. HAL_CAN_ConfigFilter(&self->can, &filter);
  818. return mp_const_none;
  819. error:
  820. mp_raise_ValueError("CAN filter parameter error");
  821. }
  822. STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_setfilter_obj, 1, pyb_can_setfilter);
  823. STATIC mp_obj_t pyb_can_rxcallback(mp_obj_t self_in, mp_obj_t fifo_in, mp_obj_t callback_in) {
  824. pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
  825. mp_int_t fifo = mp_obj_get_int(fifo_in);
  826. mp_obj_t *callback;
  827. callback = (fifo == 0) ? &self->rxcallback0 : &self->rxcallback1;
  828. if (callback_in == mp_const_none) {
  829. __HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FMP0 : CAN_IT_FMP1);
  830. __HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FF0 : CAN_IT_FF1);
  831. __HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FOV0 : CAN_IT_FOV1);
  832. __HAL_CAN_CLEAR_FLAG(&self->can, (fifo == CAN_FIFO0) ? CAN_FLAG_FF0 : CAN_FLAG_FF1);
  833. __HAL_CAN_CLEAR_FLAG(&self->can, (fifo == CAN_FIFO0) ? CAN_FLAG_FOV0 : CAN_FLAG_FOV1);
  834. *callback = mp_const_none;
  835. } else if (*callback != mp_const_none) {
  836. // Rx call backs has already been initialized
  837. // only the callback function should be changed
  838. *callback = callback_in;
  839. } else if (mp_obj_is_callable(callback_in)) {
  840. *callback = callback_in;
  841. uint32_t irq = 0;
  842. if (self->can_id == PYB_CAN_1) {
  843. irq = (fifo == 0) ? CAN1_RX0_IRQn : CAN1_RX1_IRQn;
  844. #if defined(CAN2)
  845. } else {
  846. irq = (fifo == 0) ? CAN2_RX0_IRQn : CAN2_RX1_IRQn;
  847. #endif
  848. }
  849. NVIC_SetPriority(irq, IRQ_PRI_CAN);
  850. HAL_NVIC_EnableIRQ(irq);
  851. __HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FMP0 : CAN_IT_FMP1);
  852. __HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FF0 : CAN_IT_FF1);
  853. __HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FOV0 : CAN_IT_FOV1);
  854. }
  855. return mp_const_none;
  856. }
  857. STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_can_rxcallback_obj, pyb_can_rxcallback);
  858. STATIC const mp_rom_map_elem_t pyb_can_locals_dict_table[] = {
  859. // instance methods
  860. { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_can_init_obj) },
  861. { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_can_deinit_obj) },
  862. { MP_ROM_QSTR(MP_QSTR_restart), MP_ROM_PTR(&pyb_can_restart_obj) },
  863. { MP_ROM_QSTR(MP_QSTR_state), MP_ROM_PTR(&pyb_can_state_obj) },
  864. { MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&pyb_can_info_obj) },
  865. { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_can_any_obj) },
  866. { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_can_send_obj) },
  867. { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_can_recv_obj) },
  868. { MP_ROM_QSTR(MP_QSTR_initfilterbanks), MP_ROM_PTR(&pyb_can_initfilterbanks_obj) },
  869. { MP_ROM_QSTR(MP_QSTR_setfilter), MP_ROM_PTR(&pyb_can_setfilter_obj) },
  870. { MP_ROM_QSTR(MP_QSTR_clearfilter), MP_ROM_PTR(&pyb_can_clearfilter_obj) },
  871. { MP_ROM_QSTR(MP_QSTR_rxcallback), MP_ROM_PTR(&pyb_can_rxcallback_obj) },
  872. // class constants
  873. // Note: we use the ST constants >> 4 so they fit in a small-int. The
  874. // right-shift is undone when the constants are used in the init function.
  875. { MP_ROM_QSTR(MP_QSTR_NORMAL), MP_ROM_INT(CAN_MODE_NORMAL >> 4) },
  876. { MP_ROM_QSTR(MP_QSTR_LOOPBACK), MP_ROM_INT(CAN_MODE_LOOPBACK >> 4) },
  877. { MP_ROM_QSTR(MP_QSTR_SILENT), MP_ROM_INT(CAN_MODE_SILENT >> 4) },
  878. { MP_ROM_QSTR(MP_QSTR_SILENT_LOOPBACK), MP_ROM_INT(CAN_MODE_SILENT_LOOPBACK >> 4) },
  879. { MP_ROM_QSTR(MP_QSTR_MASK16), MP_ROM_INT(MASK16) },
  880. { MP_ROM_QSTR(MP_QSTR_LIST16), MP_ROM_INT(LIST16) },
  881. { MP_ROM_QSTR(MP_QSTR_MASK32), MP_ROM_INT(MASK32) },
  882. { MP_ROM_QSTR(MP_QSTR_LIST32), MP_ROM_INT(LIST32) },
  883. // values for CAN.state()
  884. { MP_ROM_QSTR(MP_QSTR_STOPPED), MP_ROM_INT(CAN_STATE_STOPPED) },
  885. { MP_ROM_QSTR(MP_QSTR_ERROR_ACTIVE), MP_ROM_INT(CAN_STATE_ERROR_ACTIVE) },
  886. { MP_ROM_QSTR(MP_QSTR_ERROR_WARNING), MP_ROM_INT(CAN_STATE_ERROR_WARNING) },
  887. { MP_ROM_QSTR(MP_QSTR_ERROR_PASSIVE), MP_ROM_INT(CAN_STATE_ERROR_PASSIVE) },
  888. { MP_ROM_QSTR(MP_QSTR_BUS_OFF), MP_ROM_INT(CAN_STATE_BUS_OFF) },
  889. };
  890. STATIC MP_DEFINE_CONST_DICT(pyb_can_locals_dict, pyb_can_locals_dict_table);
  891. mp_uint_t can_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
  892. pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
  893. mp_uint_t ret;
  894. if (request == MP_STREAM_POLL) {
  895. uintptr_t flags = arg;
  896. ret = 0;
  897. if ((flags & MP_STREAM_POLL_RD)
  898. && ((__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0)
  899. || (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0))) {
  900. ret |= MP_STREAM_POLL_RD;
  901. }
  902. if ((flags & MP_STREAM_POLL_WR) && (self->can.Instance->TSR & CAN_TSR_TME)) {
  903. ret |= MP_STREAM_POLL_WR;
  904. }
  905. } else {
  906. *errcode = MP_EINVAL;
  907. ret = -1;
  908. }
  909. return ret;
  910. }
  911. void can_rx_irq_handler(uint can_id, uint fifo_id) {
  912. mp_obj_t callback;
  913. pyb_can_obj_t *self;
  914. mp_obj_t irq_reason = MP_OBJ_NEW_SMALL_INT(0);
  915. byte *state;
  916. self = MP_STATE_PORT(pyb_can_obj_all)[can_id - 1];
  917. if (fifo_id == CAN_FIFO0) {
  918. callback = self->rxcallback0;
  919. state = &self->rx_state0;
  920. } else {
  921. callback = self->rxcallback1;
  922. state = &self->rx_state1;
  923. }
  924. switch (*state) {
  925. case RX_STATE_FIFO_EMPTY:
  926. __HAL_CAN_DISABLE_IT(&self->can, (fifo_id == CAN_FIFO0) ? CAN_IT_FMP0 : CAN_IT_FMP1);
  927. irq_reason = MP_OBJ_NEW_SMALL_INT(0);
  928. *state = RX_STATE_MESSAGE_PENDING;
  929. break;
  930. case RX_STATE_MESSAGE_PENDING:
  931. __HAL_CAN_DISABLE_IT(&self->can, (fifo_id == CAN_FIFO0) ? CAN_IT_FF0 : CAN_IT_FF1);
  932. __HAL_CAN_CLEAR_FLAG(&self->can, (fifo_id == CAN_FIFO0) ? CAN_FLAG_FF0 : CAN_FLAG_FF1);
  933. irq_reason = MP_OBJ_NEW_SMALL_INT(1);
  934. *state = RX_STATE_FIFO_FULL;
  935. break;
  936. case RX_STATE_FIFO_FULL:
  937. __HAL_CAN_DISABLE_IT(&self->can, (fifo_id == CAN_FIFO0) ? CAN_IT_FOV0 : CAN_IT_FOV1);
  938. __HAL_CAN_CLEAR_FLAG(&self->can, (fifo_id == CAN_FIFO0) ? CAN_FLAG_FOV0 : CAN_FLAG_FOV1);
  939. irq_reason = MP_OBJ_NEW_SMALL_INT(2);
  940. *state = RX_STATE_FIFO_OVERFLOW;
  941. break;
  942. case RX_STATE_FIFO_OVERFLOW:
  943. // This should never happen
  944. break;
  945. }
  946. if (callback != mp_const_none) {
  947. mp_sched_lock();
  948. gc_lock();
  949. nlr_buf_t nlr;
  950. if (nlr_push(&nlr) == 0) {
  951. mp_call_function_2(callback, MP_OBJ_FROM_PTR(self), irq_reason);
  952. nlr_pop();
  953. } else {
  954. // Uncaught exception; disable the callback so it doesn't run again.
  955. pyb_can_rxcallback(MP_OBJ_FROM_PTR(self), MP_OBJ_NEW_SMALL_INT(fifo_id), mp_const_none);
  956. printf("uncaught exception in CAN(%u) rx interrupt handler\n", self->can_id);
  957. mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
  958. }
  959. gc_unlock();
  960. mp_sched_unlock();
  961. }
  962. }
  963. void can_sce_irq_handler(uint can_id) {
  964. pyb_can_obj_t *self = MP_STATE_PORT(pyb_can_obj_all)[can_id - 1];
  965. if (self) {
  966. self->can.Instance->MSR = CAN_MSR_ERRI;
  967. uint32_t esr = self->can.Instance->ESR;
  968. if (esr & CAN_ESR_BOFF) {
  969. ++self->num_bus_off;
  970. } else if (esr & CAN_ESR_EPVF) {
  971. ++self->num_error_passive;
  972. } else if (esr & CAN_ESR_EWGF) {
  973. ++self->num_error_warning;
  974. }
  975. }
  976. }
  977. STATIC const mp_stream_p_t can_stream_p = {
  978. //.read = can_read, // is read sensible for CAN?
  979. //.write = can_write, // is write sensible for CAN?
  980. .ioctl = can_ioctl,
  981. .is_text = false,
  982. };
  983. const mp_obj_type_t pyb_can_type = {
  984. { &mp_type_type },
  985. .name = MP_QSTR_CAN,
  986. .print = pyb_can_print,
  987. .make_new = pyb_can_make_new,
  988. .protocol = &can_stream_p,
  989. .locals_dict = (mp_obj_dict_t*)&pyb_can_locals_dict,
  990. };
  991. #endif // MICROPY_HW_ENABLE_CAN