__tan.c 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. /* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
  2. /*
  3. * ====================================================
  4. * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
  5. *
  6. * Permission to use, copy, modify, and distribute this
  7. * software is freely granted, provided that this notice
  8. * is preserved.
  9. * ====================================================
  10. */
  11. /* __tan( x, y, k )
  12. * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
  13. * Input x is assumed to be bounded by ~pi/4 in magnitude.
  14. * Input y is the tail of x.
  15. * Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
  16. *
  17. * Algorithm
  18. * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
  19. * 2. Callers must return tan(-0) = -0 without calling here since our
  20. * odd polynomial is not evaluated in a way that preserves -0.
  21. * Callers may do the optimization tan(x) ~ x for tiny x.
  22. * 3. tan(x) is approximated by a odd polynomial of degree 27 on
  23. * [0,0.67434]
  24. * 3 27
  25. * tan(x) ~ x + T1*x + ... + T13*x
  26. * where
  27. *
  28. * |tan(x) 2 4 26 | -59.2
  29. * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
  30. * | x |
  31. *
  32. * Note: tan(x+y) = tan(x) + tan'(x)*y
  33. * ~ tan(x) + (1+x*x)*y
  34. * Therefore, for better accuracy in computing tan(x+y), let
  35. * 3 2 2 2 2
  36. * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
  37. * then
  38. * 3 2
  39. * tan(x+y) = x + (T1*x + (x *(r+y)+y))
  40. *
  41. * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
  42. * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
  43. * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
  44. */
  45. #include "libm.h"
  46. static const double T[] = {
  47. 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
  48. 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
  49. 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
  50. 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
  51. 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
  52. 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
  53. 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
  54. 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
  55. 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
  56. 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
  57. 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
  58. -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
  59. 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
  60. },
  61. pio4 = 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
  62. pio4lo = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
  63. double __tan(double x, double y, int odd)
  64. {
  65. double_t z, r, v, w, s, a;
  66. double w0, a0;
  67. uint32_t hx;
  68. int big, sign;
  69. GET_HIGH_WORD(hx,x);
  70. big = (hx&0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
  71. if (big) {
  72. sign = hx>>31;
  73. if (sign) {
  74. x = -x;
  75. y = -y;
  76. }
  77. x = (pio4 - x) + (pio4lo - y);
  78. y = 0.0;
  79. }
  80. z = x * x;
  81. w = z * z;
  82. /*
  83. * Break x^5*(T[1]+x^2*T[2]+...) into
  84. * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
  85. * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
  86. */
  87. r = T[1] + w*(T[3] + w*(T[5] + w*(T[7] + w*(T[9] + w*T[11]))));
  88. v = z*(T[2] + w*(T[4] + w*(T[6] + w*(T[8] + w*(T[10] + w*T[12])))));
  89. s = z * x;
  90. r = y + z*(s*(r + v) + y) + s*T[0];
  91. w = x + r;
  92. if (big) {
  93. s = 1 - 2*odd;
  94. v = s - 2.0 * (x + (r - w*w/(w + s)));
  95. return sign ? -v : v;
  96. }
  97. if (!odd)
  98. return w;
  99. /* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
  100. w0 = w;
  101. SET_LOW_WORD(w0, 0);
  102. v = r - (w0 - x); /* w0+v = r+x */
  103. a0 = a = -1.0 / w;
  104. SET_LOW_WORD(a0, 0);
  105. return a0 + a*(1.0 + a0*w0 + a0*v);
  106. }