log1pf.c 2.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. /*****************************************************************************/
  2. /*****************************************************************************/
  3. // log1pf from musl-0.9.15
  4. /*****************************************************************************/
  5. /*****************************************************************************/
  6. /* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */
  7. /*
  8. * ====================================================
  9. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  10. *
  11. * Developed at SunPro, a Sun Microsystems, Inc. business.
  12. * Permission to use, copy, modify, and distribute this
  13. * software is freely granted, provided that this notice
  14. * is preserved.
  15. * ====================================================
  16. */
  17. #include "libm.h"
  18. static const float
  19. ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
  20. ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
  21. /* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
  22. Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
  23. Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
  24. Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
  25. Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
  26. float log1pf(float x)
  27. {
  28. union {float f; uint32_t i;} u = {x};
  29. float_t hfsq,f,c,s,z,R,w,t1,t2,dk;
  30. uint32_t ix,iu;
  31. int k;
  32. ix = u.i;
  33. k = 1;
  34. if (ix < 0x3ed413d0 || ix>>31) { /* 1+x < sqrt(2)+ */
  35. if (ix >= 0xbf800000) { /* x <= -1.0 */
  36. if (x == -1)
  37. return x/0.0f; /* log1p(-1)=+inf */
  38. return (x-x)/0.0f; /* log1p(x<-1)=NaN */
  39. }
  40. if (ix<<1 < 0x33800000<<1) { /* |x| < 2**-24 */
  41. /* underflow if subnormal */
  42. if ((ix&0x7f800000) == 0)
  43. FORCE_EVAL(x*x);
  44. return x;
  45. }
  46. if (ix <= 0xbe95f619) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
  47. k = 0;
  48. c = 0;
  49. f = x;
  50. }
  51. } else if (ix >= 0x7f800000)
  52. return x;
  53. if (k) {
  54. u.f = 1 + x;
  55. iu = u.i;
  56. iu += 0x3f800000 - 0x3f3504f3;
  57. k = (int)(iu>>23) - 0x7f;
  58. /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
  59. if (k < 25) {
  60. c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
  61. c /= u.f;
  62. } else
  63. c = 0;
  64. /* reduce u into [sqrt(2)/2, sqrt(2)] */
  65. iu = (iu&0x007fffff) + 0x3f3504f3;
  66. u.i = iu;
  67. f = u.f - 1;
  68. }
  69. s = f/(2.0f + f);
  70. z = s*s;
  71. w = z*z;
  72. t1= w*(Lg2+w*Lg4);
  73. t2= z*(Lg1+w*Lg3);
  74. R = t2 + t1;
  75. hfsq = 0.5f*f*f;
  76. dk = k;
  77. return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
  78. }