machine_i2c.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640
  1. /*
  2. * This file is part of the MicroPython project, http://micropython.org/
  3. *
  4. * The MIT License (MIT)
  5. *
  6. * Copyright (c) 2016 Damien P. George
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. */
  26. #include <stdio.h>
  27. #include <stdint.h>
  28. #include <string.h>
  29. #include "py/mperrno.h"
  30. #include "py/mphal.h"
  31. #include "py/runtime.h"
  32. #include "extmod/machine_i2c.h"
  33. #if MICROPY_PY_MACHINE_I2C
  34. typedef mp_machine_soft_i2c_obj_t machine_i2c_obj_t;
  35. STATIC void mp_hal_i2c_delay(machine_i2c_obj_t *self) {
  36. // We need to use an accurate delay to get acceptable I2C
  37. // speeds (eg 1us should be not much more than 1us).
  38. mp_hal_delay_us_fast(self->us_delay);
  39. }
  40. STATIC void mp_hal_i2c_scl_low(machine_i2c_obj_t *self) {
  41. mp_hal_pin_od_low(self->scl);
  42. }
  43. STATIC int mp_hal_i2c_scl_release(machine_i2c_obj_t *self) {
  44. uint32_t count = self->us_timeout;
  45. mp_hal_pin_od_high(self->scl);
  46. mp_hal_i2c_delay(self);
  47. // For clock stretching, wait for the SCL pin to be released, with timeout.
  48. for (; mp_hal_pin_read(self->scl) == 0 && count; --count) {
  49. mp_hal_delay_us_fast(1);
  50. }
  51. if (count == 0) {
  52. return -MP_ETIMEDOUT;
  53. }
  54. return 0; // success
  55. }
  56. STATIC void mp_hal_i2c_sda_low(machine_i2c_obj_t *self) {
  57. mp_hal_pin_od_low(self->sda);
  58. }
  59. STATIC void mp_hal_i2c_sda_release(machine_i2c_obj_t *self) {
  60. mp_hal_pin_od_high(self->sda);
  61. }
  62. STATIC int mp_hal_i2c_sda_read(machine_i2c_obj_t *self) {
  63. return mp_hal_pin_read(self->sda);
  64. }
  65. STATIC int mp_hal_i2c_start(machine_i2c_obj_t *self) {
  66. mp_hal_i2c_sda_release(self);
  67. mp_hal_i2c_delay(self);
  68. int ret = mp_hal_i2c_scl_release(self);
  69. if (ret != 0) {
  70. return ret;
  71. }
  72. mp_hal_i2c_sda_low(self);
  73. mp_hal_i2c_delay(self);
  74. return 0; // success
  75. }
  76. STATIC int mp_hal_i2c_stop(machine_i2c_obj_t *self) {
  77. mp_hal_i2c_delay(self);
  78. mp_hal_i2c_sda_low(self);
  79. mp_hal_i2c_delay(self);
  80. int ret = mp_hal_i2c_scl_release(self);
  81. mp_hal_i2c_sda_release(self);
  82. mp_hal_i2c_delay(self);
  83. return ret;
  84. }
  85. STATIC void mp_hal_i2c_init(machine_i2c_obj_t *self, uint32_t freq) {
  86. self->us_delay = 500000 / freq;
  87. if (self->us_delay == 0) {
  88. self->us_delay = 1;
  89. }
  90. mp_hal_pin_open_drain(self->scl);
  91. mp_hal_pin_open_drain(self->sda);
  92. mp_hal_i2c_stop(self); // ignore error
  93. }
  94. // return value:
  95. // 0 - byte written and ack received
  96. // 1 - byte written and nack received
  97. // <0 - error, with errno being the negative of the return value
  98. STATIC int mp_hal_i2c_write_byte(machine_i2c_obj_t *self, uint8_t val) {
  99. mp_hal_i2c_delay(self);
  100. mp_hal_i2c_scl_low(self);
  101. for (int i = 7; i >= 0; i--) {
  102. if ((val >> i) & 1) {
  103. mp_hal_i2c_sda_release(self);
  104. } else {
  105. mp_hal_i2c_sda_low(self);
  106. }
  107. mp_hal_i2c_delay(self);
  108. int ret = mp_hal_i2c_scl_release(self);
  109. if (ret != 0) {
  110. mp_hal_i2c_sda_release(self);
  111. return ret;
  112. }
  113. mp_hal_i2c_scl_low(self);
  114. }
  115. mp_hal_i2c_sda_release(self);
  116. mp_hal_i2c_delay(self);
  117. int ret = mp_hal_i2c_scl_release(self);
  118. if (ret != 0) {
  119. return ret;
  120. }
  121. int ack = mp_hal_i2c_sda_read(self);
  122. mp_hal_i2c_delay(self);
  123. mp_hal_i2c_scl_low(self);
  124. return ack;
  125. }
  126. // return value:
  127. // 0 - success
  128. // <0 - error, with errno being the negative of the return value
  129. STATIC int mp_hal_i2c_read_byte(machine_i2c_obj_t *self, uint8_t *val, int nack) {
  130. mp_hal_i2c_delay(self);
  131. mp_hal_i2c_scl_low(self);
  132. mp_hal_i2c_delay(self);
  133. uint8_t data = 0;
  134. for (int i = 7; i >= 0; i--) {
  135. int ret = mp_hal_i2c_scl_release(self);
  136. if (ret != 0) {
  137. return ret;
  138. }
  139. data = (data << 1) | mp_hal_i2c_sda_read(self);
  140. mp_hal_i2c_scl_low(self);
  141. mp_hal_i2c_delay(self);
  142. }
  143. *val = data;
  144. // send ack/nack bit
  145. if (!nack) {
  146. mp_hal_i2c_sda_low(self);
  147. }
  148. mp_hal_i2c_delay(self);
  149. int ret = mp_hal_i2c_scl_release(self);
  150. if (ret != 0) {
  151. mp_hal_i2c_sda_release(self);
  152. return ret;
  153. }
  154. mp_hal_i2c_scl_low(self);
  155. mp_hal_i2c_sda_release(self);
  156. return 0; // success
  157. }
  158. // return value:
  159. // >=0 - number of acks received
  160. // <0 - error, with errno being the negative of the return value
  161. int mp_machine_soft_i2c_writeto(mp_obj_base_t *self_in, uint16_t addr, const uint8_t *src, size_t len, bool stop) {
  162. machine_i2c_obj_t *self = (machine_i2c_obj_t*)self_in;
  163. // start the I2C transaction
  164. int ret = mp_hal_i2c_start(self);
  165. if (ret != 0) {
  166. return ret;
  167. }
  168. // write the slave address
  169. ret = mp_hal_i2c_write_byte(self, addr << 1);
  170. if (ret < 0) {
  171. return ret;
  172. } else if (ret != 0) {
  173. // nack received, release the bus cleanly
  174. mp_hal_i2c_stop(self);
  175. return -MP_ENODEV;
  176. }
  177. // write the buffer to the I2C memory
  178. int num_acks = 0;
  179. while (len--) {
  180. ret = mp_hal_i2c_write_byte(self, *src++);
  181. if (ret < 0) {
  182. return ret;
  183. } else if (ret != 0) {
  184. // nack received, stop sending
  185. break;
  186. }
  187. ++num_acks;
  188. }
  189. // finish the I2C transaction
  190. if (stop) {
  191. ret = mp_hal_i2c_stop(self);
  192. if (ret != 0) {
  193. return ret;
  194. }
  195. }
  196. return num_acks;
  197. }
  198. // return value:
  199. // 0 - success
  200. // <0 - error, with errno being the negative of the return value
  201. int mp_machine_soft_i2c_readfrom(mp_obj_base_t *self_in, uint16_t addr, uint8_t *dest, size_t len, bool stop) {
  202. machine_i2c_obj_t *self = (machine_i2c_obj_t*)self_in;
  203. // start the I2C transaction
  204. int ret = mp_hal_i2c_start(self);
  205. if (ret != 0) {
  206. return ret;
  207. }
  208. // write the slave address
  209. ret = mp_hal_i2c_write_byte(self, (addr << 1) | 1);
  210. if (ret < 0) {
  211. return ret;
  212. } else if (ret != 0) {
  213. // nack received, release the bus cleanly
  214. mp_hal_i2c_stop(self);
  215. return -MP_ENODEV;
  216. }
  217. // read the bytes from the slave
  218. while (len--) {
  219. ret = mp_hal_i2c_read_byte(self, dest++, len == 0);
  220. if (ret != 0) {
  221. return ret;
  222. }
  223. }
  224. // finish the I2C transaction
  225. if (stop) {
  226. ret = mp_hal_i2c_stop(self);
  227. if (ret != 0) {
  228. return ret;
  229. }
  230. }
  231. return 0; // success
  232. }
  233. /******************************************************************************/
  234. // MicroPython bindings for I2C
  235. STATIC void machine_i2c_obj_init_helper(machine_i2c_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
  236. enum { ARG_scl, ARG_sda, ARG_freq, ARG_timeout };
  237. static const mp_arg_t allowed_args[] = {
  238. { MP_QSTR_scl, MP_ARG_REQUIRED | MP_ARG_OBJ },
  239. { MP_QSTR_sda, MP_ARG_REQUIRED | MP_ARG_OBJ },
  240. { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} },
  241. { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 255} },
  242. };
  243. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
  244. mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
  245. self->scl = mp_hal_get_pin_obj(args[ARG_scl].u_obj);
  246. self->sda = mp_hal_get_pin_obj(args[ARG_sda].u_obj);
  247. self->us_timeout = args[ARG_timeout].u_int;
  248. mp_hal_i2c_init(self, args[ARG_freq].u_int);
  249. }
  250. STATIC mp_obj_t machine_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  251. // check the id argument, if given
  252. if (n_args > 0) {
  253. if (args[0] != MP_OBJ_NEW_SMALL_INT(-1)) {
  254. #if defined(MICROPY_PY_MACHINE_I2C_MAKE_NEW)
  255. // dispatch to port-specific constructor
  256. extern mp_obj_t MICROPY_PY_MACHINE_I2C_MAKE_NEW(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args);
  257. return MICROPY_PY_MACHINE_I2C_MAKE_NEW(type, n_args, n_kw, args);
  258. #else
  259. mp_raise_ValueError("invalid I2C peripheral");
  260. #endif
  261. }
  262. --n_args;
  263. ++args;
  264. }
  265. // create new soft I2C object
  266. machine_i2c_obj_t *self = m_new_obj(machine_i2c_obj_t);
  267. self->base.type = &machine_i2c_type;
  268. mp_map_t kw_args;
  269. mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
  270. machine_i2c_obj_init_helper(self, n_args, args, &kw_args);
  271. return MP_OBJ_FROM_PTR(self);
  272. }
  273. STATIC mp_obj_t machine_i2c_obj_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
  274. machine_i2c_obj_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
  275. return mp_const_none;
  276. }
  277. MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_init_obj, 1, machine_i2c_obj_init);
  278. STATIC mp_obj_t machine_i2c_scan(mp_obj_t self_in) {
  279. mp_obj_base_t *self = MP_OBJ_TO_PTR(self_in);
  280. mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
  281. mp_obj_t list = mp_obj_new_list(0, NULL);
  282. // 7-bit addresses 0b0000xxx and 0b1111xxx are reserved
  283. for (int addr = 0x08; addr < 0x78; ++addr) {
  284. int ret = i2c_p->writeto(self, addr, NULL, 0, true);
  285. if (ret == 0) {
  286. mp_obj_list_append(list, MP_OBJ_NEW_SMALL_INT(addr));
  287. }
  288. }
  289. return list;
  290. }
  291. MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_scan_obj, machine_i2c_scan);
  292. STATIC mp_obj_t machine_i2c_start(mp_obj_t self_in) {
  293. mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in);
  294. mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
  295. if (i2c_p->start == NULL) {
  296. mp_raise_msg(&mp_type_OSError, "I2C operation not supported");
  297. }
  298. int ret = i2c_p->start(self);
  299. if (ret != 0) {
  300. mp_raise_OSError(-ret);
  301. }
  302. return mp_const_none;
  303. }
  304. MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_start_obj, machine_i2c_start);
  305. STATIC mp_obj_t machine_i2c_stop(mp_obj_t self_in) {
  306. mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in);
  307. mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
  308. if (i2c_p->stop == NULL) {
  309. mp_raise_msg(&mp_type_OSError, "I2C operation not supported");
  310. }
  311. int ret = i2c_p->stop(self);
  312. if (ret != 0) {
  313. mp_raise_OSError(-ret);
  314. }
  315. return mp_const_none;
  316. }
  317. MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_stop_obj, machine_i2c_stop);
  318. STATIC mp_obj_t machine_i2c_readinto(size_t n_args, const mp_obj_t *args) {
  319. mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]);
  320. mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
  321. if (i2c_p->read == NULL) {
  322. mp_raise_msg(&mp_type_OSError, "I2C operation not supported");
  323. }
  324. // get the buffer to read into
  325. mp_buffer_info_t bufinfo;
  326. mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_WRITE);
  327. // work out if we want to send a nack at the end
  328. bool nack = (n_args == 2) ? true : mp_obj_is_true(args[2]);
  329. // do the read
  330. int ret = i2c_p->read(self, bufinfo.buf, bufinfo.len, nack);
  331. if (ret != 0) {
  332. mp_raise_OSError(-ret);
  333. }
  334. return mp_const_none;
  335. }
  336. MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readinto_obj, 2, 3, machine_i2c_readinto);
  337. STATIC mp_obj_t machine_i2c_write(mp_obj_t self_in, mp_obj_t buf_in) {
  338. mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in);
  339. mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
  340. if (i2c_p->write == NULL) {
  341. mp_raise_msg(&mp_type_OSError, "I2C operation not supported");
  342. }
  343. // get the buffer to write from
  344. mp_buffer_info_t bufinfo;
  345. mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
  346. // do the write
  347. int ret = i2c_p->write(self, bufinfo.buf, bufinfo.len);
  348. if (ret < 0) {
  349. mp_raise_OSError(-ret);
  350. }
  351. // return number of acks received
  352. return MP_OBJ_NEW_SMALL_INT(ret);
  353. }
  354. MP_DEFINE_CONST_FUN_OBJ_2(machine_i2c_write_obj, machine_i2c_write);
  355. STATIC mp_obj_t machine_i2c_readfrom(size_t n_args, const mp_obj_t *args) {
  356. mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]);
  357. mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
  358. mp_int_t addr = mp_obj_get_int(args[1]);
  359. vstr_t vstr;
  360. vstr_init_len(&vstr, mp_obj_get_int(args[2]));
  361. bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]);
  362. int ret = i2c_p->readfrom(self, addr, (uint8_t*)vstr.buf, vstr.len, stop);
  363. if (ret < 0) {
  364. mp_raise_OSError(-ret);
  365. }
  366. return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
  367. }
  368. MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readfrom_obj, 3, 4, machine_i2c_readfrom);
  369. STATIC mp_obj_t machine_i2c_readfrom_into(size_t n_args, const mp_obj_t *args) {
  370. mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]);
  371. mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
  372. mp_int_t addr = mp_obj_get_int(args[1]);
  373. mp_buffer_info_t bufinfo;
  374. mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE);
  375. bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]);
  376. int ret = i2c_p->readfrom(self, addr, bufinfo.buf, bufinfo.len, stop);
  377. if (ret < 0) {
  378. mp_raise_OSError(-ret);
  379. }
  380. return mp_const_none;
  381. }
  382. MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readfrom_into_obj, 3, 4, machine_i2c_readfrom_into);
  383. STATIC mp_obj_t machine_i2c_writeto(size_t n_args, const mp_obj_t *args) {
  384. mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]);
  385. mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
  386. mp_int_t addr = mp_obj_get_int(args[1]);
  387. mp_buffer_info_t bufinfo;
  388. mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ);
  389. bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]);
  390. int ret = i2c_p->writeto(self, addr, bufinfo.buf, bufinfo.len, stop);
  391. if (ret < 0) {
  392. mp_raise_OSError(-ret);
  393. }
  394. // return number of acks received
  395. return MP_OBJ_NEW_SMALL_INT(ret);
  396. }
  397. STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_writeto_obj, 3, 4, machine_i2c_writeto);
  398. STATIC int read_mem(mp_obj_t self_in, uint16_t addr, uint32_t memaddr, uint8_t addrsize, uint8_t *buf, size_t len) {
  399. mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in);
  400. mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
  401. uint8_t memaddr_buf[4];
  402. size_t memaddr_len = 0;
  403. for (int16_t i = addrsize - 8; i >= 0; i -= 8) {
  404. memaddr_buf[memaddr_len++] = memaddr >> i;
  405. }
  406. int ret = i2c_p->writeto(self, addr, memaddr_buf, memaddr_len, false);
  407. if (ret != memaddr_len) {
  408. // must generate STOP
  409. i2c_p->writeto(self, addr, NULL, 0, true);
  410. return ret;
  411. }
  412. return i2c_p->readfrom(self, addr, buf, len, true);
  413. }
  414. #define MAX_MEMADDR_SIZE (4)
  415. #define BUF_STACK_SIZE (12)
  416. STATIC int write_mem(mp_obj_t self_in, uint16_t addr, uint32_t memaddr, uint8_t addrsize, const uint8_t *buf, size_t len) {
  417. mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in);
  418. mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
  419. // need some memory to create the buffer to send; try to use stack if possible
  420. uint8_t buf2_stack[MAX_MEMADDR_SIZE + BUF_STACK_SIZE];
  421. uint8_t *buf2;
  422. size_t buf2_alloc = 0;
  423. if (len <= BUF_STACK_SIZE) {
  424. buf2 = buf2_stack;
  425. } else {
  426. buf2_alloc = MAX_MEMADDR_SIZE + len;
  427. buf2 = m_new(uint8_t, buf2_alloc);
  428. }
  429. // create the buffer to send
  430. size_t memaddr_len = 0;
  431. for (int16_t i = addrsize - 8; i >= 0; i -= 8) {
  432. buf2[memaddr_len++] = memaddr >> i;
  433. }
  434. memcpy(buf2 + memaddr_len, buf, len);
  435. int ret = i2c_p->writeto(self, addr, buf2, memaddr_len + len, true);
  436. if (buf2_alloc != 0) {
  437. m_del(uint8_t, buf2, buf2_alloc);
  438. }
  439. return ret;
  440. }
  441. STATIC const mp_arg_t machine_i2c_mem_allowed_args[] = {
  442. { MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
  443. { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
  444. { MP_QSTR_arg, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
  445. { MP_QSTR_addrsize, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
  446. };
  447. STATIC mp_obj_t machine_i2c_readfrom_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
  448. enum { ARG_addr, ARG_memaddr, ARG_n, ARG_addrsize };
  449. mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)];
  450. mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args,
  451. MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args);
  452. // create the buffer to store data into
  453. vstr_t vstr;
  454. vstr_init_len(&vstr, mp_obj_get_int(args[ARG_n].u_obj));
  455. // do the transfer
  456. int ret = read_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int,
  457. args[ARG_addrsize].u_int, (uint8_t*)vstr.buf, vstr.len);
  458. if (ret < 0) {
  459. mp_raise_OSError(-ret);
  460. }
  461. return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
  462. }
  463. MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_obj, 1, machine_i2c_readfrom_mem);
  464. STATIC mp_obj_t machine_i2c_readfrom_mem_into(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
  465. enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize };
  466. mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)];
  467. mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args,
  468. MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args);
  469. // get the buffer to store data into
  470. mp_buffer_info_t bufinfo;
  471. mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_WRITE);
  472. // do the transfer
  473. int ret = read_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int,
  474. args[ARG_addrsize].u_int, bufinfo.buf, bufinfo.len);
  475. if (ret < 0) {
  476. mp_raise_OSError(-ret);
  477. }
  478. return mp_const_none;
  479. }
  480. MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_into_obj, 1, machine_i2c_readfrom_mem_into);
  481. STATIC mp_obj_t machine_i2c_writeto_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
  482. enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize };
  483. mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)];
  484. mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args,
  485. MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args);
  486. // get the buffer to write the data from
  487. mp_buffer_info_t bufinfo;
  488. mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_READ);
  489. // do the transfer
  490. int ret = write_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int,
  491. args[ARG_addrsize].u_int, bufinfo.buf, bufinfo.len);
  492. if (ret < 0) {
  493. mp_raise_OSError(-ret);
  494. }
  495. return mp_const_none;
  496. }
  497. STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_writeto_mem_obj, 1, machine_i2c_writeto_mem);
  498. STATIC const mp_rom_map_elem_t machine_i2c_locals_dict_table[] = {
  499. { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2c_init_obj) },
  500. { MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&machine_i2c_scan_obj) },
  501. // primitive I2C operations
  502. { MP_ROM_QSTR(MP_QSTR_start), MP_ROM_PTR(&machine_i2c_start_obj) },
  503. { MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&machine_i2c_stop_obj) },
  504. { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&machine_i2c_readinto_obj) },
  505. { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&machine_i2c_write_obj) },
  506. // standard bus operations
  507. { MP_ROM_QSTR(MP_QSTR_readfrom), MP_ROM_PTR(&machine_i2c_readfrom_obj) },
  508. { MP_ROM_QSTR(MP_QSTR_readfrom_into), MP_ROM_PTR(&machine_i2c_readfrom_into_obj) },
  509. { MP_ROM_QSTR(MP_QSTR_writeto), MP_ROM_PTR(&machine_i2c_writeto_obj) },
  510. // memory operations
  511. { MP_ROM_QSTR(MP_QSTR_readfrom_mem), MP_ROM_PTR(&machine_i2c_readfrom_mem_obj) },
  512. { MP_ROM_QSTR(MP_QSTR_readfrom_mem_into), MP_ROM_PTR(&machine_i2c_readfrom_mem_into_obj) },
  513. { MP_ROM_QSTR(MP_QSTR_writeto_mem), MP_ROM_PTR(&machine_i2c_writeto_mem_obj) },
  514. };
  515. MP_DEFINE_CONST_DICT(mp_machine_soft_i2c_locals_dict, machine_i2c_locals_dict_table);
  516. int mp_machine_soft_i2c_read(mp_obj_base_t *self_in, uint8_t *dest, size_t len, bool nack) {
  517. machine_i2c_obj_t *self = (machine_i2c_obj_t*)self_in;
  518. while (len--) {
  519. int ret = mp_hal_i2c_read_byte(self, dest++, nack && (len == 0));
  520. if (ret != 0) {
  521. return ret;
  522. }
  523. }
  524. return 0; // success
  525. }
  526. int mp_machine_soft_i2c_write(mp_obj_base_t *self_in, const uint8_t *src, size_t len) {
  527. machine_i2c_obj_t *self = (machine_i2c_obj_t*)self_in;
  528. int num_acks = 0;
  529. while (len--) {
  530. int ret = mp_hal_i2c_write_byte(self, *src++);
  531. if (ret < 0) {
  532. return ret;
  533. } else if (ret != 0) {
  534. // nack received, stop sending
  535. break;
  536. }
  537. ++num_acks;
  538. }
  539. return num_acks;
  540. }
  541. STATIC const mp_machine_i2c_p_t mp_machine_soft_i2c_p = {
  542. .start = (int(*)(mp_obj_base_t*))mp_hal_i2c_start,
  543. .stop = (int(*)(mp_obj_base_t*))mp_hal_i2c_stop,
  544. .read = mp_machine_soft_i2c_read,
  545. .write = mp_machine_soft_i2c_write,
  546. .readfrom = mp_machine_soft_i2c_readfrom,
  547. .writeto = mp_machine_soft_i2c_writeto,
  548. };
  549. const mp_obj_type_t machine_i2c_type = {
  550. { &mp_type_type },
  551. .name = MP_QSTR_I2C,
  552. .make_new = machine_i2c_make_new,
  553. .protocol = &mp_machine_soft_i2c_p,
  554. .locals_dict = (mp_obj_dict_t*)&mp_machine_soft_i2c_locals_dict,
  555. };
  556. #endif // MICROPY_PY_MACHINE_I2C