sha256.c 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. /*********************************************************************
  2. * Filename: sha256.c
  3. * Author: Brad Conte (brad AT bradconte.com)
  4. * Copyright:
  5. * Disclaimer: This code is presented "as is" without any guarantees.
  6. * Details: Implementation of the SHA-256 hashing algorithm.
  7. SHA-256 is one of the three algorithms in the SHA2
  8. specification. The others, SHA-384 and SHA-512, are not
  9. offered in this implementation.
  10. Algorithm specification can be found here:
  11. * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
  12. This implementation uses little endian byte order.
  13. *********************************************************************/
  14. /*************************** HEADER FILES ***************************/
  15. #include <stdlib.h>
  16. #include "sha256.h"
  17. /****************************** MACROS ******************************/
  18. #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
  19. #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
  20. #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
  21. #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  22. #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
  23. #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
  24. #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
  25. #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
  26. /**************************** VARIABLES *****************************/
  27. static const WORD k[64] = {
  28. 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
  29. 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
  30. 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
  31. 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
  32. 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
  33. 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
  34. 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
  35. 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
  36. };
  37. /*********************** FUNCTION DEFINITIONS ***********************/
  38. static void sha256_transform(CRYAL_SHA256_CTX *ctx, const BYTE data[])
  39. {
  40. WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
  41. for (i = 0, j = 0; i < 16; ++i, j += 4)
  42. m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
  43. for ( ; i < 64; ++i)
  44. m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
  45. a = ctx->state[0];
  46. b = ctx->state[1];
  47. c = ctx->state[2];
  48. d = ctx->state[3];
  49. e = ctx->state[4];
  50. f = ctx->state[5];
  51. g = ctx->state[6];
  52. h = ctx->state[7];
  53. for (i = 0; i < 64; ++i) {
  54. t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
  55. t2 = EP0(a) + MAJ(a,b,c);
  56. h = g;
  57. g = f;
  58. f = e;
  59. e = d + t1;
  60. d = c;
  61. c = b;
  62. b = a;
  63. a = t1 + t2;
  64. }
  65. ctx->state[0] += a;
  66. ctx->state[1] += b;
  67. ctx->state[2] += c;
  68. ctx->state[3] += d;
  69. ctx->state[4] += e;
  70. ctx->state[5] += f;
  71. ctx->state[6] += g;
  72. ctx->state[7] += h;
  73. }
  74. void sha256_init(CRYAL_SHA256_CTX *ctx)
  75. {
  76. ctx->datalen = 0;
  77. ctx->bitlen = 0;
  78. ctx->state[0] = 0x6a09e667;
  79. ctx->state[1] = 0xbb67ae85;
  80. ctx->state[2] = 0x3c6ef372;
  81. ctx->state[3] = 0xa54ff53a;
  82. ctx->state[4] = 0x510e527f;
  83. ctx->state[5] = 0x9b05688c;
  84. ctx->state[6] = 0x1f83d9ab;
  85. ctx->state[7] = 0x5be0cd19;
  86. }
  87. void sha256_update(CRYAL_SHA256_CTX *ctx, const BYTE data[], size_t len)
  88. {
  89. WORD i;
  90. for (i = 0; i < len; ++i) {
  91. ctx->data[ctx->datalen] = data[i];
  92. ctx->datalen++;
  93. if (ctx->datalen == 64) {
  94. sha256_transform(ctx, ctx->data);
  95. ctx->bitlen += 512;
  96. ctx->datalen = 0;
  97. }
  98. }
  99. }
  100. void sha256_final(CRYAL_SHA256_CTX *ctx, BYTE hash[])
  101. {
  102. WORD i;
  103. i = ctx->datalen;
  104. // Pad whatever data is left in the buffer.
  105. if (ctx->datalen < 56) {
  106. ctx->data[i++] = 0x80;
  107. while (i < 56)
  108. ctx->data[i++] = 0x00;
  109. }
  110. else {
  111. ctx->data[i++] = 0x80;
  112. while (i < 64)
  113. ctx->data[i++] = 0x00;
  114. sha256_transform(ctx, ctx->data);
  115. memset(ctx->data, 0, 56);
  116. }
  117. // Append to the padding the total message's length in bits and transform.
  118. ctx->bitlen += ctx->datalen * 8;
  119. ctx->data[63] = ctx->bitlen;
  120. ctx->data[62] = ctx->bitlen >> 8;
  121. ctx->data[61] = ctx->bitlen >> 16;
  122. ctx->data[60] = ctx->bitlen >> 24;
  123. ctx->data[59] = ctx->bitlen >> 32;
  124. ctx->data[58] = ctx->bitlen >> 40;
  125. ctx->data[57] = ctx->bitlen >> 48;
  126. ctx->data[56] = ctx->bitlen >> 56;
  127. sha256_transform(ctx, ctx->data);
  128. // Since this implementation uses little endian byte ordering and SHA uses big endian,
  129. // reverse all the bytes when copying the final state to the output hash.
  130. for (i = 0; i < 4; ++i) {
  131. hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
  132. hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
  133. hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
  134. hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
  135. hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
  136. hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
  137. hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
  138. hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
  139. }
  140. }