moductypes.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. /*
  2. * This file is part of the MicroPython project, http://micropython.org/
  3. *
  4. * The MIT License (MIT)
  5. *
  6. * Copyright (c) 2014 Paul Sokolovsky
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. */
  26. #include <assert.h>
  27. #include <string.h>
  28. #include <stdint.h>
  29. #include "py/runtime.h"
  30. #include "py/objtuple.h"
  31. #include "py/binary.h"
  32. #if MICROPY_PY_UCTYPES
  33. /// \module uctypes - Access data structures in memory
  34. ///
  35. /// The module allows to define layout of raw data structure (using terms
  36. /// of C language), and then access memory buffers using this definition.
  37. /// The module also provides convenience functions to access memory buffers
  38. /// contained in Python objects or wrap memory buffers in Python objects.
  39. /// \constant UINT8_1 - uint8_t value type
  40. /// \class struct - C-like structure
  41. ///
  42. /// Encapsulalation of in-memory data structure. This class doesn't define
  43. /// any methods, only attribute access (for structure fields) and
  44. /// indexing (for pointer and array fields).
  45. ///
  46. /// Usage:
  47. ///
  48. /// # Define layout of a structure with 2 fields
  49. /// # 0 and 4 are byte offsets of fields from the beginning of struct
  50. /// # they are logically ORed with field type
  51. /// FOO_STRUCT = {"a": 0 | uctypes.UINT32, "b": 4 | uctypes.UINT8}
  52. ///
  53. /// # Example memory buffer to access (contained in bytes object)
  54. /// buf = b"\x64\0\0\0\0x14"
  55. ///
  56. /// # Create structure object referring to address of
  57. /// # the data in the buffer above
  58. /// s = uctypes.struct(FOO_STRUCT, uctypes.addressof(buf))
  59. ///
  60. /// # Access fields
  61. /// print(s.a, s.b)
  62. /// # Result:
  63. /// # 100, 20
  64. #define LAYOUT_LITTLE_ENDIAN (0)
  65. #define LAYOUT_BIG_ENDIAN (1)
  66. #define LAYOUT_NATIVE (2)
  67. #define VAL_TYPE_BITS 4
  68. #define BITF_LEN_BITS 5
  69. #define BITF_OFF_BITS 5
  70. #define OFFSET_BITS 17
  71. #if VAL_TYPE_BITS + BITF_LEN_BITS + BITF_OFF_BITS + OFFSET_BITS != 31
  72. #error Invalid encoding field length
  73. #endif
  74. enum {
  75. UINT8, INT8, UINT16, INT16,
  76. UINT32, INT32, UINT64, INT64,
  77. BFUINT8, BFINT8, BFUINT16, BFINT16,
  78. BFUINT32, BFINT32,
  79. FLOAT32, FLOAT64,
  80. };
  81. #define AGG_TYPE_BITS 2
  82. enum {
  83. STRUCT, PTR, ARRAY, BITFIELD,
  84. };
  85. // Here we need to set sign bit right
  86. #define TYPE2SMALLINT(x, nbits) ((((int)x) << (32 - nbits)) >> 1)
  87. #define GET_TYPE(x, nbits) (((x) >> (31 - nbits)) & ((1 << nbits) - 1))
  88. // Bit 0 is "is_signed"
  89. #define GET_SCALAR_SIZE(val_type) (1 << ((val_type) >> 1))
  90. #define VALUE_MASK(type_nbits) ~((int)0x80000000 >> type_nbits)
  91. #define IS_SCALAR_ARRAY(tuple_desc) ((tuple_desc)->len == 2)
  92. // We cannot apply the below to INT8, as their range [-128, 127]
  93. #define IS_SCALAR_ARRAY_OF_BYTES(tuple_desc) (GET_TYPE(MP_OBJ_SMALL_INT_VALUE((tuple_desc)->items[1]), VAL_TYPE_BITS) == UINT8)
  94. // "struct" in uctypes context means "structural", i.e. aggregate, type.
  95. STATIC const mp_obj_type_t uctypes_struct_type;
  96. typedef struct _mp_obj_uctypes_struct_t {
  97. mp_obj_base_t base;
  98. mp_obj_t desc;
  99. byte *addr;
  100. uint32_t flags;
  101. } mp_obj_uctypes_struct_t;
  102. STATIC NORETURN void syntax_error(void) {
  103. mp_raise_TypeError("syntax error in uctypes descriptor");
  104. }
  105. STATIC mp_obj_t uctypes_struct_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
  106. mp_arg_check_num(n_args, n_kw, 2, 3, false);
  107. mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
  108. o->base.type = type;
  109. o->addr = (void*)(uintptr_t)mp_obj_int_get_truncated(args[0]);
  110. o->desc = args[1];
  111. o->flags = LAYOUT_NATIVE;
  112. if (n_args == 3) {
  113. o->flags = mp_obj_get_int(args[2]);
  114. }
  115. return MP_OBJ_FROM_PTR(o);
  116. }
  117. STATIC void uctypes_struct_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
  118. (void)kind;
  119. mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in);
  120. const char *typen = "unk";
  121. if (MP_OBJ_IS_TYPE(self->desc, &mp_type_dict)) {
  122. typen = "STRUCT";
  123. } else if (MP_OBJ_IS_TYPE(self->desc, &mp_type_tuple)) {
  124. mp_obj_tuple_t *t = MP_OBJ_TO_PTR(self->desc);
  125. mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
  126. uint agg_type = GET_TYPE(offset, AGG_TYPE_BITS);
  127. switch (agg_type) {
  128. case PTR: typen = "PTR"; break;
  129. case ARRAY: typen = "ARRAY"; break;
  130. }
  131. } else {
  132. typen = "ERROR";
  133. }
  134. mp_printf(print, "<struct %s %p>", typen, self->addr);
  135. }
  136. // Get size of any type descriptor
  137. STATIC mp_uint_t uctypes_struct_size(mp_obj_t desc_in, int layout_type, mp_uint_t *max_field_size);
  138. // Get size of scalar type descriptor
  139. static inline mp_uint_t uctypes_struct_scalar_size(int val_type) {
  140. if (val_type == FLOAT32) {
  141. return 4;
  142. } else {
  143. return GET_SCALAR_SIZE(val_type & 7);
  144. }
  145. }
  146. // Get size of aggregate type descriptor
  147. STATIC mp_uint_t uctypes_struct_agg_size(mp_obj_tuple_t *t, int layout_type, mp_uint_t *max_field_size) {
  148. mp_uint_t total_size = 0;
  149. mp_int_t offset_ = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
  150. mp_uint_t agg_type = GET_TYPE(offset_, AGG_TYPE_BITS);
  151. switch (agg_type) {
  152. case STRUCT:
  153. return uctypes_struct_size(t->items[1], layout_type, max_field_size);
  154. case PTR:
  155. if (sizeof(void*) > *max_field_size) {
  156. *max_field_size = sizeof(void*);
  157. }
  158. return sizeof(void*);
  159. case ARRAY: {
  160. mp_int_t arr_sz = MP_OBJ_SMALL_INT_VALUE(t->items[1]);
  161. uint val_type = GET_TYPE(arr_sz, VAL_TYPE_BITS);
  162. arr_sz &= VALUE_MASK(VAL_TYPE_BITS);
  163. mp_uint_t item_s;
  164. if (t->len == 2) {
  165. // Elements of array are scalar
  166. item_s = GET_SCALAR_SIZE(val_type);
  167. if (item_s > *max_field_size) {
  168. *max_field_size = item_s;
  169. }
  170. } else {
  171. // Elements of array are aggregates
  172. item_s = uctypes_struct_size(t->items[2], layout_type, max_field_size);
  173. }
  174. return item_s * arr_sz;
  175. }
  176. default:
  177. assert(0);
  178. }
  179. return total_size;
  180. }
  181. STATIC mp_uint_t uctypes_struct_size(mp_obj_t desc_in, int layout_type, mp_uint_t *max_field_size) {
  182. if (!MP_OBJ_IS_TYPE(desc_in, &mp_type_dict)) {
  183. if (MP_OBJ_IS_TYPE(desc_in, &mp_type_tuple)) {
  184. return uctypes_struct_agg_size((mp_obj_tuple_t*)MP_OBJ_TO_PTR(desc_in), layout_type, max_field_size);
  185. } else if (MP_OBJ_IS_SMALL_INT(desc_in)) {
  186. // We allow sizeof on both type definitions and structures/structure fields,
  187. // but scalar structure field is lowered into native Python int, so all
  188. // type info is lost. So, we cannot say if it's scalar type description,
  189. // or such lowered scalar.
  190. mp_raise_TypeError("Cannot unambiguously get sizeof scalar");
  191. }
  192. syntax_error();
  193. }
  194. mp_obj_dict_t *d = MP_OBJ_TO_PTR(desc_in);
  195. mp_uint_t total_size = 0;
  196. for (mp_uint_t i = 0; i < d->map.alloc; i++) {
  197. if (MP_MAP_SLOT_IS_FILLED(&d->map, i)) {
  198. mp_obj_t v = d->map.table[i].value;
  199. if (MP_OBJ_IS_SMALL_INT(v)) {
  200. mp_uint_t offset = MP_OBJ_SMALL_INT_VALUE(v);
  201. mp_uint_t val_type = GET_TYPE(offset, VAL_TYPE_BITS);
  202. offset &= VALUE_MASK(VAL_TYPE_BITS);
  203. if (val_type >= BFUINT8 && val_type <= BFINT32) {
  204. offset &= (1 << OFFSET_BITS) - 1;
  205. }
  206. mp_uint_t s = uctypes_struct_scalar_size(val_type);
  207. if (s > *max_field_size) {
  208. *max_field_size = s;
  209. }
  210. if (offset + s > total_size) {
  211. total_size = offset + s;
  212. }
  213. } else {
  214. if (!MP_OBJ_IS_TYPE(v, &mp_type_tuple)) {
  215. syntax_error();
  216. }
  217. mp_obj_tuple_t *t = MP_OBJ_TO_PTR(v);
  218. mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
  219. offset &= VALUE_MASK(AGG_TYPE_BITS);
  220. mp_uint_t s = uctypes_struct_agg_size(t, layout_type, max_field_size);
  221. if (offset + s > total_size) {
  222. total_size = offset + s;
  223. }
  224. }
  225. }
  226. }
  227. // Round size up to alignment of biggest field
  228. if (layout_type == LAYOUT_NATIVE) {
  229. total_size = (total_size + *max_field_size - 1) & ~(*max_field_size - 1);
  230. }
  231. return total_size;
  232. }
  233. STATIC mp_obj_t uctypes_struct_sizeof(mp_obj_t obj_in) {
  234. mp_uint_t max_field_size = 0;
  235. if (MP_OBJ_IS_TYPE(obj_in, &mp_type_bytearray)) {
  236. return mp_obj_len(obj_in);
  237. }
  238. int layout_type = LAYOUT_NATIVE;
  239. // We can apply sizeof either to structure definition (a dict)
  240. // or to instantiated structure
  241. if (MP_OBJ_IS_TYPE(obj_in, &uctypes_struct_type)) {
  242. // Extract structure definition
  243. mp_obj_uctypes_struct_t *obj = MP_OBJ_TO_PTR(obj_in);
  244. obj_in = obj->desc;
  245. layout_type = obj->flags;
  246. }
  247. mp_uint_t size = uctypes_struct_size(obj_in, layout_type, &max_field_size);
  248. return MP_OBJ_NEW_SMALL_INT(size);
  249. }
  250. STATIC MP_DEFINE_CONST_FUN_OBJ_1(uctypes_struct_sizeof_obj, uctypes_struct_sizeof);
  251. static inline mp_obj_t get_unaligned(uint val_type, byte *p, int big_endian) {
  252. char struct_type = big_endian ? '>' : '<';
  253. static const char type2char[16] = "BbHhIiQq------fd";
  254. return mp_binary_get_val(struct_type, type2char[val_type], &p);
  255. }
  256. static inline void set_unaligned(uint val_type, byte *p, int big_endian, mp_obj_t val) {
  257. char struct_type = big_endian ? '>' : '<';
  258. static const char type2char[16] = "BbHhIiQq------fd";
  259. mp_binary_set_val(struct_type, type2char[val_type], val, &p);
  260. }
  261. static inline mp_uint_t get_aligned_basic(uint val_type, void *p) {
  262. switch (val_type) {
  263. case UINT8:
  264. return *(uint8_t*)p;
  265. case UINT16:
  266. return *(uint16_t*)p;
  267. case UINT32:
  268. return *(uint32_t*)p;
  269. }
  270. assert(0);
  271. return 0;
  272. }
  273. static inline void set_aligned_basic(uint val_type, void *p, mp_uint_t v) {
  274. switch (val_type) {
  275. case UINT8:
  276. *(uint8_t*)p = (uint8_t)v; return;
  277. case UINT16:
  278. *(uint16_t*)p = (uint16_t)v; return;
  279. case UINT32:
  280. *(uint32_t*)p = (uint32_t)v; return;
  281. }
  282. assert(0);
  283. }
  284. STATIC mp_obj_t get_aligned(uint val_type, void *p, mp_int_t index) {
  285. switch (val_type) {
  286. case UINT8:
  287. return MP_OBJ_NEW_SMALL_INT(((uint8_t*)p)[index]);
  288. case INT8:
  289. return MP_OBJ_NEW_SMALL_INT(((int8_t*)p)[index]);
  290. case UINT16:
  291. return MP_OBJ_NEW_SMALL_INT(((uint16_t*)p)[index]);
  292. case INT16:
  293. return MP_OBJ_NEW_SMALL_INT(((int16_t*)p)[index]);
  294. case UINT32:
  295. return mp_obj_new_int_from_uint(((uint32_t*)p)[index]);
  296. case INT32:
  297. return mp_obj_new_int(((int32_t*)p)[index]);
  298. case UINT64:
  299. return mp_obj_new_int_from_ull(((uint64_t*)p)[index]);
  300. case INT64:
  301. return mp_obj_new_int_from_ll(((int64_t*)p)[index]);
  302. #if MICROPY_PY_BUILTINS_FLOAT
  303. case FLOAT32:
  304. return mp_obj_new_float(((float*)p)[index]);
  305. case FLOAT64:
  306. return mp_obj_new_float(((double*)p)[index]);
  307. #endif
  308. default:
  309. assert(0);
  310. return MP_OBJ_NULL;
  311. }
  312. }
  313. STATIC void set_aligned(uint val_type, void *p, mp_int_t index, mp_obj_t val) {
  314. #if MICROPY_PY_BUILTINS_FLOAT
  315. if (val_type == FLOAT32 || val_type == FLOAT64) {
  316. mp_float_t v = mp_obj_get_float(val);
  317. if (val_type == FLOAT32) {
  318. ((float*)p)[index] = v;
  319. } else {
  320. ((double*)p)[index] = v;
  321. }
  322. return;
  323. }
  324. #endif
  325. mp_int_t v = mp_obj_get_int_truncated(val);
  326. switch (val_type) {
  327. case UINT8:
  328. ((uint8_t*)p)[index] = (uint8_t)v; return;
  329. case INT8:
  330. ((int8_t*)p)[index] = (int8_t)v; return;
  331. case UINT16:
  332. ((uint16_t*)p)[index] = (uint16_t)v; return;
  333. case INT16:
  334. ((int16_t*)p)[index] = (int16_t)v; return;
  335. case UINT32:
  336. ((uint32_t*)p)[index] = (uint32_t)v; return;
  337. case INT32:
  338. ((int32_t*)p)[index] = (int32_t)v; return;
  339. case INT64:
  340. case UINT64:
  341. if (sizeof(mp_int_t) == 8) {
  342. ((uint64_t*)p)[index] = (uint64_t)v;
  343. } else {
  344. // TODO: Doesn't offer atomic store semantics, but should at least try
  345. set_unaligned(val_type, p, MP_ENDIANNESS_BIG, val);
  346. }
  347. return;
  348. default:
  349. assert(0);
  350. }
  351. }
  352. STATIC mp_obj_t uctypes_struct_attr_op(mp_obj_t self_in, qstr attr, mp_obj_t set_val) {
  353. mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in);
  354. // TODO: Support at least OrderedDict in addition
  355. if (!MP_OBJ_IS_TYPE(self->desc, &mp_type_dict)) {
  356. mp_raise_TypeError("struct: no fields");
  357. }
  358. mp_obj_t deref = mp_obj_dict_get(self->desc, MP_OBJ_NEW_QSTR(attr));
  359. if (MP_OBJ_IS_SMALL_INT(deref)) {
  360. mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(deref);
  361. mp_uint_t val_type = GET_TYPE(offset, VAL_TYPE_BITS);
  362. offset &= VALUE_MASK(VAL_TYPE_BITS);
  363. //printf("scalar type=%d offset=%x\n", val_type, offset);
  364. if (val_type <= INT64 || val_type == FLOAT32 || val_type == FLOAT64) {
  365. // printf("size=%d\n", GET_SCALAR_SIZE(val_type));
  366. if (self->flags == LAYOUT_NATIVE) {
  367. if (set_val == MP_OBJ_NULL) {
  368. return get_aligned(val_type, self->addr + offset, 0);
  369. } else {
  370. set_aligned(val_type, self->addr + offset, 0, set_val);
  371. return set_val; // just !MP_OBJ_NULL
  372. }
  373. } else {
  374. if (set_val == MP_OBJ_NULL) {
  375. return get_unaligned(val_type, self->addr + offset, self->flags);
  376. } else {
  377. set_unaligned(val_type, self->addr + offset, self->flags, set_val);
  378. return set_val; // just !MP_OBJ_NULL
  379. }
  380. }
  381. } else if (val_type >= BFUINT8 && val_type <= BFINT32) {
  382. uint bit_offset = (offset >> 17) & 31;
  383. uint bit_len = (offset >> 22) & 31;
  384. offset &= (1 << 17) - 1;
  385. mp_uint_t val;
  386. if (self->flags == LAYOUT_NATIVE) {
  387. val = get_aligned_basic(val_type & 6, self->addr + offset);
  388. } else {
  389. val = mp_binary_get_int(GET_SCALAR_SIZE(val_type & 7), val_type & 1, self->flags, self->addr + offset);
  390. }
  391. if (set_val == MP_OBJ_NULL) {
  392. val >>= bit_offset;
  393. val &= (1 << bit_len) - 1;
  394. // TODO: signed
  395. assert((val_type & 1) == 0);
  396. return mp_obj_new_int(val);
  397. } else {
  398. mp_uint_t set_val_int = (mp_uint_t)mp_obj_get_int(set_val);
  399. mp_uint_t mask = (1 << bit_len) - 1;
  400. set_val_int &= mask;
  401. set_val_int <<= bit_offset;
  402. mask <<= bit_offset;
  403. val = (val & ~mask) | set_val_int;
  404. if (self->flags == LAYOUT_NATIVE) {
  405. set_aligned_basic(val_type & 6, self->addr + offset, val);
  406. } else {
  407. mp_binary_set_int(GET_SCALAR_SIZE(val_type & 7), self->flags == LAYOUT_BIG_ENDIAN,
  408. self->addr + offset, val);
  409. }
  410. return set_val; // just !MP_OBJ_NULL
  411. }
  412. }
  413. assert(0);
  414. return MP_OBJ_NULL;
  415. }
  416. if (!MP_OBJ_IS_TYPE(deref, &mp_type_tuple)) {
  417. syntax_error();
  418. }
  419. if (set_val != MP_OBJ_NULL) {
  420. // Cannot assign to aggregate
  421. syntax_error();
  422. }
  423. mp_obj_tuple_t *sub = MP_OBJ_TO_PTR(deref);
  424. mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(sub->items[0]);
  425. mp_uint_t agg_type = GET_TYPE(offset, AGG_TYPE_BITS);
  426. offset &= VALUE_MASK(AGG_TYPE_BITS);
  427. //printf("agg type=%d offset=%x\n", agg_type, offset);
  428. switch (agg_type) {
  429. case STRUCT: {
  430. mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
  431. o->base.type = &uctypes_struct_type;
  432. o->desc = sub->items[1];
  433. o->addr = self->addr + offset;
  434. o->flags = self->flags;
  435. return MP_OBJ_FROM_PTR(o);
  436. }
  437. case ARRAY: {
  438. mp_uint_t dummy;
  439. if (IS_SCALAR_ARRAY(sub) && IS_SCALAR_ARRAY_OF_BYTES(sub)) {
  440. return mp_obj_new_bytearray_by_ref(uctypes_struct_agg_size(sub, self->flags, &dummy), self->addr + offset);
  441. }
  442. // Fall thru to return uctypes struct object
  443. }
  444. case PTR: {
  445. mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
  446. o->base.type = &uctypes_struct_type;
  447. o->desc = MP_OBJ_FROM_PTR(sub);
  448. o->addr = self->addr + offset;
  449. o->flags = self->flags;
  450. //printf("PTR/ARR base addr=%p\n", o->addr);
  451. return MP_OBJ_FROM_PTR(o);
  452. }
  453. }
  454. // Should be unreachable once all cases are handled
  455. return MP_OBJ_NULL;
  456. }
  457. STATIC void uctypes_struct_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
  458. if (dest[0] == MP_OBJ_NULL) {
  459. // load attribute
  460. mp_obj_t val = uctypes_struct_attr_op(self_in, attr, MP_OBJ_NULL);
  461. dest[0] = val;
  462. } else {
  463. // delete/store attribute
  464. if (uctypes_struct_attr_op(self_in, attr, dest[1]) != MP_OBJ_NULL) {
  465. dest[0] = MP_OBJ_NULL; // indicate success
  466. }
  467. }
  468. }
  469. STATIC mp_obj_t uctypes_struct_subscr(mp_obj_t self_in, mp_obj_t index_in, mp_obj_t value) {
  470. mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in);
  471. if (value == MP_OBJ_NULL) {
  472. // delete
  473. return MP_OBJ_NULL; // op not supported
  474. } else {
  475. // load / store
  476. if (!MP_OBJ_IS_TYPE(self->desc, &mp_type_tuple)) {
  477. mp_raise_TypeError("struct: cannot index");
  478. }
  479. mp_obj_tuple_t *t = MP_OBJ_TO_PTR(self->desc);
  480. mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
  481. uint agg_type = GET_TYPE(offset, AGG_TYPE_BITS);
  482. mp_int_t index = MP_OBJ_SMALL_INT_VALUE(index_in);
  483. if (agg_type == ARRAY) {
  484. mp_int_t arr_sz = MP_OBJ_SMALL_INT_VALUE(t->items[1]);
  485. uint val_type = GET_TYPE(arr_sz, VAL_TYPE_BITS);
  486. arr_sz &= VALUE_MASK(VAL_TYPE_BITS);
  487. if (index >= arr_sz) {
  488. nlr_raise(mp_obj_new_exception_msg(&mp_type_IndexError, "struct: index out of range"));
  489. }
  490. if (t->len == 2) {
  491. // array of scalars
  492. if (self->flags == LAYOUT_NATIVE) {
  493. if (value == MP_OBJ_SENTINEL) {
  494. return get_aligned(val_type, self->addr, index);
  495. } else {
  496. set_aligned(val_type, self->addr, index, value);
  497. return value; // just !MP_OBJ_NULL
  498. }
  499. } else {
  500. byte *p = self->addr + GET_SCALAR_SIZE(val_type) * index;
  501. if (value == MP_OBJ_SENTINEL) {
  502. return get_unaligned(val_type, p, self->flags);
  503. } else {
  504. set_unaligned(val_type, p, self->flags, value);
  505. return value; // just !MP_OBJ_NULL
  506. }
  507. }
  508. } else if (value == MP_OBJ_SENTINEL) {
  509. mp_uint_t dummy = 0;
  510. mp_uint_t size = uctypes_struct_size(t->items[2], self->flags, &dummy);
  511. mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
  512. o->base.type = &uctypes_struct_type;
  513. o->desc = t->items[2];
  514. o->addr = self->addr + size * index;
  515. o->flags = self->flags;
  516. return MP_OBJ_FROM_PTR(o);
  517. } else {
  518. return MP_OBJ_NULL; // op not supported
  519. }
  520. } else if (agg_type == PTR) {
  521. byte *p = *(void**)self->addr;
  522. if (MP_OBJ_IS_SMALL_INT(t->items[1])) {
  523. uint val_type = GET_TYPE(MP_OBJ_SMALL_INT_VALUE(t->items[1]), VAL_TYPE_BITS);
  524. return get_aligned(val_type, p, index);
  525. } else {
  526. mp_uint_t dummy = 0;
  527. mp_uint_t size = uctypes_struct_size(t->items[1], self->flags, &dummy);
  528. mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
  529. o->base.type = &uctypes_struct_type;
  530. o->desc = t->items[1];
  531. o->addr = p + size * index;
  532. o->flags = self->flags;
  533. return MP_OBJ_FROM_PTR(o);
  534. }
  535. }
  536. assert(0);
  537. return MP_OBJ_NULL;
  538. }
  539. }
  540. STATIC mp_int_t uctypes_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) {
  541. (void)flags;
  542. mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in);
  543. mp_uint_t max_field_size = 0;
  544. mp_uint_t size = uctypes_struct_size(self->desc, self->flags, &max_field_size);
  545. bufinfo->buf = self->addr;
  546. bufinfo->len = size;
  547. bufinfo->typecode = BYTEARRAY_TYPECODE;
  548. return 0;
  549. }
  550. /// \function addressof()
  551. /// Return address of object's data (applies to object providing buffer
  552. /// interface).
  553. STATIC mp_obj_t uctypes_struct_addressof(mp_obj_t buf) {
  554. mp_buffer_info_t bufinfo;
  555. mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
  556. return mp_obj_new_int((mp_int_t)(uintptr_t)bufinfo.buf);
  557. }
  558. MP_DEFINE_CONST_FUN_OBJ_1(uctypes_struct_addressof_obj, uctypes_struct_addressof);
  559. /// \function bytearray_at()
  560. /// Capture memory at given address of given size as bytearray. Memory is
  561. /// captured by reference (and thus memory pointed by bytearray may change
  562. /// or become invalid at later time). Use bytes_at() to capture by value.
  563. STATIC mp_obj_t uctypes_struct_bytearray_at(mp_obj_t ptr, mp_obj_t size) {
  564. return mp_obj_new_bytearray_by_ref(mp_obj_int_get_truncated(size), (void*)(uintptr_t)mp_obj_int_get_truncated(ptr));
  565. }
  566. MP_DEFINE_CONST_FUN_OBJ_2(uctypes_struct_bytearray_at_obj, uctypes_struct_bytearray_at);
  567. /// \function bytes_at()
  568. /// Capture memory at given address of given size as bytes. Memory is
  569. /// captured by value, i.e. copied. Use bytearray_at() to capture by reference
  570. /// ("zero copy").
  571. STATIC mp_obj_t uctypes_struct_bytes_at(mp_obj_t ptr, mp_obj_t size) {
  572. return mp_obj_new_bytes((void*)(uintptr_t)mp_obj_int_get_truncated(ptr), mp_obj_int_get_truncated(size));
  573. }
  574. MP_DEFINE_CONST_FUN_OBJ_2(uctypes_struct_bytes_at_obj, uctypes_struct_bytes_at);
  575. STATIC const mp_obj_type_t uctypes_struct_type = {
  576. { &mp_type_type },
  577. .name = MP_QSTR_struct,
  578. .print = uctypes_struct_print,
  579. .make_new = uctypes_struct_make_new,
  580. .attr = uctypes_struct_attr,
  581. .subscr = uctypes_struct_subscr,
  582. .buffer_p = { .get_buffer = uctypes_get_buffer },
  583. };
  584. STATIC const mp_rom_map_elem_t mp_module_uctypes_globals_table[] = {
  585. { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_uctypes) },
  586. { MP_ROM_QSTR(MP_QSTR_struct), MP_ROM_PTR(&uctypes_struct_type) },
  587. { MP_ROM_QSTR(MP_QSTR_sizeof), MP_ROM_PTR(&uctypes_struct_sizeof_obj) },
  588. { MP_ROM_QSTR(MP_QSTR_addressof), MP_ROM_PTR(&uctypes_struct_addressof_obj) },
  589. { MP_ROM_QSTR(MP_QSTR_bytes_at), MP_ROM_PTR(&uctypes_struct_bytes_at_obj) },
  590. { MP_ROM_QSTR(MP_QSTR_bytearray_at), MP_ROM_PTR(&uctypes_struct_bytearray_at_obj) },
  591. /// \moduleref uctypes
  592. /// \constant NATIVE - Native structure layout - native endianness,
  593. /// platform-specific field alignment
  594. { MP_ROM_QSTR(MP_QSTR_NATIVE), MP_ROM_INT(LAYOUT_NATIVE) },
  595. /// \constant LITTLE_ENDIAN - Little-endian structure layout, tightly packed
  596. /// (no alignment constraints)
  597. { MP_ROM_QSTR(MP_QSTR_LITTLE_ENDIAN), MP_ROM_INT(LAYOUT_LITTLE_ENDIAN) },
  598. /// \constant BIG_ENDIAN - Big-endian structure layout, tightly packed
  599. /// (no alignment constraints)
  600. { MP_ROM_QSTR(MP_QSTR_BIG_ENDIAN), MP_ROM_INT(LAYOUT_BIG_ENDIAN) },
  601. /// \constant VOID - void value type, may be used only as pointer target type.
  602. { MP_ROM_QSTR(MP_QSTR_VOID), MP_ROM_INT(TYPE2SMALLINT(UINT8, VAL_TYPE_BITS)) },
  603. /// \constant UINT8 - uint8_t value type
  604. { MP_ROM_QSTR(MP_QSTR_UINT8), MP_ROM_INT(TYPE2SMALLINT(UINT8, 4)) },
  605. /// \constant INT8 - int8_t value type
  606. { MP_ROM_QSTR(MP_QSTR_INT8), MP_ROM_INT(TYPE2SMALLINT(INT8, 4)) },
  607. /// \constant UINT16 - uint16_t value type
  608. { MP_ROM_QSTR(MP_QSTR_UINT16), MP_ROM_INT(TYPE2SMALLINT(UINT16, 4)) },
  609. /// \constant INT16 - int16_t value type
  610. { MP_ROM_QSTR(MP_QSTR_INT16), MP_ROM_INT(TYPE2SMALLINT(INT16, 4)) },
  611. /// \constant UINT32 - uint32_t value type
  612. { MP_ROM_QSTR(MP_QSTR_UINT32), MP_ROM_INT(TYPE2SMALLINT(UINT32, 4)) },
  613. /// \constant INT32 - int32_t value type
  614. { MP_ROM_QSTR(MP_QSTR_INT32), MP_ROM_INT(TYPE2SMALLINT(INT32, 4)) },
  615. /// \constant UINT64 - uint64_t value type
  616. { MP_ROM_QSTR(MP_QSTR_UINT64), MP_ROM_INT(TYPE2SMALLINT(UINT64, 4)) },
  617. /// \constant INT64 - int64_t value type
  618. { MP_ROM_QSTR(MP_QSTR_INT64), MP_ROM_INT(TYPE2SMALLINT(INT64, 4)) },
  619. { MP_ROM_QSTR(MP_QSTR_BFUINT8), MP_ROM_INT(TYPE2SMALLINT(BFUINT8, 4)) },
  620. { MP_ROM_QSTR(MP_QSTR_BFINT8), MP_ROM_INT(TYPE2SMALLINT(BFINT8, 4)) },
  621. { MP_ROM_QSTR(MP_QSTR_BFUINT16), MP_ROM_INT(TYPE2SMALLINT(BFUINT16, 4)) },
  622. { MP_ROM_QSTR(MP_QSTR_BFINT16), MP_ROM_INT(TYPE2SMALLINT(BFINT16, 4)) },
  623. { MP_ROM_QSTR(MP_QSTR_BFUINT32), MP_ROM_INT(TYPE2SMALLINT(BFUINT32, 4)) },
  624. { MP_ROM_QSTR(MP_QSTR_BFINT32), MP_ROM_INT(TYPE2SMALLINT(BFINT32, 4)) },
  625. { MP_ROM_QSTR(MP_QSTR_BF_POS), MP_ROM_INT(17) },
  626. { MP_ROM_QSTR(MP_QSTR_BF_LEN), MP_ROM_INT(22) },
  627. #if MICROPY_PY_BUILTINS_FLOAT
  628. { MP_ROM_QSTR(MP_QSTR_FLOAT32), MP_ROM_INT(TYPE2SMALLINT(FLOAT32, 4)) },
  629. { MP_ROM_QSTR(MP_QSTR_FLOAT64), MP_ROM_INT(TYPE2SMALLINT(FLOAT64, 4)) },
  630. #endif
  631. { MP_ROM_QSTR(MP_QSTR_PTR), MP_ROM_INT(TYPE2SMALLINT(PTR, AGG_TYPE_BITS)) },
  632. { MP_ROM_QSTR(MP_QSTR_ARRAY), MP_ROM_INT(TYPE2SMALLINT(ARRAY, AGG_TYPE_BITS)) },
  633. };
  634. STATIC MP_DEFINE_CONST_DICT(mp_module_uctypes_globals, mp_module_uctypes_globals_table);
  635. const mp_obj_module_t mp_module_uctypes = {
  636. .base = { &mp_type_module },
  637. .globals = (mp_obj_dict_t*)&mp_module_uctypes_globals,
  638. };
  639. #endif